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This paper is devoted to studying the growth of solutions of second-order nonhomogeneous linear
differential equation with meromorphic coefficients. We also discuss the relationship between
small functions and differential polynomials L(f) = d2f ′′ +d1f ′ +d0f generated by solutions of the
above equation, where d0(z), d1(z), and d2(z) are entire functions that are not all equal to zero.

1. Introduction and Main Results

A function f(z) is called meromorphic if it is nonconstant and analytic in the complex plane
C except at possible isolated poles. If no poles occur, then f(z) reduces to an entire function.
Throughout this paper, we assume that the reader is familiar with the fundamental results
and the standard notations of the Nevanlinna’s value distribution theory of meromorphic
functions, for reference see [1]. In addition, we use notations σ(f) and λ(f) to denote the
order and the exponent of convergence of zero sequence and λ(f) to denote the sequence of
distinct zeros of f(z), respectively. A meromorphic function ψ(z) is called a small function
with respect to f(z) if T(r, ψ) = o(T(r, f)) as r → ∞, possibly outside of a set of r with finite
measure, where T(r, f) is the Nevanlinna characteristic function of f(z).

For the second-order linear differential equation

f ′′ + e−zf ′ + B(z)f = 0, (1.1)
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where B(z) is an entire function of finite order, it is well known that each solution f of (1.1)
is an entire function, and that if f1 and f2 are any two linearly independent solutions of (1.1),
then at least one of f1, f2 must have infinite order, see [2, pages 167-168].

Thus, a natural question is the following: what condition on B(z) will guarantee that
every solution f /≡ 0 of (1.1) has infinite order? Many researchers have studied the question,
for the details see [3, page 291]. For the case that B(z) is a transcendental entire function,
Gundersen [4] proved that if σ(B)/= 1, then every solution f /≡ 0 of (1.1) has infinite order. In
2002, Chen considered the problem and proved the following result which is an improvement
of Gundersen’s result.

Theorem A (see [3]). Let a, b be nonzero complex numbers satisfying ab /= 0 and arga/= arg b or
a = cb (0 < c < 1), and let Aj(z)/≡ 0 (j = 1, 2) be entire functions with σ(Aj) < 1, then every
solution f(/≡ 0) of the equation

f ′′ +A1(z)eazf ′ +A0(z)ebzf = 0 (1.2)

has infinite order.
Some further results on (1.2) were obtained for several cases. Chen [3] got the same conclusion

when a = cb (c > 1), and Chen and Shon [5] investigated the more general equations with
meromorphic coefficients. Under the same assumption of Theorem A, if A1(z) and A0(z) are
meromorphic functions with σ(Aj) < 1 (j = 0, 1), then there is the same conclusion with Theorem A.
In 2008, Wang and Laine [6] extended Theorem A to nonhomogeneous second-order linear differential
equations.

Theorem B (see [6]). Let Aj(z)/≡ 0 (j = 0, 1) and F /≡ 0 be entire functions with max{σ(Aj), (j =
0, 1), σ(F)} < 1, and let a, b be complex constants that satisfy ab /= 0 and a/= b, then every solution f
of differential equation

f ′′ +A1(z)eazf ′ +A0(z)ebzf = F (1.3)

is of infinite order.

Remark 1.1. Belaı̈di and El Farissi [7] also proved Theorem B and got λ(f) = λ(f) = σ(f) = ∞.
We note that (2.21) in [7] cannot be deduced by following their proof. Indeed, as r → ∞,
|f(z)| > 1 holds just for the points z satisfying |f(z)| = M(r, f), not for all z. However, the
difficulty can be got over by using Lemmas 2.5 and 2.6 in [8], and the method can be used in
our proof of the following Theorem 1.2.

Since the beginning of the last four decades, a substantial number of research papers
have been written to describe the fixed points of general transcendental functions. However,
there are few studies on the fixed points of solutions of the general differential equations.
In 2000, Chen [9] first studied the problems on the fixed points of solutions of second-
order linear differential equations with entire coefficients. Since then, many results on fixed
points of solutions of differential equations with entire coefficients were obtained, see [10–
12]. In 2006, Chen and Shon [13] further studied the relation between small functions and
solutions or differential polynomials of solutions of differential equations and obtained the
following.
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Theorem C. Let Aj(z)/≡ 0 (j = 0, 1) be entire functions with σ(Aj) < 1, and let a, b be complex
constants such that ab /= 0 and arga/= arg b or a = cb (0 < c < 1). If ψ(z)/≡ 0 is an entire function
with finite order, then every solution f /≡ 0 of (1.2) satisfies λ(f − ψ) = λ(f ′ − ψ) = λ(f ′′ − ψ) = ∞.
Furthermore, let d0(z), d1(z),and d2(z) be polynomials that are not all equal to zero, and let L(f) =
d2f

′′ + d1f ′ + d0f . If the order of ψ is less than 1, then λ(L(f) − ψ) = ∞.

Belaı̈di and El Farissi [7] also studied the relation between small functions and some
differential polynomials generated by solutions of the second-order nonhomogeneous linear
differential equation (1.3). They obtained the following.

Theorem D. Let Aj(z)/≡ 0 (j = 0, 1) and F /≡ 0 be entire functions with max{σ(Aj) (j =
0, 1), σ(F)} < 1, and let a, b be complex constants that satisfy ab /= 0 and arga/= arg b or a =
cb (0 < c < 1). Let d0(z), d1(z), d2(z) be entire functions that are not all equal to zero with
σ(dj) < 1 (j = 0, 1, 2), and let ψ(z) be an entire function with finite order. If f is a solution of
(1.3), then the differential polynomial L(f) = d2f ′′ + d1f ′ + d0f satisfies λ(L(f) − ψ) = ∞.

The main purpose of this paper is to study the growth and the oscillation of solutions
of second-order linear differential equation with meromorphic coefficients. Also, we will
investigate the relation between small functions and differential polynomials generated by
solutions of the above equation. Our results can be stated as follows.

Theorem 1.2. Let Aj(z)/≡ 0 (j = 0, 1) and F(z) be meromorphic functions with max{σ(F),
σ(Aj)} < n, and let P(z) = anz

n + · · · + a0, Q(z) = bnz
n + · · · + b0 be polynomials with degree

n (n ≥ 1), where ai, bi (i = 0, 1, . . . , n), anbn /= 0 are complex constants such that argan /= arg bn or
an = cbn (0 < c < 1), then every meromorphic solution f /≡ 0 of the equation

f ′′ +A1e
P(z)f ′ +A0e

Q(z)f = F (1.4)

has infinite order and satisfies

λ
(
f
)
= λ

(
f
)
= σ

(
f
)
= ∞. (1.5)

Theorem 1.3. Under the assumption of Theorem 1.2, and let d0(z), d1(z), d2(z) be meromorphic
functions that are not all equal to zero with σ(dj) < 1 (j = 0, 1, 2), and let ψ(z) be a meromorphic
function with finite order, if f /≡ 0 is a meromorphic solution of (1.4), then the differential polynomial
L(f) = d2f ′′ + d1f ′ + d0f satisfies λ(L(f) − ψ) = ∞.

Remark 1.4. Clearly, the method used in linear differential equations with entire coefficients
cannot deal with the case of meromorphic coefficients. In addition, the proof of the results in
[7, 13] relies heavily on the idea of Lemma 5 in [13] or Lemma 2.5 in [7]. However, it seems
too complicated to deal with our cases. We will use an important result in uniqueness theory
of meromorphic functions, that is Lemma 2.5, to prove our theorems.

2. Preliminary Lemmas

In order to prove our theorems, we need the following lemmas.
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Lemma 2.1 (see [14]). Let w(z) be a transcendental meromorphic function with σ(f) = σ < ∞.
Let Γ = {(k1, j1), . . . , (km, jm)} be a finite set of distinct pairs of integers satisfying ki > ji ≥ 0 for
i = 1, 2, . . . , m. Also let ε > 0 be a given constant, then there exists a set E1 ⊂ (1,∞) that has finite
logarithmic measure, such that for all z satisfying z /∈ E ∪ [0, 1] and for all (k, j) ∈ Γ, one has

∣
∣w(k)(z)

∣
∣

∣
∣w(j)(z)

∣
∣ ≤ |z|(k−j)(σ−1+ε). (2.1)

Nowwe introduced a notation, see [15] and [8, Lemma 2.3]. Let P(z) = (α+βi)zn+· · · is
a nonconstant polynomial, and α, β is real constants. For θ ∈ [0, 2π), set δ(P(z), θ) = α cosnθ−
β sinnθ.

Lemma 2.2 (see [15]). Let P(z) be a nonconstant polynomial of degree n. Letw(z) be a meromorphic
function, not identically zero, of order less than n, and set g(z) = w(z)eP(z). Then for any given ε > 0
there exists a zero measure set H1 ⊂ [0, 2π) such that if θ ∈ θ ∈ [0, 2π) \ (H1 ∪ H2), then for
|z| > r(θ),

(1) if δ(P, θ) < 0, then exp((1 + ε)δ(P, θ)rn) ≤ |g(reiθ)| ≤ exp((1 − ε)δ(P, θ)rn),
(2) if δ(P, θ) > 0, then exp((1 − ε)δ(P, θ)rn) ≤ |g(reiθ)| ≤ exp((1 + ε)δ(P, θ)rn), where

H2 = {θ : δ(P, θ) = 0, 0 ≤ θ < 2π} is a finite set.

Lemma 2.3 (see [8, Lemma 2.5]). Let f(z) be an entire function, and suppose that

G(z) :=
log+

∣∣f (k)
∣∣

|z|ρ (2.2)

is unbounded on some ray arg z = θ with constant ρ > 0, then there exists an infinite sequence of
points zn = rneiθ (n = 1, 2, . . .), where rn → ∞, such that G(zn) → ∞ and

∣∣f (j)(zn)
∣∣

∣∣f (k)(zn)
∣∣ ≤ 1

(
k − j)!(1 + o(1))r

k−j
n , j = 0, . . . , k − 1, (2.3)

as n → ∞.

Lemma 2.4 (see [16]). Let A0, . . . , Ak−1, F /≡ 0 be finite-order meromorphic functions. If f is an
infinite-order meromorphic solution of the equation

f (k) +Ak−1f (k−1) + · · · +A0f = F, (2.4)

then f satisfies λ(f) = λ(f) = σ(f) = ∞.

Lemma 2.5 (see [17, page 79]). Suppose that f1(z), f2(z), . . . , fn(z) (n ≥ 2) are meromorphic
functions and g1(z), g2(z), . . . , gn(z) are entire functions satisfying the following conditions:

(1) Σn
j=1fj(z)e

gj (z) ≡ 0,

(2) gj(z) − gk(z) are not constants for 1 ≤ j < k ≤ n,
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(3) for 1 ≤ j ≤ n, 1 ≤ h < k ≤ n, T(r, fj) = o{T(r, egh−gk)}(r → ∞, r /∈ E), where E has a
finite measure.

then fj(z) ≡ 0 (j = 1, 2, . . . , n).

Lemma 2.6 (see [8, Lemma 2.6]). Let f(z) be a an entire function of order σ(f) = σ <∞. Suppose
that there exists a set E ⊂ [0, 2π) which has linear measure zero, such that log+|f(reiθ)| ≤ Mrρ for
any ray arg z = θ ∈ [0, 2π) \ E, whereM is a positive constant depending on θ, while ρ is a positive
constant independent of θ. Then σ(f) ≤ ρ.

Lemma 2.7. Under the assumption of Theorem 1.2, and let f be a meromorphic solution of (1.4). Set
w = f ′′ +A1e

P(z)f ′ +A0e
Q(z)f . If f /≡ 0 is of finite order, then σ(w) ≥ n.

Proof. Suppose the contrary that σ(w) < n, we will deduce a contradiction.
First, if f(z) ≡ C/= 0, then w = CA0e

Q(z). Clearly, σ(w) = n, this is a contradiction.
Now suppose that f /≡C. If σ(f) < n, then

f ′′ +A1e
P(z)f ′ +A0e

Q(z)f −w = 0. (2.5)

By Lemma 2.5, we have A0 ≡ 0, and this is a contradiction. Hence, σ(f) ≥ n.
Since f is a meromorphic solution of (1.4), we know that the poles of f can occur only

at the poles of Aj (j = 0, 1) and F. Let f = g(z)/d(z), where d(z) is the canonical product
formed with the nonzero poles of f(z), with σ(d) ≤ max{σ(F), σ(Aj), j = 0, 1} < n, and g is
an entire function with n ≤ σ(g) = σ(f) = σ ≤ ∞. Substituting f = g/d into (2.5), by some
calculation we can get

dw = g ′′ + g ′
[
A1e

P(z) − 2
(
d′

d

)]
+ g

[

A0e
Q(z) −A1e

P(z)d
′

d
+ 2

(
d′

d

)2

− d′′

d

]

. (2.6)

Now, we rewrite (2.6) into

dw

g
− g ′′

g
−
[
A1e

P(z) − 2
(
d′

d

)]
g ′

g
=

[

A0e
Q(z) −A1e

P(z)d
′

d
+ 2

(
d′

d

)2

− d′′

d

]

. (2.7)

Set max{σ(w), σ(Aj), j = 0, 1} = β < n. By Lemma 2.1, for any given ε (0 < ε < 1 − β),
there exists a set E2 ∈ [0, 2π)which has linear measure zero, such that if θ ∈ [0, 2π) \E2, then
there is a constant R1 = r1(θ) > 1 such that for all z satisfying arg z = θ and |z| ≥ R1, we have

∣∣g(i)(z)
∣∣

∣∣g(z)
∣∣ ≤ |z|2(σ−1+ε),

∣∣d(i)(z)
∣∣

|d(z)| ≤ |z|2(β−1+ε), i = 1, 2. (2.8)
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Case 1. Suppose that an = cbn (0 < c < 1), then by Lemmas 2.1 and 2.2, there exists a ray
arg z = θ ∈ [0, 2π) \E2 ∪H1 ∪H2,H1 andH2 being defined in Lemma 2.2, such that δ(P, θ) =
cδ(Q, θ) > 0, and for the above ε and sufficiently r,

∣
∣
∣∣
∣
A0e

Q(z) −A1e
P(z)d

′

d
+ 2

(
d′

d

)2

− d′′

d

∣
∣
∣∣
∣
≥
∣
∣∣A0e

Q(z)
∣
∣∣ −

∣
∣∣A1e

P(z)
∣
∣∣
∣
∣
∣
∣
d′

d

∣
∣
∣
∣ −

∣
∣
∣∣
∣
2
(
d′

d

)2
∣
∣
∣∣
∣
−
∣
∣
∣
∣
d′′

d

∣
∣
∣
∣

≥ 1
2
exp{(1 − ε)δ(Q, θ)rn}.

(2.9)

Also, by Lemmas 2.1 and 2.2, we have

∣∣
∣∣A1e

P(z) − 2
(
d′

d

)∣∣
∣∣ ≤

∣
∣∣A1e

P(z)
∣
∣∣ +

∣∣
∣∣
2d′

d

∣∣
∣∣ ≤M exp{(1 + ε)cδ(Q, θ)rn}, (2.10)

whereM is a constant.
Now we claim that

log+
∣∣g(z)

∣∣

|z|β+ε
(2.11)

is bounded on the ray arg z = θ. Otherwise, by Lemma 2.3, there exists a sequence of points
zm = rmeiθ, such that rm → ∞

log+
∣∣g(zm)

∣∣

r
β+ε
m

−→ ∞. (2.12)

From (2.12) and the definition of order, we see that

∣∣∣∣
d(zm)w(zm)

g(zm)

∣∣∣∣ −→ 0, (2.13)

form is large enough. By (2.7), (2.8), (2.9), (2.10), and (2.13), we get

1
2
exp{(1 − ε)δ(Q, θ)rnm} ≤

∣∣∣∣∣
A0e

Q(z) −A1e
P(z)d

′

d
+ 2

(
d′

d

)2

− d′′

d

∣∣∣∣∣

≤
∣∣∣∣
dw

g

∣∣∣∣ +
∣∣∣∣

(
A1e

P(z) − 2
(
d′

d

))
g ′

g

∣∣∣∣ +
∣∣∣∣
g ′′

g

∣∣∣∣

≤M1 exp{(1 + ε)cδ(Q, θ)rnm},

(2.14)
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where M1 is a constant. Clearly, we can choose ε such that 0 < ε < (1 − c)/(1 + c). Then by
(2.14), we can obtain a contradiction. Therefore,

log+
∣
∣g(z)

∣
∣

|z|β+ε
(2.15)

is bounded, and we have |g(z)| ≤M exp{rβ+ε} on the ray arg z = θ.

Case 2. Suppose that argan /= arg bn. By Lemma 2.2, there exists a ray arg z = θ ∈ [0, 2π)\E2∪
H1 ∪H2, where E2,H1, andH2 are defined, respectively, as in Case 1, such that

δ(Q, θ) > 0, δ(P, θ) < 0. (2.16)

Then, for any given ε (0 < ε < n− β), by Lemma 2.2 and (2.7), we have, for sufficiently
large |z| = r,
∣∣∣∣∣
A0e

Q(z) −A1e
P(z)d

′

d
+ 2

(
d′

d

)2

− d′′

d

∣∣∣∣∣
≥
∣∣∣A0e

Q(z)
∣∣∣ −

∣∣∣A1e
P(z)

∣∣∣

∣∣∣∣
d′

d

∣∣∣∣ −
∣∣∣∣∣
2
(
d′

d

)2
∣∣∣∣∣
−
∣∣∣∣
d′′

d

∣∣∣∣

≥ 1
2
exp{(1 − ε)δ(Q, θ)rn},

(2.17)

∣∣∣∣A1e
P(z) − 2

(
d′

d

)∣∣∣∣ ≤
∣∣∣A1e

P(z)
∣∣∣ + 2

∣∣∣∣

(
d′

d

)∣∣∣∣

≤ exp
{
β + ε

}
exp{(1 − ε)δ(P, θ)rn} + r2(β−1+ε).

(2.18)

As in Case 1, we prove that

log+
∣∣g(z)

∣∣

|z|β+ε
(2.19)

is bounded on the ray arg z = θ. Otherwise, similarly as in Case 1, there exists a sequence of
points zm = rmeiθ, such that rm → ∞,

log+
∣∣g(zm)

∣∣

r
β+ε
m

−→ ∞. (2.20)

Further, we have

∣∣∣∣
d(zm)w(zm)

g(zm)

∣∣∣∣ −→ 0, (2.21)

form is large enough.
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By (2.7), (2.8), (2.17), (2.18), and (2.21), we get

1
2
exp{(1 − ε)δ(Q, θ)rnm} ≤

∣
∣
∣
∣
∣
A0e

Q(z) −A1e
P(z)d

′

d
+ 2

(
d′

d

)2

− d′′

d

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
dw

g

∣
∣
∣
∣ +

∣
∣
∣
∣

(
A1e

P(z) − 2
(
d′

d

))
g ′

g

∣
∣
∣
∣ +

∣
∣
∣
∣
g ′′

g

∣
∣
∣
∣

≤ exp{(1 − ε)δ(P, θ)rnm} + r2(β−1+ε)m .

(2.22)

Since δ(Q, θ) > 0 and δ(P, θ) < 0, we obtain a contradiction. So

log+
∣
∣g(z)

∣
∣

|z|β+ε
(2.23)

is bounded, and we have

∣∣g(z)
∣∣ ≤M exp

{
rβ+ε

}
(2.24)

on the ray arg z = θ.
Combining Cases 1 and 2, for any given ray arg z = θ ∈ [0, 2π)\E, E of linear measure

zero, we have (2.24) on the ray arg z = θ, provided that r is sufficiently large. Thus by
Lemma 2.6, we get σ(g) ≤ β + ε < n, which is a contradiction. Then σ(w) ≥ n.

Lemma 2.8. Under the assumption of Theorem 1.3, let f(z) be an infinite-order meromorphic solution
of (1.4), then σ(L(f)) = ∞.

Proof. Suppose that f(z) is a meromorphic solution of (1.4), then by Theorem 1.2, we have
σ(f) = ∞.

Now suppose that d2 /≡ 0. Substituting f ′′ = F −A1e
P(z)f ′ −A0e

Q(z) into L(f), we have

L
(
f
) − d2F =

(
d1 − d2A1e

P(z)
)
f ′ +

(
d0 − d2A0e

Q(z)
)
f. (2.25)

Differentiating both sides of (2.25), and replacing f ′′ with f ′′ = F −A1e
Pf ′ −A0e

Qf , we
obtain

L
(
f
)′ − (d2F)

′ −
(
d1 − d2A1e

P
)
F

=
[
d2A

2
1e

2P − (
(d2A1)

′ + P ′d2A1 + d1A1
)
eP − d2A0e

Q + d0 + d′
1

]
f ′

+
[
d2A0A1e

P+Q − (
(d2A0)

′ +Q′d2A0 + d1A0
)
eQ + d′

0

]
f.

(2.26)
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Set

α1 = d1 − d2A1e
P , α0 = d0 − d2A0e

Q,

β1 = d2A2
1e

2P − (
(d2A1)

′ + P ′d2A1 + d1A1
)
eP − d2A0e

Q + d0 + d′
1,

β0 = d2A0A1e
P+Q − (

(d2A0)
′ +Q′d2A0 + d1A0

)
eQ + d′

0.

(2.27)

Then we rewrite (2.25) and (2.26) into

α1f
′ + α0f = L

(
f
) − d2F,

β1f
′ + β0f = L

(
f
)′ − (d2F)

′ −
(
d1 − d2A1e

P
)
F.

(2.28)

Set

h = α1β0 − α0β1

=
[
d1 − d2A1e

P
][
d2A0A1e

P+Q − (
(d2A0)

′ +Q′d2A0 + d1A0
)
eQ + d′

0

]

−
[
d0 − d2A0e

Q
][
d2A

2
1e

2P − (
(d2A1)

′ + P ′d2A1 + d1A1
)
eP

−d2A0e
Q + d0 + d′

1

]

= h0 + hP (z)eP + hP+QeP+Q + hQeQ + h2Pe2P − d2
2A

2
0e

2Q,

(2.29)

where hi(z) (i ∈ Λ = {0, P,Q, P + Q, 2P}) are meromorphic functions formed by A0, A1, d0,
and d1 and their derivatives, with order less than n, and Λ is a index set. Since any one
of {P,Q, P + Q, 2P} is not equal to 2Q, then by Lemma 2.5, we have d2

2A
2
0 ≡ 0. This is a

contradiction. Thus, h/≡ 0.
By (2.28), we get

f =
1
h

(
α1
(
L
(
f
)′ − (d2F)

′ − α1F
)
− β1

(
L
(
f
) − d2F

))
. (2.30)

If σ(L(f)) < ∞, then by (2.30) we have σ(f) < ∞. Clearly, it is a contradiction. Hence,
σ(L(f)) = ∞.

Suppose that d2 ≡ 0, d1 /≡ 0 or d2 = d1 ≡ 0, and d0 /≡ 0, then by similar discussion as
above, we can get the same conclusion.

3. Proof of Theorem 1.2

Let f /≡ 0 be a meromorphic solution of (1.4). Conversely, suppose that σ(f) < ∞. By
Lemma 2.7, we have n ≤ σ(w) = σ(F) < n. This is a contradiction. By Lemma 2.4, f satisfies
λ(f) = λ(f) = σ(f) = ∞.
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4. Proof of Theorem 1.3

Suppose that argan /= arg bn or an = cbn(0 < c < 1) and that f is a meromorphic solution of
(1.4). Set k(z) = L(f) − ψ. By σ(ψ) < ∞ and Lemma 2.8, we have σ(k) = ∞. Without loss
of generality, we assume that d2 /≡ 0. Indeed, the remaining cases can be obtained by similar
discussion. Substituting L(f) = k(z) + ψ into (2.30), we have

f =
1
h

(
α1
(
k′ + ψ ′ − (d2F)

′ − α1F
) − β1

(
k + ψ − d2F

))
=

1
h

(
α1k

′ − β1k
)
+ φ, (4.1)

where

φ(z) =
α1
h

(
ψ ′ − (d2F)

′ − α1F
) − β1

h

(
ψ − d2F

)
(4.2)

is a meromorphic function of finite order. Then substituting (4.1) into (1.4), we have

α1
h
k′′′ + φ2k

′′ + φ1k
′ + φ0k = F −

(
ψ ′′ +A1e

Pψ ′ +A0e
Qψ

)
, (4.3)

where φj(j = 0, 1, 2) aremeromorphic functions formed by α1/h, β/h, φ, and their derivatives.
If F − (ψ ′′ +A1e

Pψ ′ +A0e
Qψ) ≡ 0, then by Theorem 1.2, we have σ(ψ) = ∞. This is impossible,

and hence F − (ψ ′′ +A1e
Pψ ′ +A0e

Qψ)/≡ 0. Thus, by h/≡ 0, α1 /≡ 0, (4.3), and Lemma 2.4, we get
λ(k) = λ(k) = σ(k) = ∞.
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