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A numerical method is proposed for solving nonlocal boundary value problem for the
multidimensional elliptic partial differential equation with the Bitsadze-Samarskii-Dirichlet
condition. The first and second-orders of accuracy stable difference schemes for the approximate
solution of this nonlocal boundary value problem are presented. The stability estimates, coercivity,
and almost coercivity inequalities for solution of these schemes are established. The theoretical
statements for the solutions of these nonlocal elliptic problems are supported by results of
numerical examples.

1. Introduction

Many problems in fluid mechanics, dynamics, elasticity, and other areas of engineering,
physics, and biological systems lead to partial differential equations of elliptic type. The role
played by coercive inequalities in the study of local boundary-value problems for elliptic and
parabolic differential equations is well known (see, e.g., [1, 2]).

In the present paper, we consider the Bitsadze-Samarskii type nonlocal boundary
value problem

Au(t)
ar

+Au(t) = f(t), (O<t<1),

W) =, 4

W) =pud V) +¢, |pl<1,0<A<1
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for elliptic differential equations in a Hilbert space H with self-adjoint positive definite
operator A. It is known (see, e.g., [3—11]) that various nonlocal boundary value problems for
elliptic equations can be reduced to the boundary value problem (1.1). The simply nonlocal
boundary value problem was presented and investigated for the first time by Bitsadze
and Samarskii [12]. Further, methods of solutions of Bitsadze-Samarskii nonlocal boundary
value problems for elliptic differential equations have been studied extensively by many
researchers (see [13-21] and the references given therein).

A function u(t) is called a solution of problem (1.1) if the following conditions are
satisfied.

(i) u(t) is twice continuously differentiable on the segment [0, 1]. Derivatives at the
endpoints of the segment are understood as the appropriate unilaterial derivatives.

(ii) The element u(t) belongs to D(A) for all ¢t € [0,1], and the function Au(t) is
continuous on [0, 1].

(iii) u(t) satisfies the equation and nonlocal boundary condition in (1.1).

Let Q be the open unit cube in R*(x = (x1,...,x,) : 0 < xx <1, 1 < k < n) with
boundary S, Q = QU S. In present paper, we are interested in studying the stable difference
schemes for the numerical solution of the following nonlocal boundary value problem for the
multidimensional elliptic equation

—Uy — Z(ar(x)ux,)xr +6u=f(tx), 0<t<l,
r=1

x=(x1,...,x,) €Q,
ut(olx) = (P(x)/ (12)
u(1,x) = pus(\,x) +gp(x), x€Q, || <1, 0<1<1,

u(t,x)=0, 0<t<1, x€S, S=0Q.

Here ¢(x), p(x) (x € Q), and f(t,x) (t € (0,1), x € Q) are given smooth functions, 6 is a
large positive constant and a,(x) > a > 0.

In the present paper, the first and second-orders of accuracy difference schemes are
presented for the approximate solution of problem (1.2). The stability and coercive stability
estimates for the solution of these difference schemes are obtained. A numerical method is
proposed for solving nonlocal boundary value problem for the multidimensional elliptic
partial differential equation with the Bitsadze-Samarskii-Dirichlet condition. A procedure of
modified Gauss elimination method is used for solving these difference schemes in the case
of two-dimensional elliptic partial differential equations.
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2. Difference Schemes: Well-Posedness

The discretization of problem (1.2) is carried out in two steps. In the first step let us define
the grid sets as follows:

52;, ={x:x=xp=(nmy,..., hym,), m=(my,..., my),
0<m,<N,, hN, =L, r=1,...,n} (2.1)
Qh=ﬁhﬂ§2, Sh=§~2h05.

We introduce the Hilbert space Ly, = Lz(ﬁh) of the grid functions (ph(x) = {p(himy,...,
h,m,)} defined on Qj, equipped with the norm

1/2
2
L@) <Z|‘Ph(x)‘ hl"'h”> @2)

o

xeQy,

and the Hilbert space Wg(ﬁh) defined on Q, equipped with the norm

1/2
2
o, - (S o)
n 1/2 . 1/2 (2.3)
+ < Z Z (sz,my 2hl cee hn> + < Z Z (PZ,Y,,m, Zhl ... hn> .
el =1 xeQ, =1

Finally, we introduce the Banach spaces C([0,1],, Lo;) and C*([0,1],, Lox) of grid abstract
N-1

function {(pZ (x)}, ~ defined on [0, 1], with values Ly, equipped with the following norms:

1Gh e o
P 1 C([01], Lay)  1SksN-1 P Lo’
(2.4)
“ RNVt h llpwr = x|,
{ok) = max o]+ e
Lo lea(oa], Loy 1sksN-1 Lon q<k<k+r<N-1 (r7)

To the differential operator A generated by the problem (1.2) we assign the difference
operator Ay by the formula

Ayl = — a, (x)uﬁ +6u 2.5
h Xy Xr ( )

r=1 ey
acting in the space of grid functions u"(x), satisfying the condition u"(x) = 0 for all x € Sj,.
It is known that Aj is a self-adjoint positive definite operator in L,(Qp,). With the help of
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A7, we arrive at the nonlocal boundary value problem for an infinite system of the following
ordinary differential equations:

d>ul (t
—% + AN x) = fi(tx), O<t<l1, xE€Qy,
(2.6)

ul(0,x) = "(x), ul(1,x)=pul(\,x)+¢"(x), xeQ.

In the second step, we replaced problem (2.6) by the first-order of accuracy difference scheme
as follows:

h oyt h
_”k+1(x) 21 (x) + ey (%) + Ajul (x) = fl(x),

72
Mx) = f'(t,x), ti=kr, 1<k<N-1, NT=1, x€Qp,
k

ul(x) — ul(x) - (2.7)
% =¢"(x), xeQ,
()~ s () _ My )~ @)

s ~
Q
= p +g'(x), x€Qy

and the second order of accuracy difference scheme as follows:

_uzﬂ(x) = 2ull (x) +up_ (x) AR () = (),

T2
i) = 't %), t=kr, 1<k<N-1, NT=1, x€Qy,

—3ug(x) + 4ui’ (x) - ué’ (x) B

2T (Ph(x)l baiS th

h h h
ulf\,fz(x) - 4u}11\[71 (x) + 3u}](1(x) _ ﬂ Uy /7)1 (x) = 4”[)L/T] (x) + 3”[,\/T]+1 (%)
2T 2T

T T

L Mymyn () =20y (0) + 1y, () (i- H >]

+ q;h(x), X € flh.
(2.8)

Now, we will study the well-posedness of (2.7) and (2.8). We have the following theorem on
stability of (2.7) and (2.8).
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Theorem 2.1. Let T and |h| be sufficiently small positive numbers. Then the solutions of difference
schemes (2.7) and (2.8) satisfy the following stability estimate:

max h

1<k<N

|

+ max ||
Lop  1<k<N-1

lut| < Ml[”(ph . LM], 2.9)

Lon Lon

where My does not depend on 7, h, ¢"(x), ¢"(x)and f(x), 1<k <N -1

Proof. The proof of (2.9) is based on the following formula:

uZ(x) = <I - R2N>_l{<Rk - RzN‘k>ug(x) + (RN"‘ - RN+k>u}]’\](x)
~(RN*— RN*K) (21 + 7B5) ™! (By) Z(RN 1= _ RN~ 1+l>fh(x)7'}

+ (I +7B;) ' (BY)” Z(R"”'l R fhx)r fork=1,...,N -1,
" (2.10)

where

ul(x) = P.(I+7B}) (2 +7B}) ™ (B) ™
x [(1 + R)RN-ZNZ_1 (RN-i - RN”> 0T
i=1

+ (I +R) [I 4+ R2N-2 _ ﬂ<RN7[)./T]71 i RN+[A/T]>]

z

-1 A/T]-1

[
R~ fh(x)T ﬁ(RN_,_RN—l) Z R[Mﬂfifih(x)T

i=1

X
N
—_

i

+ﬁ<RN_2 + RN—1>. NZ Ri—[/\/’r]fih(x),l_

+B(RN + RN‘1>NZ_1RWT]” freor=p(RN T+ RY) £l (x)T]

i=1

_P(I- R)—l [I 4+ R2N-1_ ﬂ(RN—[)L/T]—l + RN+[/\/T]>](Ph(x)T

+Py(I-R)™ (RN-1 + RN>qfh(x)T,
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ull (x) = P.(I+7B})(2I + 7B}) " (BY)™

N-1

N-i _ pN+i\ fh
Z1<R R )f: (x)T

1

[[R (I+R)- ﬂ(RN [W/7]-1 . RN+[A/7]- >]

zZ

[A/7]-1 1
- ﬂ(I + Rm_l) Z R“/T]‘ifih(x)r + ﬁ(I + R2N‘1>R‘1 Ri—[A/T]fih (x)T
=1 i=[\/7]+1

N-1
+B(1+ RNT) SRV fhxyr - p(14 RN £ ()7
i=1
N-1
+(I +R) [RN + RN-1_ ﬁ<R[A/T] + RZN—[)L/T]—l)] ZRi—lfih(x)T]
i=1
_ PT(I _ R)—l [RN + RZN—l _ ﬂ(R[/\/T] + RZN*[A/T]*l)](Ph(x)T

+ P =R (1+ RN g (x),

P = [1- N2 - p(RN-W/A g Vst

(2.11)

for (2.7), and

ug(x) = D (I +7B})(2I + B})~ (B )7

x {(1 +R) (4R~ 1 - R?)(I - 3BR)RN(1 - R2N>NZ_2<RN‘i - RN )T

i=1
- (I+R)(4R—I—R2><I—R2N)

x [31 - R-R™N2(I-3R)

-plrv i (1-srea(; - 7] )a-)
RV (ar-re2(2- 2] Ja-w) |

N-1
X i=2 ch _ _ o ~
;R 2l )T = BT+ RIRN2 (4R -1 - R?) (1 - RN

I-3R+2(=- (I-R) BS R £l (x) 7
| (w23 [ )am) 3
+(3I‘R+2<;‘H)‘I‘R’>i_[§gw—w_1fﬁh‘x”
—<I—3R+2<% [)‘])1 R)>N21RW f(x)r]
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—ﬂ(I—R2N>(I+R)RN‘2<4R—R2 —I) <4+4<% - [%D)
X (f[’i/r]ﬂ(x)f ~ fh (x)T> —(I+R)4I - R) <I - R2N)

x [31 - R-R*™2(I -3R)

—p(rv 0 (sr-re2(2- 2] a-w)
s ol [o-w)

x fi(x)T = (I+ RRN! <4R R - 1) <I - R2N> (41 + RN-3(T - 3R)>
xfg_1<x)f}

-D, (1 - R2N> (I - R)M(I + R)RN2 <4R —I- R2>2T(ph (x)

+ D (1-RN)(1-R)™!

x [31 - R-R*(I -3R)

—ﬁ[RN‘WTH (31—R+2<% - [%])(I—R))
—RN*/7IH (1 -3R+ 2(% - [%] ) (I- R))” 27¢" (x),
ull (x) = Do (1 +7BY) (21 + TBY) ' (B)™

x {<I—R2N)

(2.12)

(I+R) (4R ~I- R2>R-2(R - 3I)

(R -3I) (31 ~R+ 2<)L H > (- R)>RN—WT]-1

T T

~(BR-1) (1 ~3R +2<% - [%D([_ R)>RN+WT]71”
2

N-
x N—i _ pN+i h _ 2N P2
Ell(R RN fha)r+ (1 + R) (1 - RN) (4R~ 1 - R?)

+p

X

(I + R)RN-2 (4R —I- R2>

—ﬁ[RWTH (I -3R+ 2(% - [%])(I - R))

_R2N-Dv/71-1 <31 “R+ 2(% - [%] ) (I- R))] ] ER"‘zf,-h(x)T
i=2
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+p<1 - R2N> <R 31+ RN2(1 - 3R))

x| (I-3R+2 e (I-R) Wzﬂ_lR[)‘/T]‘i‘lf.h(x)T
(1-sr2(- 7] Ju-m)
+<3I—R+2<£— H)(I—R)) 1:;1] 2R D/ £h ()T

~(1-3r+2(2- [3])a- R)) > RV f(x)T]

+B(R=-31+ RN2(31 - R)) (1 - R?V)

<4+4<——[ ])(I R)) (flh /21 )T = fl g (0)7)

+(I+R)(1-RY)

x [(I + RIRN2(1-4R + R?)

el oo
e (s [f)a-o) o

+ R(I - R2N—1) [R — 4] + R?N- 4<I+ R —3R) (31 ~R- R4l - R))

e asoa(d- o)

(3R I[+RNGBI-R)

)
v ] Ju-)

(31 ~R+RN(I-3R) ” £, (x)T}
+ DT<I - R2N> (I-R)™ (R ~3I+RN(I - 3R)>2T(ph(x)
—DT<I—R2N>(I—R)‘1

x [RN’Z(I +R) (R2 —4R+ I)

—ﬂ[RWT]‘1<I—3R+2<& - H)(I—R))
—R2N-WV/7] (31 R+2<)L [%])(1—1%))”274;%@,
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-1
D; = (I1-RN)

x { [—(31 ~RZ+(I- 3R)2]

y [_RN+W71-3(1 -3R) <1 -3R+ 2<% - [%] > (I - R)>
—RN-WTI-1(31 _R) (31— R+2<% - [%D(I - R))] }_1/

R=(I+7B})7,

1
B =3 (m; + /AT + 72(A;;)2)

(2.13)

for (2.8), and the symmetry properties of the difference operator A; defined by the formula
(2.5). O

Difference schemes (2.7) and (2.8) are ill-posed in C([0,1],,Lo,). We have the
following theorem on almost coercive stability.

Theorem 2.2. Let T and |h| be sufficiently small positive numbers. Then the solutions of difference
schemes (2.7) and (2.8) satisfy the following almost coercive stability estimate:

u —2ut Ul
max kel k_ k-l + max “uﬂ
1<k<N-1 T2 1<k<N-1 w2,
Lan (2.14)
< Mo [|o"]],, +] e |
[ T+ |h|1<k<N 1 fk Lo |’

where M does not depend on 7, h, ¢"(x), ¢"(x), and f}(x), 1<k<N-1.

Proof. The proof of (2.14) is based on the formulas (2.11), (2.12), (2.13), the symmetry
properties of the difference operator A; defined by the formula (2.5) and on the following
theorem on well-posedness of the elliptic difference problem. O

Theorem 2.3. For the solutions of the elliptic difference problem

Azuh(x) =wh(x), xeQ,

2.15
u"(x) =0, x€S, (215)
the following coercivity inequality holds (see [21]):
n , Iy ,
2; (” )m ol = ||w L (2.16)

where M does not depend on h and w"(x).
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Theorem 2.4. Let ¢"(x) = ¢"(x) = 0. Then the difference problems (2.7) and (2.8) are well-posed in
Holder spaces C*([0, 1], Loy) and the following coercivity inequality holds:

h N-1
{ue}
T lea(oan,, w2)
C*([0,1], Lon) (2.17)

max

h h h N-1
Up,q = 22U + Uy
1<k<N-1

T2

1

M3

h N-1
—— InaxXx
= a(l - a) 1<k<N-1 fk}l

{

Here M3 does not depend on T, h, and f,i’ (x), 1I<k<N-1.

C*([01];,Lan)

Proof. The proof of (2.17) is based on the formula
Atull(x) - fl(x) = P,(I+7BY) (2L + 7BY) (I + R)
N-1 '
X |:RN_1 D TBiRY (fih - f]}\lf—1>
i=1

N-
— RN—l ZlTBiRNH(fih(x) _flh(x)>

i=1

NV A/rl-i( ¢h h
LA TBRVTI (S0 = £ ()

" [I + R2N-2 _ﬁ<RN7[)L/T]71 n RN+[A/T]>]

N-1
x > TBER (fi(x) - fix))
i=1

N-1

+BRY S BRI () - ()

i=[\/7]+1
N-1 ‘

+ BRN Y BRI (fl ) = () )
i=1

+ RN (1= RN £l ()

+ ﬂ[RN+[)L/T]—1 _ REN-L/7l-1 _ TB;:RN]f[hMT] (x)
n [RZN—Z _ R2N-1, R2N-2 _ R3N-3 | p3N-2 _ pN-1

n ﬂ(RZN—[)L/T]—Z 4+ RAN+V/7]-1

S R2N+H/T] _ RN+[)./T]—1>:|f1h(x)]
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Pl R)—lT[I + R2N-1 _ﬂ<RN [/7]-1 , RN+[A/7] )]Az(ph
+ Pr(I =R (RN + RY) Ay,
Alult (x) = f (%) = P.(I +7B}) (21 + 7B}) ™'

x { [R(I+ Ry = p(RN-/71 4 gN=ti/el=)

N-1

x > TBfRN" < fl(x) - f}i,_l(x))

i=1

- [Ra+ Ry = p(RN-W/71 4 RN+

N-1
x > TBERN(fl(x) - fi(x)
i=1

[A/7]-1

_ﬂR2<I+R2N—1> Z TBR /7]~ <fh(x) f[A/T (x)>

i=1
N-1

+,[3R<I+R2N"1> Z TB;Ri—[A/T] <fih(x) —f[hx/f] (x)>

i=[A/7]+1

+BR(1 + RZN_1>NZ_1TBﬁR[)‘/ () - )
i—1

- B(1+ RN

x [R(I - RWTH> - (1 - RN’WT]’1> - TB;;R]

X f e (%)

+ [(I+R)<R2N’2 ~RN —I+R>
—ﬂ(RN_[)‘/T]H

RN+ [A/T]+ RZN [A/7]

_ R2N+[/7] _ gN-[4/7]-1
S RNH/TI-1 _ RN-[AV/7] RN+[)L/T]>]
x fliy (o) + [+ R (RY - RN
+ ﬂ(RN+[)L/T 4+ RN+IV/7I+1 _ pN+[A/7]+2

+ R2N+[A/T]+1 + R2N+ [A/T]+ R3N+ [A/T]

_ R3N+[A/T]+1 + R[A/T]+1 _ RZN—[)L/T]

+R3N—[)L/T]*1>]flh(x) }

11
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+ Po(I - R)_lRT<I + RZN—1>A§;<,;

= Pr(I = R)"Re[RN7 4 RN - (R 4 RNI/7I1)] Al
(2.18)

for (2.7) and

Arul(x) - fl(x) = D (I +TBY) (21 + TBY) !

x {(I+R)<4R—I—R2>(I—3R)RN3<I_R2N>

N-2
x I:Z B;’:TRN_i (fih(x)_fz;\l]—l(x»

i=1
N-2 '
- BiTRN* < fl)-ff (x))]
i=1
- (1+R)<4R—1—R2) (1—R2N)

x [31 - R-R*N2(I-3R)

(o s)
s (wea(t- o)

N-1 '
x D BTRT(f1(0) - £ ()
i=2
—~BU+ RRN2(4R -1 - R?) (1 - RY)

[oswead- (o)

[A/7]-1

> BR R () = fl ()

(-3 [fa-s)

N-1

x> BRI (i) - fl ()

i=[A/7]+2
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- <I—3R+2<% - [%])(I—R))
XIZZB;TRWT]“’ ( F(x) - f{’(x))]

- ﬁ(I - R2N>(I + R)RN-! (4R ~R- 1)

x <4 +4<;—\ - [;—\] >)TB;’ff{3/T]+l(x)

+ ﬁ(I - R2N> (I + R)RN2 (4R R - I>

«[er(r2(z- [2]))
+ R/ <1 ~3R+ 2(% - [%] ) I- R)) + RN-DV/71=2

><<3I - R+2<% - [%])(I - R))]fﬁ/T](x)

(I+R) (1 - R2N>

X

X [(I—3R)<3R ~I-RNSJ(-R)
><<R2 ~RN(I+ R)<R2 —4R+ 1)))

— (31 - R)RN! <R2 —4R+ I) —ﬁ<4R —I- R2>

X <<3I—R+2<% - [% >(I_R)>RN*[1/T]*3
- (1-sre2(2- [}])a-n)
XRN+[)L/T]—3>]]f1h(x)

+(I+ R) (4R -1 - ) (1 - RN)RN2

X<R ~3I - RN2(I - 3R) <I +RN(I - R)))ff\’,_l(x)}

-D. (1 - R2N> (I-R)"'(I+R)RN2 (4R ~I- Rz)er;jq;h(x)

+ DT<I - R2N> (I-R)™
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x [31 - R-R*N2(I-3R)

-p [RN‘WT] <3I -R+ 2(% - [%] ) I- R))
—RN+/l-1 <I -3R+ 2<% - [%] ) (I- R))] ] 21 A" (x),

AFRul (x)- fr(x)

=D.(I+7BY)(2I +7B})™"
X {(I—R2N>
x [(I+R)<4R—I—R2>(R—3I)

(R—3I)<3I—R+2<%— [%])(I—R))

x RN—[A/T]+1 _ (3R _ I)

><<I—3R+2<% - [%])(1 — R)>RN+[A/T]+1”
2

N-2 . N=
. <Z BRrRNT(fia) = fly () = Y,
i=1 i=1

+ (I+R)(I—R2N)<4R—I—R2>

+p

ByrRV(f!(x) - f{‘(x))>

X

(I + R)RN2 (—4R + I+ R2>

FORPIRT
T T

. ]gsgmf (- fi)

sy

[ oo

[A/7]-1 _
X Z BZTR[)L/T]ﬂ(fih(x) _f[;j\/r](x»
i=1
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(u-sea(i- )a-o)

x Nzl BR R (fl(x) = fli(x) )

i=[\/7]+2
c(r-amea(2- [2])u-n)
<3 BRIV (£l - f{’<x>)]
i=1

+ BR2(R =31+ RN2(1 - 3R) ) (1 - R?) <4 +4<% - [%] >)

X ey (%) —ﬂR(I—R2N>
x [(I—R+RN‘[)‘/T]><3I—R+2<%— [%])(I—R))
+RW71—1<I—3R+2<)‘ %])(I—R)>]

T

X flh () + (1 R2Y)

X

(I+R) (4R R - 1) RN+
x (R - 3I) <I - RN’2>

l(a-w.a(2- o)

x RN (R231 - R) + RN?(RP - 4R* +T) )
(a3 o)
><<R2(3I ~R)+ (I -3R)RN3 <R +RN(I - R)))”
X fl(x) + (I—R2N>
x [(I—BR) (4R-R2-1)(31- R+ RN2)
- oo
x <R+I+RN<I—R+RN‘2(I—R) +R3N‘2(21—R)>>

- <1 —3R+2<% - [%])(1 - R)>RN*WT]’1(3R— I

15



16 Abstract and Applied Analysis

x (I-R- RN

x(1+R-RY(31- R?) + RV (R —4R2+1)))”

<fla0)
+D- (1 - R2N> I- R)‘1R<R ~ 30+ RN-2([ - 3R))2TA;§<ph (x)
- D, (1 - R2N> (I-R)'R

x [RN’Z(I +R) <R2 ~4R+1)

-p [RWTH <1 -3R+ 2(% - [%])(I - R)>
—R2N-V/7l-1 <31 -R+ 2(% - [%] ) (I- R))”%A;;q;h(x)

(2.19)

for (2.8), the symmetry properties of the difference operator A} defined by the formula (2.5)
and on Theorem 2.3 on well-posedness of the elliptic difference problem. O

3. Numerical Analysis

We have not been able to obtain a sharp estimate for the constants figuring in the stability
inequality. Therefore, we will give the following results of numerical experiments of the
Bitsadze-Samarskii-Dirichlet problem:

_Q%u(t,x)  O%u(t,x)
ot? O0x?

f(t,x) =exp(-ort)sin(orx), 0<t<1l, O<x<1,

+u=f(tx), 0<t<l 0<x<l,

u(0,x) = —arsin(orx), 0<x<1,

u(1,x) = ut<%,x) + 7 sin(Jrx) <exp<—%> - exp(—m‘)), 0<x<1,

ut,0)=u(t,1)=0, 0<t<1
(3.1)

for the two-dimensional elliptic equation.
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The exact solution of this problem is

u(t, x) = exp(-ort) sin(orx). (3.2)

For the approximate solution of problem (3.1), we consider the set [0,1], x [0, 1];, of a family
of grid points depending on small parameters 7 and h as follows:

[0,1], x [0,1];, = {(tx, xp) : tk = kT, 0< k<N, NT=1,
(3.3)
x,=nh, 0<n<M, Mh=1}.

Applying (2.7), we present the following first-order of accuracy difference scheme for
the approximate solution of problem (3.1):

n+l

w = 2ut +ul u™t — 2y 4yt
kel T2k kel K hzk k4 ul = exp(-mrt) sin(rx,), 1<k<N-1,
1<n< -1,
u -y
1 p- 0 - —rsin(rx,), 0<n<M,
u, —u Ul — U,
N _TN-1 B N/2  TN/2-1 + or sin(orx;,)
T T
X <exp<—%) - exp(—m‘)), 0<n<M,
ul=u'=0, 0<k<N
(3.4)

We have (N + 1) x (M + 1) system of linear equations in (3.4) and we will write them
in the following matrix form:

Auy +Bu, +Cuyy =Dy, 1<n<M-1,
(3.5)

uOZMMZO.
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Here,

]
Q

o
]
o
]
o
o

(e]
(@]
o
o
o
o
Q

o

L ’ ’ d (N+1)x(N+1)
[-110-00 0 0 0]
c bc-00 000
0O cb-00 000 (3.6)
B = o . . ,
0 00-00-b cO
0 00-00 c b c
|0 00-1-1-0-11] (N+1)x(N+1)
u
u;
C=A, D= [I](N+1)><(N+1)/ Us = ’ ’
N-1
uS
N
Us (N+1)x1
where s= n-1,n,n+1and
‘.
Pn
Pn = . ’
%N;
P 1 (Ne1yxa
1 2 2 1 37
a:ﬁ/ b:—;—ﬁ—ll C:,T_Z’ ( )
—Tar sin(rxy), k=0,
k) —exp(-uarty) sin(orxy,), 1<k<N-1,

I
Z

T sin(orxy,) (exp <—%> - exp(—x)), k

We seek a solution of the matrix equation in following form:

Uy = Apr1Un4l +ﬁn+1/ 7’l=M—1,...,1,
(3.8)

up =0,
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where a,(n = 1,..., M) are (N + 1) x (N + 1) square matrices and p,(n = 1,..., M) are
(N +1) x 1 column matrices defined by (see, [17]) as follows:

apy1 = —(B+ Can)_lA/
(3.9)
Bus1 = (B+Cay) (D9, - CBy), n=1,...,M~-1,

where

a1 = [0] (ns1yx(vetys P1 = [0] (N1 (3.10)

Now, applying (2.8) for N even number, we can present the following second-order of
accuracy difference scheme:

n n n n+1 n n-1
U 2up +uy_, W - 2up + uy

T2 h2

+u}l = —exp(-rty) sin(rx,), 1<k<N-1,

_nn n_ ,n
Buy + 4u’ —uj

= = —asin(rx,), 0<n<M,

U (%) —4uy_ (x) + 3uy(x) _ UN o = AUy pg +3UY )
2T 2T

+ Jrsin(yrxn)<exp<—'72—r> - exp(—.n‘)), 0<n<M,

W) =ul=0, 0<k<N
3.11)

for the approximate solution of problem (3.1).
So, again we have (IN + 1) x (M + 1) system of linear equations in (3.11) and we will
write them in the following matrix form:

Aupg +Bu, +Cuy1 =Dy, 1<n<M-1,
(3.12)

u():uMZO,
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where

o
IN]

o
o
o
o
o
o
o

o O
o O
o O
o O
o o
o o
S Q
Q O
o O

F
L

(N+1)x(N+1)

34 -1- 000 -0 0 0]
bcb-000-000
0Obc-000-000

B=1|- - - .« .« .« . .. . . , (3.13)
000-000:-¢cbo0
000-000:-bcb
(000 - -14-3-1-43] .

C=A4A, D= [I](N+1)><(N+1)/

(N+1)x1

wheres=n-1,n,n+1and

k=1 - . (3.14)

Pn (N+1)x1

Here,
1 1 )
a=ﬁ, b=T—2, C=_ﬁ_;_1’ (315)
=27 sin(orx,), k=0,
ok = —exp(-arty) sin(arx,), 1<k<N-1, (3.16)
n T '
2t sin(arx,) <exp <_E> - exp(—m‘)), k=N.

So, we have the second-order difference equation with respect to n with matrix coefficients.
To solve this difference equation, we use the same algorithm (3.8) and (3.9).
Now, we will give the results of the numerical experiments.
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Table 1: Comparison of the errors of difference schemes.

Difference schemes N=M-=20 N=M=40 N =M =60
First-order difference scheme (2.7) 0.05384197882300  0.02631633782987 0.01740639813932
Second-order difference scheme (2.8) 0.00631619894867  0.00164455475890  7.4144589892985¢ -004

The errors in numerical solutions are computed by

M-1 5 1/2
EN = max <Z|u(tk,xn)—u,’; h> (3.17)
n=1

1<k<N-1

for different values of M and N, where u(t, x,) represents the exact solution and u’,‘l
represents the numerical solution at (¢, x,). The results are shown in Table 1 for N = M = 20,
N=M=40,and N = M = 60.

Thus, second-order of accuracy difference scheme is more accurate compared with the
first-order of accuracy difference scheme.

4. Conclusion

The first and second-orders of accuracy difference schemes for approximate solutions of
the Bitsadze-Samarskii-Dirichlet type nonlocal boundary value problem for the multidimen-
sional elliptic partial differential equation are presented. Theorems on the stability, almost
coercive stability, and coercive stability estimates for the solution of these difference schemes
are established. Numerical experiments are given.
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