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Let {tn} ⊂ (0, 1) be such that tn → 1 as n → ∞, let α and β be two positive numbers such that
α + β = 1, and let f be a contraction. If T be a continuous asymptotically pseudocontractive self-
mapping of a nonempty bounded closed convex subset K of a real reflexive Banach space with a
uniformly Gateaux differentiable norm, under suitable conditions on the sequence {tn}, we show
the existence of a sequence {xn}n satisfying the relation xn = (1 − tn/kn)f(xn) + (tn/kn)T

nxn and
prove that {xn} converges strongly to the fixed point of T , which solves some variational inequality
provided T is uniformly asymptotically regular. As an application, if T be an asymptotically
nonexpansive self-mapping of a nonempty bounded closed convex subsetK of a real Banach space
with a uniformly Gateaux differentiable norm and which possesses uniform normal structure,
we prove that the iterative process defined by z0 ∈ K, zn+1 = (1 − tn/kn)f(zn) + (αtn/kn)Tnzn +
(βtn/kn)zn converges strongly to the fixed point of T .

1. Introduction

Let E be a real Banach space with dual E∗ andK a nonempty closed convex subset of E. Recall
that a mapping T : K → K is said to be asymptotically pseudocontractive if, for each n ∈ N
and x, y ∈ K, there exist j ∈ J(x − y) and a constant kn ≥ 1 with limn→∞kn = 1 such that

〈
Tnx − Tny

〉 ≤ kn
∥∥x − y

∥∥2
, (1.1)
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where J : E → 2E
∗
denote the normalized duality mapping defined by

J(x) =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2, ‖x∗‖ = ‖x‖, x ∈ E

}
. (1.2)

The class of asymptotically pseudocontractive mappings is essentially wider than the class of
asymptotically nonexpansive mappings. A mapping T is called asymptotically nonexpansive
if there exists a sequence {kn} ⊂ [1,∞)with limn→∞kn = 1 such that

∥
∥Tnx − Tny

∥
∥ ≤ kn

∥
∥x − y

∥
∥ (1.3)

for all integers n ≥ 0 and all x, y ∈ K. A mapping f : K → K is called a contraction if there
exists a constant γ ∈ [0, 1) such that

∥∥f(x) − f
(
y
)∥∥ ≤ γ

∥∥x − y
∥∥, ∀x, y ∈ K. (1.4)

It is clear that every contraction is nonexpansive, every nonexpansive mapping is asymp-
totically nonexpansive, and every asymptotically nonexpansive mapping is asymptotically
pseudocontractive. The converses do not hold. The asymptotically nonexpansive mappings
are important generalizations of nonexpansive mappings. For details, you may see [1].

The mapping T is called uniformly asymptotically regular (in short u.a.r.) if for each
ε > 0 there exists n0 ∈ N such that

∥∥∥Tn+1x − Tnx
∥∥∥ ≤ ε, (1.5)

for all n ≥ n0 and x ∈ K and it is called uniformly asymptotically regular with sequence {εn}
(in short u.a.r.s.) if

∥∥∥Tn+1x − Tnx
∥∥∥ ≤ εn, (1.6)

for all integers n ≥ 1 and all x ∈ K, where εn → 0 as n → ∞.
The viscosity approximation method of selecting a particular fixed point of a given

nonexpansive mapping was proposed by Moudafi [2]who proved the strong convergence of
both the implicit and explicit methods in Hilbert spaces, see [2, Theorems 2.1 and 2.2]. Xu [3]
studied the viscosity approximation methods proposed by Moudafi [2] for a nonexpansive
mapping in a uniformly smooth Banach space.

Very recently, Shahzad and Udomene [4] obtained fixed point solutions of variational
inequalities for an asymptotically nonexpansivemapping defined on a real Banach spacewith
uniformly Gateaux differentiable norm possessing uniform normal structure. They proved
the following theorem.

Theorem 1.1. Let E be a real Banach space with a uniformly Gateaux differentiable norm possessing
uniform normal structure, let K be a nonempty closed convex and bounded subset of E, let T :
K → K be an asymptotically nonexpansive mapping with sequence {kn}n ⊂ [1,∞), and let
f : K → K be a contraction with constant α ∈ [0, 1). Let {tn}n ⊂ (0, ξn) be such that
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limn→∞tn = 1,
∑∞

n=1 tn(1 − tn) = ∞, and limn→∞((kn − 1)/(kn − tn)) = 0, where ξn = min{(1 −
α)kn/(kn − α), 1/kn}. For an arbitrary z0 ∈ K let the sequence {zn} be iteratively defined by

zn+1 =
(
1 − tn

kn

)
f(zn) +

tn
kn

Tnzn, n ∈ N. (1.7)

Then

(i) for each integer n ≥ 0, there is a unique xn ∈ K such that

xn =
(
1 − tn

kn

)
f(xn) +

tn
kn

Tnxn; (1.8)

if in addition

lim
n→∞

‖xn − Txn‖ = 0, lim
n→∞

‖zn − Tzn‖ = 0, (1.9)

then

(ii) the sequence {zn}n converges strongly to the unique solution of the variational inequality:

p ∈ F(T) such that
〈(
I − f

)
p, j

(
p − x∗)〉 ≤ 0, ∀x∗ ∈ F(T). (1.10)

Remark 1.2. We note that ‖Tn+1x − Tnx‖ ≤ kn‖Tx − x‖, then the condition (1.9) limn→∞‖xn −
Txn‖ = 0 and limn→∞‖zn − Tzn‖ = 0 imply that

lim
n→∞

∥∥∥Tn+1xn − Tnxn

∥∥∥ = 0,

lim
n→∞

∥∥∥Tn+1zn − Tnzn
∥∥∥ = 0,

(1.11)

respectively. In other words, if an asymptotically nonexpansive mapping T satisfies the
condition (1.9) then T must be u.a.r.s.

Inspired by the works in [4–8], in this paper, we suggest and analyze a modification
of the iterative algorithm.

Let {tn} ⊂ (0, 1), let α and β be two positive numbers such that α + β = 1, and let f be a
contraction on K, a sequence {zn} iteratively defined by: z0 ∈ K,

zn+1 =
(
1 − tn

kn

)
f(zn) +

αtn
kn

Tnzn +
βtn
kn

zn. (1.12)

Remark 1.3. The algorithm (1.12) includes the algorithm (1.7) of Chidume et al. [5] and
Shahzad and Udomene [4] as a special case.
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We show the convergence of the proposed algorithm (1.12) to the unique solution of
some variational inequality (some related works on VI, please see [9–12]). In this respect, our
results can be considered as a refinement and improvement of the known results of Chidume
et al. [5], Shahzad and Udomene [4], and Lim and Xu [13].

2. Preliminaries

Let S = {x ∈ E : ‖x‖ = 1} denote the unit sphere of the Banach space E. The space E is said to
have a Gateaux differentiable norm if the limit

lim
n→∞

∥
∥x + ty

∥
∥ − ‖x‖
t

(2.1)

exists for each x, y ∈ S, and we call E smooth; E is said to have a uniformly Gateaux
differentiable norm if for each y ∈ S the limit (2.1) is attained uniformly for x ∈ S. Further,
E is said to be uniformly smooth if the limit (2.1) exists uniformly for (x, y) ∈ S × S. It is
well known [14] that if E is smooth then any duality mapping on E is single-valued, and if
E has a uniformly Gateaux differentiable norm then the duality mapping is norm-to-weak∗

uniformly continuous on bounded sets.
Let K be a nonempty closed convex and bounded subset of the Banach space E and

let the diameter of K be defined by d(K) = sup{‖x − y‖ : x, y ∈ K}. For each x ∈ K, let
r(x,K) = sup{‖x − y‖ : y ∈ K} and let r(K) = inf{r(x,K) : x ∈ K} denote the Chebyshev
radius of K relative to itself. The normal structure coefficient N(E) of E is defined by

N(E) = inf
{
d(K)
r(K)

: K is a closed convex andbounded subset ofEwithd(K) > 0
}
. (2.2)

A space E such that N(E) > 1 is said to have uniform normal structure. It is known that
every space with a uniform normal structure is reflexive, and that all uniformly convex and
uniformly smooth Banach spaces have uniform normal structure (see [13]).

We will let LIM be a Banach limit. Recall that LIM ∈ (l∞)∗ such that ‖LIM‖ = 1,
lim infn→∞an ≤ LIMnan ≤ lim supn→∞an, and LIMnan = LIMnan+1 for all {an}n ∈ l∞. Let
{xn} be a bounded sequence of E. Then we can define the real-valued continuous convex
function g on E by g(z) = LIMn‖xn − z‖2 for all z ∈ K.

Let T : K → K be a nonlinear mapping and M = {x ∈ K : g(x) = minz∈Kg(z)}. T is
said to satisfy the property (S) if for any bounded sequence {xn} inK, limn→∞‖xn − Txn‖ = 0
implies M ∩ F(T)/= ∅.

Lemma 2.1 (see [15]). Let E be a Banach space with the uniformly Gateaux differentiable norm and
u ∈ E. Then

g(u) = inf
z∈E

g(z) (2.3)

if and only if

LIM〈z, J(xn − u)〉 ≤ 0 (2.4)

for all z ∈ E.
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Lemma 2.2 (see [16]). Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤
(
1 − γn

)
an + δnγn, (2.5)

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that
(1)

∑∞
n=1 γn = ∞;

(2) lim supn→∞δn ≤ 0 or
∑∞

n=1 |δnγn| < ∞.

Then limn→∞an = 0.

Lemma 2.3 (see [17]). Let {xn} and {yn} be bounded sequences in a Banach space X and let {βn}
be a sequence in [0, 1] with 0 < lim infn→∞βn ≤ lim supn→∞βn < 1. Suppose that

xn+1 =
(
1 − βn

)
yn + βnxn (2.6)

for all n ≥ 0 and

lim sup
n→∞

(∥∥yn+1 − yn

∥∥ − ‖xn+1 − xn‖
) ≤ 0. (2.7)

Then limn→∞‖yn − xn‖ = 0.

Lemma 2.4. Let E be an arbitrary real Banach space. Then
∥∥x + y

∥∥2 ≤ ‖x‖2 + 2
〈
y, j

(
x + y

)〉
, (2.8)

for all x, y ∈ E and for all j(x + y) ∈ J(x + y).

Lemma 2.5 (see [5]). Let E be a Banach space with uniform normal structure,K a nonempty closed
convex and bounded subset of E, and T : K → K an asymptotically nonexpansive mapping. Then T
has a fixed point.

3. Main Results

Theorem 3.1. Let E be a real reflexive Banach space with a uniformly Gateaux differentiable norm,
K a nonempty closed convex and bounded subset of E, T : K → K a continuous asymptotically
pseudocontractive mapping with sequence {kn}n ⊂ [1,∞), and f : K → K a contraction with
constant γ ∈ [0, 1). Let {tn} ⊂ (0, (1−γ)kn/(kn−γ)) be such that limn→∞tn = 1 and limn→∞((kn−
1)/(kn − tn)) = 0. Suppose T satisfies the property (S). Then

(i) for each integer n ≥ 0, there is a unique xn ∈ K such that

xn =
(
1 − tn

kn

)
f(xn) +

tn
kn

Tnxn; (3.1)

if T is u.a.r.s., then

(ii) the sequence {xn}n converges strongly to the unique solution of the variational inequality:

p ∈ F(T) such that
〈(
I − f

)
p, j

(
p − x∗)〉 ≤ 0, ∀x∗ ∈ F(T). (3.2)
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Proof. By the conditions on {tn}, tn < (1 − γ)kn/(kn − γ) implies (1 − tn/kn)γ + tn < 1 for
each integer n ≥ 0, then the mapping Sn : K → K defined for each x ∈ K by Snx = (1 −
tn/kn)f(x) + (tn/kn)Tnx is a strictly pseudocontractive mapping.

Indeed, for all x, y ∈ K, we have

〈
Snx − Sny, j

(
x − y

)〉
=
(
1 − tn

kn

)
〈
f(x) − f

(
y
)
, j
(
x − y

)〉

+
tn
kn

〈
Tnx − Tny, j

(
x − y

)〉

≤
(
1 − tn

kn

)∥
∥f(x) − f

(
y
)∥∥

∥
∥x − y

∥
∥ + tn

∥
∥x − y

∥
∥2

≤
[(

1 − tn
kn

)
γ + tn

]∥
∥x − y

∥
∥2

.

(3.3)

It follows [18, Corollary 1] that Sn possesses exactly one fixed point xn inK such that Snxn =
xn.

From (3.1), we have

‖xn − Tnxn‖ =
∥∥∥∥

(
1 − tn

kn

)
f(xn) +

(
tn
kn

− 1
)
Tnxn

∥∥∥∥

=
(
1 − tn

kn

)∥∥f(xn) − Tnxn

∥∥ −→ 0 as n −→ ∞.

(3.4)

Notice that

‖xn − Txn‖ =
∥∥∥∥

(
1 − tn

kn

)
(
f(xn) − Txn

)
+

tn
kn

(Tnxn − Txn)
∥∥∥∥

≤
(
1 − tn

kn

)∥∥f(xn) − Txn

∥∥ +
tn
kn

∥∥∥Tnxn − Tn+1xn

∥∥∥

+
tn
kn

∥∥∥Tn+1xn − Txn

∥∥∥

≤
(
1 − tn

kn

)∥∥f(xn) − Txn

∥∥ +
tn
kn

∥∥∥Tnxn − Tn+1xn

∥∥∥

+
tn
kn

k1‖xn − Tnxn‖.

(3.5)

Therefore, from (3.4), (3.5), and T which is u.a.r.s., we obtain ‖xn − Txn‖ → 0 as n → ∞.
Define a function g : K → R+ by

g(z) = LIMn‖xn − z‖2 (3.6)

for all z ∈ K. Since g is continuous and convex, g(z) → ∞ as ‖z‖ → ∞, and E is
reflexive, g attains it infimum over K. Let z0 ∈ K such that g(z0) = minz∈Kg(z) and let
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M = {x ∈ K : g(x) = minz∈Kg(z)}. Then M is nonempty because z0 ∈ M. Since T satisfies
the property (S), it follows thatM∩F(T)/= ∅. Suppose that p ∈ M∩F(T). Then, by Lemma 2.1,
we have

LIMn

〈
x − p, j

(
xn − p

)〉 ≤ 0 (3.7)

for all x ∈ K. In particular, we have

LIMn

〈
f
(
p
) − p, j

(
xn − p

)〉 ≤ 0. (3.8)

On the other hand, from (3.1), we have

xn − Tnxn =
(
1 − tn

kn

)
(
f(xn) − Tnxn

)
=

1 − tn/kn
tn/kn

(
f(xn) − xn

)
. (3.9)

Now, for any p ∈ F(T), we have
〈
xn − Tnxn, J

(
xn − p

)〉
=
〈
xn − p + Tnp − Tnxn, J

(
xn − p

)〉

≥ − (kn − 1)
∥∥xn − p

∥∥2

≥ − (kn − 1)B2

(3.10)

for some B > 0 and it follows from (3.9) that

〈
xn − f(xn), j

(
xn − p

)〉 ≤ tn(kn − 1)
kn − tn

B2, (3.11)

which implies that

lim sup
n→∞

〈
xn − f(xn), j

(
xn − p

)〉 ≤ 0. (3.12)

Consequently, similar to the lines of the proof of [4, Theorem 3.1], Theorem 3.1 is easily
proved. This completes the proof.

Corollary 3.2. Let E be a real Banach space with a uniformly Gateaux differentiable norm possessing
uniform normal structure, K a nonempty closed convex and bounded subset of E, T : K → K
be an asymptotically nonexpansive mapping with sequence {kn}n ⊂ [1,∞), and f : K → K a
contraction with constant γ ∈ [0, 1). Let {tn} ⊂ (0, (1 − γ)kn/(kn − γ)) be such that limn→∞tn = 1
and limn→∞((kn − 1)/(kn − tn)) = 0. Then

(i) for each integer n ≥ 0, there is a unique xn ∈ K such that

xn =
(
1 − tn

kn

)
f(xn) +

tn
kn

Tnxn; (3.13)

if T is u.a.r.s., then

(ii) the sequence {xn}n converges strongly to the unique solution of the variational inequality:

p ∈ F(T) such that
〈(
I − f

)
p, j

(
p − x∗)〉 ≤ 0, ∀x∗ ∈ F(T). (3.14)
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Theorem 3.3. Let E be a real Banach space with a uniformly Gateaux differentiable norm possessing
uniform normal structure, K a nonempty closed convex and bounded subset of E, T : K → K an
asymptotically nonexpansive mapping with sequence {kn}n ⊂ [1,∞), and f : K → K a contraction
with constant γ ∈ [0, 1). Let {tn} ⊂ (0, ξn) be such that limn→∞tn = 1,

∑∞
n=1 tn(1 − tn) = ∞, and

limn→∞((kn − 1)/(kn − tn)) = 0, where ξn = min{(1 − γ)kn/(kn − γ), 1/kn}. For an arbitrary
z0 ∈ K, let the sequence {zn}n be iteratively defined by (1.12). Then

(i) for each integer n ≥ 0, there is a unique xn ∈ K such that

xn =
(
1 − tn

kn

)
f(xn) +

tn
kn

Tnxn; (3.15)

if T is u.a.r.s., then

(ii) the sequence {zn}n converges strongly to the unique solution of the variational inequality:

p ∈ F(T) such that
〈(
I − f

)
p, j

(
p − x∗)〉 ≤ 0, ∀x∗ ∈ F(T). (3.16)

Proof. Set αn = tn/kn, then αn → 1 as n → ∞. Define

zn+1 = βαnzn +
(
1 − βαn

)
yn. (3.17)

Observe that

yn+1 − yn =
zn+2 − βαn+1zn+1

1 − βαn+1
− zn+1 − βαnzn

1 − βαn

=
(1 − αn+1)f(zn+1) + ααn+1T

n+1zn+1
1 − βαn+1

− (1 − αn)f(zn) + ααnT
nzn

1 − βαn

=
1 − αn+1

1 − βαn+1

[
f(zn+1) − f(zn)

]
+
(

1 − αn+1

1 − βαn+1
− 1 − αn

1 − βαn

)
f(zn)

+
ααn+1

1 − βαn+1

(
Tn+1zn+1 − Tn+1zn

)

+
ααn+1

1 − βαn+1

(
Tn+1zn − Tnzn

)

+
(

ααn+1

1 − βαn+1
− ααn

1 − βαn

)
Tnzn.

(3.18)
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It follows that

∥
∥yn+1 − yn

∥
∥ − ‖zn+1 − zn‖

≤ 1 − αn+1

1 − βαn+1
γ‖zn+1 − zn‖ +

∣
∣
∣
∣
1 − αn+1

1 − βαn+1
− 1 − αn

1 − βαn

∣
∣
∣
∣
∥
∥f(zn)

∥
∥

+
ααn+1

1 − βαn+1

∥
∥
∥Tn+1zn+1 − Tn+1zn

∥
∥
∥

+
ααn+1

1 − βαn+1

∥
∥
∥Tn+1zn − Tnzn

∥
∥
∥

+
∣
∣
∣
∣

ααn+1

1 − βαn+1
− ααn

1 − βαn

∣
∣
∣
∣‖Tnzn‖ − ‖zn+1 − zn‖

≤
∣
∣∣∣
1 − αn+1

1 − βαn+1
− 1 − αn

1 − βαn

∣
∣∣∣
∥∥f(zn)

∥∥ +
ααn+1

1 − βαn+1

∥
∥∥Tn+1zn − Tnzn

∥
∥∥

+
∣∣∣∣

ααn+1

1 − βαn+1
− ααn

1 − βαn

∣∣∣∣‖Tnzn‖

+
(

1 − αn+1

1 − βαn+1
γ +

ααn+1

1 − βαn+1
kn+1 − 1

)
‖zn+1 − zn‖.

(3.19)

We note that

kn+1 − γ − (
αkn+1 + β − γ

)
= (1 − α)kn+1 − β

≥ 1 − α − β = 0.
(3.20)

It follows that

tn+1 ≤
(
1 − γ

)
kn+1

kn+1 − γ
≤

(
1 − γ

)
kn+1

αkn+1 + β − γ
, (3.21)

which implies that

kn+1tn+1α + tn+1β − tn+1γ ≤ (
1 − γ

)
kn+1

=⇒ αkn+1αn+1 + αn+1β − αn+1γ ≤ 1 − γ

=⇒ αkn+1αn+1 + (1 − αn+1)γ ≤ 1 − αn+1β

=⇒ αkn+1αn+1 + (1 − αn+1)γ
1 − αn+1β

≤ 1.

(3.22)

From (3.19) and (3.22), we obtain

lim sup
n→∞

(∥∥yn+1 − yn

∥∥ − ‖zn+1 − zn‖
) ≤ 0. (3.23)
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Hence, by Lemma 2.3 we know

lim
n→∞

∥
∥yn − zn

∥
∥ = 0, (3.24)

consequently

lim
n→∞

‖zn+1 − zn‖ = 0. (3.25)

On the other hand,

‖zn − Tnzn‖ ≤ ‖zn+1 − zn‖ + ‖zn+1 − Tnzn‖
≤ ‖zn+1 − zn‖ + (1 − αn)

∥
∥f(zn) − Tnzn

∥
∥

+ βαn‖zn − Tnzn‖,
(3.26)

which implies that

lim
n→∞

‖zn − Tnzn‖ = 0. (3.27)

Hence, we have

‖zn − Tzn‖ ≤ ‖zn − Tnzn‖ +
∥∥∥Tnzn − Tn+1zn

∥∥∥ +
∥∥∥Tn+1zn − Tzn

∥∥∥

≤ ‖zn − Tnzn‖ +
∥∥∥Tnzn − Tn+1zn

∥∥∥ + k1‖zn − Tnzn‖

= (1 + k1)‖zn − Tnzn‖ +
∥∥∥Tnzn − Tn+1zn

∥∥∥ −→ 0 (n −→ ∞).

(3.28)

From (3.15), xm−zn = (1−αm)(f(xm)−zn)+αm(Tmxm−zn). Applying Lemma 2.4, we estimate
as follows:

‖xm − zn‖2 ≤ α2
m‖Tmxm − zn‖2 + 2(1 − αm)

〈
f(xm) − zn, j(xm − zn)

〉

≤ α2
m(‖Tmxm − Tmzn‖ + ‖Tmzn − zn‖)2

+ 2(1 − αm)
[〈
f(xm) − xm, j(xm − zn)

〉
+ ‖xm − zn‖2

]

≤ α2
m(km‖xm − zn‖ + ‖Tmzn − zn‖)2

+ 2(1 − αm)
(〈

f(xm) − xm, j(xm − zn)
〉
+ k2

m‖xm − zn‖2
)

= α2
m

(
k2
m‖xm − zn‖2 + 2km‖xm − zn‖‖Tmzn − zn‖

+ ‖Tmzn − zn‖2
)

+ 2(1 − αm)
(〈

f(xm) − xm, j(xm − zn) + k2
m‖xm − zn‖2

〉)
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= (1 − (1 − αm))
2k2

m‖xm − zn‖2

+ ‖Tmzn − zn‖(2km‖xm − zn‖ + ‖Tmzn − zn‖)

+ 2(1 − αm)
(〈

f(xm) − xm, j(xm − zn)
〉
+ k2

m‖xm − zn‖2
)

≤
(
1 + (1 − αm)2

)
k2
m‖xm − zn‖2

+ ‖Tmzn − zn‖(2km‖xm − zn‖ + ‖Tmzn − zn‖)
+ 2(1 − αm)

〈
f(xm) − xm, j(xm − zn)

〉
.

(3.29)

Since K is bounded, for some constant M > 0, it follows that

lim sup
n→∞

〈
f(xm) − xm, j(zn − xm)

〉 ≤

[
k2
m − 1 + k2

m(1 − αm)2
]

1 − αm
M

+ lim sup
n→∞

M‖zn − Tmzn‖
1 − αm

,

(3.30)

so that

lim sup
n→∞

〈
f(xm) − xm, j(zn − xm)

〉 ≤

[
k2
m − 1 + k2

m(1 − αm)2
]

1 − αm
M. (3.31)

By Corollary 3.2, xm → p ∈ F(T), which solve the variational inequality (3.16). Since j is
norm to weak∗ continuous on bounded sets, in the limit as m → ∞, we obtain that

lim sup
n→∞

〈
f
(
p
) − p, j

(
zn − p

)〉 ≤ 0. (3.32)

From Lemma 2.4, we estimate as follows:

∥∥zn+1 − p
∥∥2 =

∥∥(1 − αn)(f(zn) − p) + ααn(Tnzn − p) + βαn(zn − p)
∥∥2

≤ ∥∥ααn(Tnzn − p) + βαn(zn − p)
∥∥2

+ 2(1 − αn)
〈
f(zn) − p, j

(
zn+1 − p

)〉

≤ α2α2
n

∥∥Tnzn − p
∥∥2 + 2αβα2

n

∥∥Tnzn − p
∥∥∥∥zn − p

∥∥

+ β2α2
n

∥∥zn − p
∥∥2 + 2(1 − αn)〈f(zn) − f

(
p
)
, j
(
zn+1 − p

)〉
+ 2(1 − αn)

〈
f
(
p
) − p, j

(
zn+1 − p

)〉
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≤
(
α2k2

n + 2αβkn + β2
)
α2
n

∥
∥zn − p

∥
∥2

+ 2(1 − αn)γ
∥
∥zn − p

∥
∥
∥
∥zn+1 − p

∥
∥

+ 2(1 − αn)
〈
f
(
p
) − p, j

(
zn+1 − p

)〉

≤ α2
nk

2
n

∥
∥zn − p

∥
∥2 + γ(1 − αn)

(∥
∥zn − p

∥
∥2 +

∥
∥zn+1 − p

∥
∥2
)

+ 2(1 − αn)〈f
(
p
) − p, j

(
zn+1 − p

)〉,
(3.33)

so that
∥
∥zn+1 − p

∥
∥2 ≤

[
t2n + (1 − αn)γ

]

1 − (1 − αn)γ
∥
∥zn − p

∥
∥2

+ 2
(1 − αn)

1 − (1 − αn)γ
〈
f
(
p
) − p, j

(
zn+1 − p

)〉

=

(

1 −
[
1 − 2(1 − αn)γ − t2n

]

1 − (1 − αn)γ

)
∥∥zn − p

∥∥2

+ 2
(1 − αn)

1 − (1 − αn)γ
〈
f
(
p
) − p, j

(
zn+1 − p

)〉
.

(3.34)

Let

λn =

[
1 − 2(1 − αn)γ − t2n

]

1 − (1 − αn)γ
. (3.35)

Consequently, following the lines of the proof of [4, Theorem 3.3], Theorem 3.3 is easily
proved.

From the lines of the proof of Theorem 3.3, we can obtain the following corollary.

Corollary 3.4. Let E be a real Banach space with a uniformly Gateaux differentiable norm possessing
uniform normal structure, K a nonempty closed convex and bounded subset of E, T : K → K an
asymptotically nonexpansive mapping with sequence {kn}n ⊂ [1,∞), and f : K → K a contraction
with constant γ ∈ [0, 1). Let {tn} ⊂ (0, ξn) be such that limn→∞tn = 1,

∑∞
n=1 tn(1 − tn) = ∞, and

limn→∞((kn − 1)/(kn − tn)) = 0, where ξn = min{(1 − γ)kn/(kn − γ), 1/kn}. For an arbitrary
z0 ∈ K, let the sequence {zn}n be iteratively defined by (1.12). Then

(i) for each integer n ≥ 0, there is a unique xn ∈ K such that

xn =
(
1 − tn

kn

)
f(xn) +

tn
kn

Tnxn; (3.36)

if T satisfies limn→∞‖Tn+1xn − Tnxn‖ = 0 and limn→∞‖Tn+1zn − Tnzn‖ = 0 then

(ii) the sequence {zn}n converges strongly to the unique solution of the variational inequality:

p ∈ F(T) such that
〈(
I − f

)
p, j

(
p − x∗)〉 ≤ 0, ∀x∗ ∈ F(T). (3.37)
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Remark 3.5. Since every nonexpansive mapping is asymptotically nonexpansive, our
theorems hold for the case when T is simply nonexpansive. In this case, the boundedness
requirement on K can be removed from the above results.

Remark 3.6. Our results can be viewed as a refinement and improvement of the corresponding
results by Shahzad and Udomene [4], Chidume et al. [5], and Lim and Xu [13].

Example 3.7. Let T : C → C be a nonexpansive mapping. Let the iterative sequence {xn} be
defined by

xn+1 =
1
n
u +

(
1 − 1

n

)
Txn. (3.38)

It is easy to see that {xn} converges strongly to some fixed point of T .
In particular, let H = R2 and define T : R2 → R2 by

T
(
reiθ

)
= rei(θ+π/2), (3.39)

and take that u = eiπ is a fix element in C. It is obvious that T is a nonexpansive mapping
with a unique fixed point x∗ = 0. In this case, (3.38) becomes

xn+1 =
1
n
eiπ +

(
1 − 1

n

)
rne

i(θn+π/2). (3.40)

It is clear that the complex number sequence {xn} converges strongly to a fixed point x∗ = 0.
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