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This paper deals with a new iterative algorithm for solving hierarchical fixed point problems of
an infinite family of pseudocontractions in Hilbert spaces by y, = B,Sx, + (1 = Bn)Xy, Xpa1 =

Pelanf(xn) + (1 — ay) 375 pLE")Tiyn], and Vn > 0, where T; : C — H is a nonself k;-strictly

pseudocontraction. Under certain approximate conditions, the sequence {x,} converges strongly
to x* € N2; F(T;), which solves some variational inequality. The results here improve and extend
some recent results.

1. Introduction

Let H be a real Hilbert space with inner product () and norm || - ||. Let C be a nonempty
closed convex subset of H. A mapping f : C — H is called a contraction with coefficient y if
there exits a constant y € [0, 1) such that

If @ =fWl <vlx-yll, vryeC (1)
A mapping T : C — C is called nonexpansive if

ITx =Tyl <[jx-v

, Yx,yeC. (1.2)

A mapping T : C — H is called k-strictly pseudocontraction if there exits a constant
k € [0,1) such that

ITx-Ty|* < ||x-y|* +k|(I-T)x- I -T)y||>, Vx,yeC. (1.3)
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Write F(T) as the set of fixed points of T, that is, F(T) = {x € C,Tx = x}. In 2000,
Moudafi [1] introduced an iterative scheme for nonexpansive mappings

Xn+1 = “nf(xn) +(1-a,)Tx,, Yn2>0, (1.4)

where f be a contraction on H and the sequence {x,} started with arbitrary initial xy € H.
In 2004, Xu [2] proved that the sequence {x,} generated by (1.4) converges strongly to a
fixed point of T under certain conditions on the parameters, which also solves the variational
inequality

((I-f)x*,x=x")>0, VxeF(T). (1.5)

Recently, some authors studied the problems of fixed points of nonexpansive
mappings with strongly positive operators, Lipschitizian, strongly monotone operators, and
extragradient methods, and many convergence results were obtained (such as, see [3-9]).

In 2008, Yao et al. [10] introduced the following iterative scheme:

xgo=x€C,
Yn = Prxn+ (1= Bn)Txy, (1.6)

Xn+1 = anf(xn) +(1- “n)yn/ VYn >0,

where f is a contraction on C and T : C — C is nonexpansive mapping. In 2012, Song et al.
[11] analyzed the following iterative algorithm:

xo=x€C,

Yn = PC I:ﬁnxn + (1 - ﬁn)ZﬂEn)Tixn]/ (17)
i1
X1 = O f (Xn) + YuXn + (1= yu)I — anF)yn, Yn>0,

where T; is a k;-strictly pseudocontraction, F : C — C is a lipschitzian and strongly monotone
operator, f : C — C is a contraction, and Pc is the metric projection from H onto C.
Under certain conditions on the parameters, the sequence {x,} generated by (1.7) converges
strongly to a fixed point of a countable family of k;-strictly pseudocontraction, which is the
solution of some variational inequality.

On the other hand, in 2010, Yao et al. [12] introduced the iterative algorithm for solving
hierarchical fixed point of nonexpansive mappings and gave the following theorem.

Theorem YCL
Let C be a nonempty closed convex subset of a real Hilbert space H. Let f : C — H be a
contraction with coefficient y € [0, 1). Suppose the following conditions are satisfied:
(i) lim;, - ar, = 0 and X2y, = oo;
(i) limy — o (B / an) = 0;
(iii) limy, - o (lans1 — @nl/an) = 0 and limy, —, oo (|Bns1 — Bul/Pr) = 0.
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Then the sequence {x,} generated by

xo=x€C,

Yn = PuSxn + (1= Pn)Xn, (1.8)
Xns1 = Pelanf(xn) + (1 —an)Ty,], Yn20,

converges strongly to a point of x* € H, which is the unique solution of the variational
inequality

x*eF(T), ((I-f)x",x-x*)>0, VxeF(T). (1.9)

Motivated and inspired by the iterative schemes (1.7) and (1.8), we introduce and
study the hybrid iterative algorithm for solving some hierarchical fixed point problem of
infinite family of strictly nonself pseudocontractions:

xo=x€C,

Yn = BuSxu + (1= Bu)Xn, (1.10)

Xni1 = Pc [anf(xn) +(1- zxn)Zﬂf")Tiyn], Vn >0,

i=1

where S, f, and Pc are the same in (1.8), T; : C — H is a nonself k;-strictly pseudocontraction.
Under certain conditions on the parameters, the sequence {x,} generated by (1.10) converges
strongly to a common fixed point of infinite family of k;-strictly pseudocontractions, which
solves the variational inequality

x* e ﬁF(Ti), ((I-f)x*,x=x*)>0, Vxe ﬁF(Ti). (1.11)
i=1 i=1

So, our results extend and improve some results of other authors (such as [10-12]) from
self-mappings to nonself-mappings, from nonexpansive mappings to k;-strictly pseudocon-
traction, and from one mapping to a infinite family mappings.

2. Preliminaries

In this section, we recall some basic facts that will be needed in the proof of the main results.

Lemma 2.1 (see [13] demiclosedness principle). Let C be a nonempty closed convex subset of a
real Hilbert space H and let T : C +— C be a nonexpansive mapping with F(T)#0. If {x,} is a
sequence in C weakly converging to x and if {(I — T)x,} converges strongly to y, then (I -T)x = y;
in particular if y = 0, then x € F(T).
Lemma 2.2 (see [9]). Let x € H and z € C be any points. The following results hold:

(1) that z = Pcx if and only if there holds the relation:

(x-y,y-2z)<0, VyeC; (2.1)
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(2) that z = Pcx if and only if there holds the relation:

lx =zl < fle=yl* - lly-=I°, vyec (22)
(3) there holds the ration:
(Pex - Py, x —y) > ||Pex - Peyl|®,  Vx,y € H. (2.3)

Lemma 2.3 (see [14]). Forall x,y € H, the following inequality holds:
llx+ v < lxl? +2(y, x + y). (2.4)
Lemma 2.4 (see [3]). Let f : C — H be a contraction with coefficient y € [0,1) and let T : C+— C

be a nonexpansive mapping. Then for all x,y € C:

(1) the mapping (I — f) is strongly monotone with coefficient (1 —y), that is,
(x-y,(I-Nx=(T=Hy) > @-)lx-yll" (25)

(2) the mapping (I — T) is monotone:

(x-y,I-T)x-(I-T)y) >0. (2.6)

Lemma 2.5 (see [15]). Let H be a Hilbert space and let C be a nonempty convex subset of H. Let
T : C v H be a k-strictly pseudocontractive mapping with F(T) #@. Then F(PcT) = F(T).

Lemma 2.6 (see [16]). Let H be a Hilbert space and let C be a nonempty convex subset of H. Let
T : C+— H be a k-strictly pseudocontractive mapping. Define a mapping Jx = 6x + (1 - 6)Tx for all
x € C.Thenas 6 € [k, 1), ] is a nonexpansive mapping such that F(J) = F(T).

Lemma 2.7 (see [11]). Let H be a Hilbert space and let C be a nonempty convex subset of H.
Assume that T; : C — H is a countable family of ki-strictly pseudocontraction for some 0 < k; < 1
and sup{k; : i € N} < 1 such that N2, F(T;) # 0. Assume that {p;} is a positive sequence such that
2 i = 1. Then 3.2, wiT; : C — H is a k-strictly pseudocontraction with coefficient k = sup{k; :
i € N} and F(XZ piTy) = NZ F(Th).

Lemma 2.8 (see [17]). Let {a,} be a sequence of nonnegative real numbers satisfying the following

relation: ay1 < (1 = Yu)aty + 64, where (1) {y,} C (0,1), =%y, = oo; (2) limsup, _,  (64/yx) <0
or %, |6n| < oo, then lim,, _, a,, = 0.

3. Main Results

In this section, we prove some strong convergence results on the iterative algorithm for
solving hierarchical fixed point problem.
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Theorem 3.1. Let H be a real Hilbert space and let C be a nonempty closed convex subset of H.
Let f : C — H be a (possibly nonself) contraction with coefficient y € [0,1), and let S : C — C
be a nonexpansive mapping. Let T; : C — H be a countable family of k;-strictly (possibly nonself)
pseudocontraction with 0 < k; < k < 1 such that (2, F(T;) # 0. Let the sequence {x,} be generated

by (1.10) with {a,}, {Bn} in [0,1]. Suppose for each n, 3.7, #5") =1, for all n and /45") >0, for
all i € N. Assume that the parameters satisfy the following conditions:

(i) limy,  ay, = 0 and =5 oty = o;

(11) limnﬁm(ﬂn/an) =0;

(iif) 1imy — oo (|@s1 = @ul/@n) = 0, imyy oo (1Brsr = Bul/an) = 0, and lim, (3% [ -

WV ) = 0;

(iv) Timy, o0 32 1" = il = 0 and T2y i =1 (i > 0).

Then the sequence {x,} converges strongly to x* € (2 F(T;), which solves the variational
inequality

(I-f)x*,x—x%x)>0, Vxe ﬁF(Ti). (3.1)

i=1

Proof. The proof is divided into four steps.
Step 1. We show that the sequences {x,} and {y,} are bounded.

For each n > 0, write B, = X7 ‘uf")Ti and by Lemma 2.7, we have B, is a k-strictly
pseudocontraction on C and F(B,) = (2 F(Ti), for all n € N. Therefore, the iterative
algorithm (1.10) can be written as

xo=x€C,
Yn = PuSxu + (1= Bu)xn, (3.2)
X1 = Pe[anf(xn) + (1 - an)Buyn], VYn>0.

By condition (ii), without loss of generality, we may assume f, < ay,, for all n > 0. Take
p € N2, F(T;) and we estimate ||B,y, —p||. For fixed approximate & € [k, 1), define a mapping
Jx =6x + (1-06)B,x and by Lemma 2.6, ] is a nonexpansive mapping and Fix(J) = Fix(B,,).
So

1
1Byl = “m(fyn—&/n) —P”
1
< 75 Uyn=Tpll +6lly. - pll) (33)
1+06

0yl
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Together with (3.2) and (3.3), we get

||xn+1 - P” = ”PC [anf(xn) +(1- an)Bn]/n] - PCP”
< ”lxnf(xn) +(1- an)Bnyn - P”
< anlf Ge) = F(P) I + @l £ (p) =PIl + (A = @) | Buyn — |

1+6
< anyl|%n = pll + @nll f(p) =PIl + (1 - ) =5 lyn = P

1+6
< anplln = pll = anll () - pll + (1= ) T2 ll 530

- (- @) e (1) -l
(3.4)

< a5 = I+l F9) = pll + (1= a0) 1 g pull S - Sp
1+6
# (=) g PullSp-pll+ (1= @) g (L= ) -
1+6 1+6
< @urllxn = pll+ (- @) g o = pll+ galSp - pll + allF2) -l
1+6
- [r-a (5 -7)| B -r

ra (155 1) [y (g s vl 1) -l )|

Therefore, we obtain

1 1+6
s =1l < max{ o ~pll g iz (g 17~ Pl 15 @) =#1) | 33

which gives the results that the sequence {x,} is bounded and so are { f(x,)}, {yn}, {Bnxn},

{Bnyn}-
Step 2. Now we show that ||x,1 — x,]| — Oasn — oo. Let

Un = anf(xn) + (1 = ) Byyn. (3.6)
Next we estimate ||x,;1 — x,||. From (3.2),we have

|01 = xull = [|Pc[vn] = Pc[vna]ll
< o = vull
= |lanf (xn) + (1 = @) Buyn — @t f (xn1) = (1 = @p1) Buoa Y |
= [l (f (xn) = f(xn1)) + (ctn = @n1) f (1) + (1= @) (Buln = Buyu1)

+ (1 - an)Bnyn—l + (1 - “n—l)(Bnyn—l - Bn—lyn—l) ||
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< an”f(xn) - f(xn—l)” +an — “n—l”lf(xn—l) - Bnyn—lll

1+6 = n n—
+ (1= ) 7 lyn =y || + (1 - 1) [ = 1 [ Tl
i=1
1+6
< any s = x|+ (1= o) 75 |yn = Y|

(o))
a1
+ M[Ian — |+ Zi#l@ - ﬂin )|],
i1

(3.7)
where M is a constant such that
Su]g{ | f (en1) = Buyna || + 1S (en-1) = 2l + || Ty ||} < M. (3.8)
ne

From (3.2), we also obtain

[y =yt [l = 1uSn + (1= ) n = Pt S2n = (1= Prt) o |
= ||Bn(Sxn = Sxxut) + (Bn = Prt) SXn-1
+ (1= Bn) (%n = Xn-1) + (Bt = Bu) Xnr | (3.9)
= 1Bn(Sxtn = Sx1) + (1= Bu) (% = Xut) + (B = Bt ) (SXnot = Xnot) ||

< lxen = xpa| + |ﬁn - Pna |M
Together with (3.7) and (3.9), we have

X1 = xnll < |lon = vpl|

1+6 1+6

m”xn — Xl + (1= ) | B — B 1o 6M

< anY”xn - xn—l” + (1 - 0!-,1)

1

1+6
< [-a (5 -v) |1 -l

1+6 & o n—
+M[|an—an1|+|ﬂn—ﬁn1|1_6+z|‘ul§>_ﬂl§ 1>|]
i=1

< -1
+ oy — oy |M + (1 - “n—l)Z|‘u§"> _ ‘ufn )|M
i=1
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1+6 1+6
a st (1280)

1
* [an((<1+6>/<1—6)>—r)

146 & @ n—
X (lan_an—ll"'lﬂn_ﬂ”‘lllt(j+Z"u§)_#5 1)|>]‘
i1

(3.10)

By Lemma 2.8 and conditions (i)—(iii), we immediately get ||x,1 — x,|| = Oasn — oo.
Step 3. Next we prove that ||x, — Pc(372; uiTi)xy|| — 0asn — oo.

Let B = 3%, piTi. By Lemma 2.7 and condition (iv), we get the results that B: C — H
is a k-strictly pseudocontraction with F(B) = (2, F(T;) and B,x — Bx asn — oo, for any
x€eC,

1xn = PcBxal| < ll2tn = Xns1ll + |01 — PcBxy||
= [l = Xns |l + [|[Pc[vn] = PeBxa||
< lxn = Xnaall + || f (x0) + (1 = @) Buyn = BuXn|| + [|1Buxn — Bxy||
= |lxn = Xnsall + || (f (xn) = Buxn) + (1 = @) (Buyn — Buxn) ||
+ || Buxn — Bxal|

3.11)
< lxn = Xpaal| + “n”f(xn) - ann”

+(1-an) ”yn_xn” + || Buxn — Bxy|

1-6

= “xn - xn+1|| + an”f(xn) - ann”

1+6
+(1- an)mﬁnnsxn = Xp|| + || Buxn — Bxn||.

Becausea, — 0, f, — 0, ||xp1—X,|| — 0,and B,x — Bx, so we obtain ||x,— X% piTix|| —
Oasn — oo.
Step 4. Now we show that limsup, _ _(f(x*) - x*, x, — x*) <0, where x* = Pr(g) f (x).

Since the sequence {x,} is bounded, we take s subsequence {x,,} of {x,} such that
limsup, , (f(x*) = x*, x, — x*) = limg_ o (f(x*) — x*, x,, — x*) and x,, — x'. Notice that
lxn, — PcBx,|| — 0 and by Lemmas 2.1 and 2.5, we have x’ € Fix(PcB) = F(B) = (%, F(T;).
Then

Bim (f(x7) =3, = X) = (f(x) =66 -2V S0, ¥ E€F(B). (312)

Now, by Lemma 2.2, we get (Pc[v,] — vy, Pc[v,] — x*) < 0. Therefore, we have

Ixns1 = x*|I> = (Pc[on] = X%, 21 — x7)

= (Pc[vn] = Up, X1 = X7) + (Vy = X, X1 — x7)
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= (Pclvn] = vn, Pclvn] — X*) + (v — X7, Xp1 — X¥)
< {Op = X7, Xp1 = X7)
= (anf(xn) + (1 = @n) Bpyn — X*, X1 — x¥)
= an((f (xn) = (X)), X1 = ) + @n(f (x*) = X%, X1 — X*)
+ (1= an)(BuYn — X*, Xns1 — x*)
< anylloen = 27| [loenen = || + @ (f (x7) = X", X1 = x7)
+ (1= ) (Bu[BnSxn + (1 = Pu)xn] — Bpx*, xpi1 — x*)
< anylloen = 27| - [loenen = || + @ (f (x7) = X", X1 = x7)
+ (1= an)||Bn(Sxn — Sx*) + fu(Sx* — x*)

+ (1= Bn) (xn — x¥)

xn = X7
< anylloen = x| - [lmer = x| + an (f (x7) = X7, xpi1 = x7)

+ (1= an) [0 = X7 - 1Xne1 = X7|| + (1 = @) ful|Sx”™ = x| - X001 = X7|

[1= (T =y)an]llocn = x| 121 = X" + atn (f (x7) = X7, xp41 = x7)

+ (1= an)Pull Sx* = X7 - 1xXns1 — X7

1-(1-y)a
< +m<||xn - x*ll2 + || xp1 — x*||2> + an(f(x*) — X", X1 — x*>
+ (1= ay)ful|Sx™ = x| - [xxn1 — X7
(3.13)
Hence it follows that
2(1-y)a, 2a
n+_*2<1_ n_*Z n *_*rn+_*
oot = ] _[ —1+<1_y>an]”x I ey ) = =)
2(1 - ay) P
s S *_ * . _ *
1 a8 =l e =)
2(1-y)ay 2
= 1—— n— *
[ l+(1—y)an]”x x| (3.14)
2(1_Y)an 1 * * *
1+(1—Y)an[(1—y)<f(x) x X = X)
1_“" n * * *
$ L8 g e — x ||].
(I-7)an
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Now, by Lemma 2.8, conditions (i)—(iii), and

limsup

n—oo

1- n)Pn
[(11” (f(x") = X", xpi1 = x7) +%IISX*—9C*II-IIxn+1—x*||] <0, (3.15)

we have x, — x* € N2, F(T;) asn — oo and x* also solves the variational inequality

(I-f)x',x-x*y>0, Vxe ﬁF(Ti). (3.16)

i=1

This completes the proof. O

From Theorem 3.1, if we take S = I or 8, = 0, for all n € N, we get the following
corollary.

Corollary 3.2. Let H be a real Hilbert space and C be a nonempty closed convex subset of H. Let
f : C — H be a (possibly nonself) contraction with coefficient y € [0,1) and let T; : C — H be a
countable family of k;-strictly (possibly nonself) pseudocontraction with 0 < k; < 1 and sup{k; : i €
N} <1 such that N2, F(T;) #0. Let the sequence {x,} be generated by

xg=x€C,

(3.17)

o
Xn41 = Pc [“nf(xn) +(1- an)Z/’lEn)Tixn]l Vn >0,
i=1

with {a,} in [0,1]. Suppose for each n, 3,7, yﬁ") =1, for all n and ‘ulf") >0, foralli e N. Assume
that the parameters satisfied the following conditions:

@) limy, . oy, = 0 and X5° oy, = o0;

(i) limy, - oo (|otns1 — ]/ ) = 0, and lim,, o, (X2, |,1§"> - ﬂ§"-1>|) Jay) = 0;

(iii) limy, . o Z?zl |#§n) — pil = 0 and Zil pi=1 (i >0).

Then the the sequence {x, } converges strongly to x* € 2y F(T}), which solves the variational
inequality

(I-f)x*,x-x*)>0, Vxe ﬁF(Ti). (3.18)
i=1

Remark 3.3. Theorem 3.1 extends and improves Theorem YCL in the following way. The
nonexpasnsive self-mapping T : C — C is extended to a infinite family of nonself k;-
strictly pseudocontraction T; : C +— H. If we take k; = 0, i € N in Theorem 3.1, then
B = >, wiT: reduces to a nonexpasnsive (possibly nonself) mapping, thus Theorem 3.1
reduces to Theorem YCL.
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