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By using a specific way of choosing the indexes, we propose an iteration algorithm generated
by the monotone CQ method for approximating common fixed points of an infinite family of
relatively quasinonexpansive mappings. A strong convergence theorem without the stronger
assumptions of the AKTT condition and the ∗AKTT condition imposed on the involved mappings
is established in the framework of Banach space. As application, an iterative solution to a system
of equilibrium problems is studied. The result is more applicable than those of other authors with
related interest.

1. Introduction

Let C be a nonempty and closed convex subset of a real Banach space E. A mapping T : C →
E is said to be nonexpansive if

∥
∥Tx − Ty

∥
∥ ≤ ∥

∥x − y
∥
∥, ∀x, y ∈ C. (1.1)

A mapping T is said to be quasi-nonexpansive if F(T) := {x ∈ C : x = Tx}/= ∅ and

∥
∥Tx − p

∥
∥ ≤ ∥

∥x − p
∥
∥, ∀x ∈ C, p ∈ F(T). (1.2)
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It is easy to see that if T is nonexpansive with F(T)/= ∅, then it is quasi-nonexpansive. There
are many methods for approximating fixed points of quasi-nonexpansive mappings. In 1953,
Mann [1] introduced the iteration as follows: a sequence {xn} is defined by

xn+1 = αnxn + (1 − αn)Txn, (1.3)

where the initial element x0 ∈ C is arbitrary and {αn} is a sequence of real numbers in
[0, 1]. Approximation of fixed points of nonexpansive mappings via Mann’s algorithm has
extensively been investigated. One of the fundamental convergence results was proved
by Reich [2]. In infinite-dimensional Hilbert spaces, Mann iteration can yield only weak
convergence (see [3, 4]).

Attempts to modify the Mann iteration method (1.3) for strong convergence have
recently been made. Nakajo and Takahashi [5] proposed the following modification of Mann
iteration method (1.3) for a nonexpansive mapping T from C into itself in a Hilbert space:
from an arbitrary x0 ∈ C,

yn = αnxn + (1 − αn)Txn,

Cn =
{

z ∈ C :
∥
∥yn − z

∥
∥ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0, ∀n ≥ 0,

(1.4)

where PK denotes the metric projection from a Hilbert space H onto a closed convex subset
K of H. They proved that the sequence {xn} converges strongly to PF(T)x0.

Recently, Su and Qin [6] introduced a monotone CQ method for nonexpansive
mapping, defined as follows: from an arbitrary x0 ∈ C,

yn = αnxn + (1 − αn)Txn,

C0 =
{

z ∈ C :
∥
∥y0 − z

∥
∥ ≤ ‖x0 − z‖}, Q0 = C,

Cn =
{

z ∈ Cn−1 ∩Qn−1 :
∥
∥yn − z

∥
∥ ≤ ‖xn − z‖},

Qn = {z ∈ Cn−1 ∩Qn−1 : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0, ∀n ≥ 0,

(1.5)

and it proved that the sequence {xn} converges strongly to PF(T)x0.
We now recall some definitions concerning relatively quasi-nonexpansive mappings.

Let E be a real smooth Banach space with norm ‖·‖ and let E∗ be the dual of E. The normalized
duality mapping J from E to E∗ is defined by

Jx =
{

f ∈ E∗ :
〈

x, f
〉

= ‖x‖2 = ∥
∥f

∥
∥
2
}

, ∀x ∈ E, (1.6)
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where 〈·, ·〉 denotes the pairing between E and E∗. Readers are directed to [7] (and its review
[8]), where the properties of the duality mapping and several related topics are presented.
The function φ : E × E → R+ is defined by

φ
(

x, y
)

= ‖x‖2 − 2〈x, Jy〉 + ∥
∥y

∥
∥
2
, ∀x, y ∈ E. (1.7)

Let T be a mapping from C into E. A point p in C is said to be an asymptotic fixed point
[9] of T ifC contains a sequence {xn}which converges weakly to p and limn→∞(xn−Txn) = 0.
The set of asymptotic fixed points of T is denoted by F̂(T).

We say that the mapping T is relatively nonexpansive (see [10]) if the following
conditions are satisfied:

(R1) F(T)/= ∅;

(R2) φ(p, Tx) ≤ φ(p, x), ∀p ∈ F(T);

(R3) F(T) = F̂(T).

If T satisfies (R1) and (R2), then T is called relatively quasi-nonexpansive.
Several articles have provided methods for approximating fixed points of relatively

quasi-nonexpansive mappings [11–16]. Employing the ideas of Su and Qin [6], and of
Aoyama et al. [17], in 2008, Nilsrakoo and Saejung [18] used the following iterations to obtain
strong convergence theorems for common fixed points of a countable family of relatively
quasi-nonexpansive mappings in a Banach space

x0 ∈ C, C−1 = Q−1 = C;

yn = J−1(αnJxn + (1 − αn)JTnxn),

Cn =
{

z ∈ Cn−1 ∩Qn−1 : φ
(

z, yn

) ≤ φ(z, xn)
}

,

Qn = {z ∈ Cn−1 ∩Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = Πnx0, ∀n ≥ 0.

(1.8)

However, the results were obtained under two stronger assumption conditions, namely, the
AKTT -condition and the ∗AKTT -condition imposed on the involved mappings.

Inspired and motivated by those studies mentioned above, in this paper, we use a
modified type of the iteration scheme (1.8) for approximating common fixed points of an
infinite family of relatively quasi-nonexpansive mappings; without stronger assumptions
imposed on the involved mappings, a strong convergence theorem in Banach spaces is
obtained for solving a system of equilibrium problems. The results improve those of other
authors with related interest.



4 Abstract and Applied Analysis

2. Preliminaries

Throughout the paper, let E be a real Banach space. We say that E is strictly convex if the
following implication holds for x, y ∈ E:

‖x‖ =
∥
∥y

∥
∥ = 1, x /=y =⇒

∥
∥
∥
∥

x + y

2

∥
∥
∥
∥
< 1. (2.1)

It is also said to be uniformly convex if for any ε > 0, there exists a δ > 0 such that

‖x‖ =
∥
∥y

∥
∥ = 1,

∥
∥x − y

∥
∥ ≥ ε =⇒

∥
∥
∥
∥

x + y

2

∥
∥
∥
∥
≤ 1 − δ. (2.2)

It is known that if E is uniformly convex Banach space, then E is reflexive and strictly convex.
A Banach space E is said to be smooth if

lim
t→ 0

∥
∥x + ty

∥
∥ − ‖x‖
t

(2.3)

exists for each x, y ∈ S(E) := {x ∈ E : ‖x‖ = 1}. In this case, the norm of E is said to be
Gâteaux differentiable. The space E is said to have uniformly Gâteaux differentiable norm if for
each y ∈ S(E); the limit (2.3) is attained uniformly for x ∈ S(E). The norm of E is said to be
Fréchet differentiable if for each x ∈ S(E); the limit (2.3) is attained uniformly for y ∈ S(E). The
norm of E is said to be uniformly Fréchet differentiable (and E is said to be uniformly smooth) if
the limit (2.3) is attained uniformly for x, y ∈ S(E).

We also know the following properties (see, e.g., [19] for details).

(1) E (E∗, resp.) is uniformly convex ⇔ E∗ (E, resp.) is uniformly smooth.

(2) Jx /= ∅ for each x ∈ E.

(3) If E is reflexive, then J is a mapping from E onto E∗.

(4) If E is strictly convex, then Jx ∩ Jy = ∅ as x /=y.

(5) If E is smooth, then J is single-valued.

(6) If E has a Fréchet differentiable norm, then J is norm-to-norm continuous.

(7) If E is uniformly smooth, then J is uniformly norm-to-norm continuous on each
bounded subset of E.

(8) If E is a Hilbert space, then J is the identity operator.

Let E be a smooth Banach space. The function φ : E × E → R+ is defined by

φ
(

x, y
)

:= ‖x‖2 − 2
〈

x, Jy
〉

+
∥
∥y

∥
∥
2
. (2.4)

It is obvious from the definition of the function φ that

(‖x‖ − ∥
∥y

∥
∥
)2 ≤ φ

(

x, y
) ≤ (‖x‖ + ∥

∥y
∥
∥
)2
. (2.5)

Moreover, we know the following results.
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Lemma 2.1 (see [13]). Let E be a strictly convex and smooth Banach space, then φ(x, y) = 0 if and
only if x = y.

Lemma 2.2 (see [11]). Let E be a uniformly convex and smooth Banach space and let r > 0. Then
there exists a continuous, strictly increasing, and convex function g : [0, 2r] → [0,∞) such that
g(0) = 0 and

g
(‖x‖ − ∥

∥y
∥
∥
) ≤ φ

(

x, y
)

(2.6)

for all x, y ∈ Br := {z ∈ E : PzP ≤ r}.

LetC be a nonempty and closed convex subset of E. Suppose that E is reflexive, strictly
convex, and smooth. It is known in [20] that for any x ∈ E, there exists a unique point x∗ ∈ C
such that

φ(x∗, x) = min
y∈C

φ
(

y, x
)

. (2.7)

Following Alber [21], we denote such an x∗ by ΠCx. The mapping ΠC is called the
generalized projection from E onto C. It is easy to see that in a Hilbert space, the mapping ΠC

coincides with the metric projection PC. What follows are the well-known facts concerning
the generalized projection.

Lemma 2.3 (see [20]). Let C be a nonempty closed convex subset of a smooth Banach space E and
let x ∈ E. Then

x∗ = ΠCx ⇐⇒ 〈x∗ − y, Jx − Jx∗〉 ≥ 0, ∀y ∈ C. (2.8)

Lemma 2.4 (see [20]). Let E be a reflexive, strictly convex, and smooth Banach space, let C be a
nonempty closed convex subset of E, and let x ∈ E. Then

φ
(

y,ΠCx
)

+ φ(ΠCx, x) ≤ φ
(

y, x
)

, ∀y ∈ C. (2.9)

Dealing with the generalized projection from E onto the fixed point set of a relatively
quasi-nonexpansive mapping, we have the following result.

Lemma 2.5 (see [18]). Let E be a strictly convex and smooth Banach space, let C be a nonempty and
closed convex subset of E, and let T be a relatively quasi-nonexpansive mapping from C into E. Then
F(T) is closed and convex.

Let C be a subset of a Banach space E and let {Tn} be a family of mappings from C into
E. For a subset B of C, we say that

(i) ({Tn}, B) satisfies AKTT-condition if

∞∑

n=1

sup{‖Tn+1z − Tnz‖ : z ∈ B} < ∞; (2.10)
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(ii) ({Tn}, B) satisfies ∗AKTT-condition if

∞∑

n=1

sup{‖JTn+1z − JTnz‖ : z ∈ B} < ∞. (2.11)

3. Main Results

Recall that an operator T in a Banach space is closed if xn → x and Txn → y as n → ∞, then
Tx = y.

Theorem 3.1. Let E be a uniformly convex and uniformly smooth Banach space, C a nonempty
and closed convex subset of E. Let {Ti}∞i=1 : C → E be a sequence of closed and relatively quasi-
nonexpansive mappings with F :=

⋂∞
i=1 F(Ti)/= ∅. Starting from an arbitrary x1 ∈ C, the sequence

{xn} is define by

x1 ∈ C, C0 = Q0 = C;

yn = J−1(αnJxn + (1 − αn)JTinxn),

Cn =
{

z ∈ Cn−1 ∩Qn−1 : φ
(

z, yn

) ≤ φ(z, xn)
}

,

Qn = {z ∈ Cn−1 ∩Qn−1 : 〈xn − z, Jx1 − Jxn〉 ≥ 0},
xn+1 = Πnx1, ∀n ≥ 1,

(3.1)

where Πn := ΠCn
⋂
Qn and {αn} is a sequence in [0, 1) with lim supn→∞αn < 1; in is the solution to

the positive integer equation: n = i + (m − 1)m/2 (m ≥ i, n = 1, 2, . . .), that is, for each n ≥ 1, there
exists a unique in such that

i1 = 1, i2 = 1, i3 = 2, i4 = 1, i5 = 2, i6 = 3, i7 = 1, i8 = 2,

i9 = 3, i10 = 4, i11 = 1, . . . .
(3.2)

Then {xn} converges strongly toΠFx1.

Proof. We first claim that both Cn and Qn are closed and convex. This follows from the fact
that φ(z, yn) ≤ φ(z, xn) is equivalent to the following:

2〈z, Jxn − Jyn〉 ≤ ‖xn‖2 −
∥
∥yn

∥
∥
2
. (3.3)

It is clear that F ⊂ C = C0 ∩Q0. Next, we show that

F ⊂ Cn ∩Qn, ∀n ≥ 1. (3.4)
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Suppose that F ⊂ Ck−1 ∩Qk−1 for some k ≥ 2. Letting p ∈ F, we then have

φ
(

p, yk

)

= φ
(

p, J−1(αkJxk + (1 − αk)JTik − xk)
)

=
∥
∥p

∥
∥
2 − 2〈p, αkJxk + (1 − αk)JTikxk〉 + ‖αkJxk + (1 − αk)JTikxk‖2

≤ ∥
∥p

∥
∥
2 − 2αk〈p, Jxk〉 − 2(1 − αk)〈p, JTikxk〉 + αk‖xk‖2 + (1 − αk)‖Tikxk‖2

= αk

(∥
∥p

∥
∥
2 − 2〈p, Jxk〉 + ‖xk‖2

)

+ (1 − αk)
(∥
∥p

∥
∥
2 − 2〈p, JTikxk〉 + ‖Tikxk‖2

)

= αkφ
(

p, xk

)

+ (1 − αk)φ
(

p, Tikxk

)

≤ αkφ
(

p, xk

)

+ (1 − αk)φ
(

p, xk

)

= φ
(

p, xk

)

.

(3.5)

This implies that F ⊂ Ck. It follows from xk = Πk−1x1 and Lemma 2.3 that

〈xk − z, Jx1 − Jxk〉 ≥ 0, ∀z ∈ Ck−1 ∩Qk−1. (3.6)

Particularly,

〈xk − z, Jx1 − Jxk〉 ≥ 0, ∀p ∈ F (3.7)

and hence F ⊂ Qk, which yields that

F ⊂ Ck ∩Qk. (3.8)

By induction, (3.4) holds. This implies that {xn} is well defined. It follows from the definition
of Qn and Lemma 2.3 that xn = ΠQnx1. Since xn+1 = Πnx1 ∈ Qn, we have

φ(xn, x1) ≤ φ(xn+1, x1), ∀n ≥ 1. (3.9)

Therefore, {φ(xn, x1)} is nondecreasing. Using xn = ΠQnx1 and Lemma 2.4, we have

φ(xn, x1) = φ
(

ΠQnx1, x1
) ≤ φ

(

p, x1
) − φ

(

p, xn

) ≤ φ
(

p, x1
)

(3.10)

for all p ∈ F and for all n ≥ 1, that is, {φ(xn, x1)} is bounded. Then

lim
n→∞

φ(xn, x1) exists. (3.11)
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In particular, by (2.5), the sequence {(‖xn‖ − ‖x1‖)2} is bounded. This implies that {xn} is
bounded. Note again that xn = ΠQnx1 and for any positive integer k, xn+k ∈ Qn+k−1 ⊂ Qn. By
Lemma 2.4,

φ(xn+k, xn) = φ
(

xn+k,ΠQnx1
)

≤ φ(xn+k, x1) − φ
(

ΠQnx1, x1
)

= φ(xn+k, x1) − φ(xn, x1).

(3.12)

By Lemma 2.2, we have, for any positive integers m,n withm > n,

g(‖xm − xn‖) ≤ φ(xm, xn) ≤ φ(xm, x1) − φ(xn, x1), (3.13)

where g : [0,∞) → [0,∞) is a continuous, strictly increasing, and convex function with
g(0) = 0. Then the properties of the function g yield that {xn} is a Cauchy sequence in C, so
there exists an x∗ ∈ C such that

xn −→ x∗ (n −→ ∞). (3.14)

In view of xn+1 = Πnx1 ∈ Cn and the definition of Cn, we also have

φ
(

xn+1, yn

) ≤ φ(xn+1, xn), ∀n ≥ 1. (3.15)

This implies that

lim
n→∞

φ
(

xn+1, yn

)

= lim
n→∞

φ(xn+1, xn) = 0. (3.16)

It follows from Lemma 2.2 that

lim
n→∞

∥
∥xn+1 − yn

∥
∥ = lim

n→∞
‖xn+1 − xn‖ = 0. (3.17)

Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

∥
∥Jxn+1 − Jyn

∥
∥ = lim

n→∞
‖Jxn+1 − Jxn‖ = 0. (3.18)

On the other hand, we have, for each n ≥ 1,

∥
∥Jxn+1 − Jyn

∥
∥ = ‖Jxn+1 − (αnJxn + (1 − αn)JTinxn)‖
= ‖(1 − αn)(Jxn+1 − JTinxn) − αn(Jxn − Jxn+1)‖
≥ (1 − αn)‖Jxn+1 − JTinxn‖ − αn‖Jxn − Jxn+1‖,

(3.19)
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and hence

‖Jxn+1 − JTinxn‖ ≤ 1
1 − αn

∥
∥Jxn+1 − Jyn

∥
∥ +

αn

1 − αn
‖Jxn − Jxn+1‖. (3.20)

From (3.18) and lim supn→∞αn < 1, we obtain that

lim
n→∞

‖Jxn+1 − JTinxn‖ = 0. (3.21)

Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖xn+1 − Tinxn‖ = lim
n→∞

∥
∥
∥J−1(Jxn+1) − J−1(JTinxn)

∥
∥
∥ = 0. (3.22)

It follows from (3.17) that, as n → ∞,

‖xn − Tinxn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Tinxn‖ −→ 0. (3.23)

Now, set Ki = {k ≥ 1 : k = i + (m − 1)m/2, m ≥ i,m ∈ Z
+} for each i ≥ 1. Note that Tik = Ti

whenever k ∈ Ki. For example, by the definition of K1, we have K1 = {1, 2, 4, 7, 11, 16, . . .}
and i1 = i2 = i4 = i7 = i11 = i16 = · · · = 1. Then it follows from (3.23) that

lim
Ki�k→∞

‖Tixk − xk‖ = 0, ∀i ≥ 1. (3.24)

Since {xk}k∈Ki
is a subsequence of {xn}, (3.14) implies that xk → x∗ as Ki � k → ∞. It

immediately follows from (3.24) and the closedness of Ti that x∗ ∈ F(Ti) for each i ≥ 1, and
hence x∗ ∈ F. Furthermore, by (3.10),

φ(x∗, x1) = lim
n→∞

φ(xn, x1) ≤ φ
(

p, x1
)

, ∀p ∈ F. (3.25)

This implies that x∗ = ΠFx1. The proof is completed.

Remark 3.2. Note that the algorithm (3.1) is based on the projection onto an intersection of
two closed and convex sets. An example [22] of how to compute such a projection is given as
follows.
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Dykstra’s Algorithm

Let Ω1,Ω2, . . . ,Ωp be closed and convex subsets of R
n. For any i = 1, 2, . . . , p and x0 ∈ R

n, the
sequences {xk

i } are defined by the following recursive formulae:

xk
0 = xk−1

p ,

xk
i = PΩi

(

xk
i−1 − yk−1

i

)

, i = 1, 2, . . . , p,

yk
i = xk

i −
(

xk
i−1 − yk−1

i

)

, i = 1, 2, . . . , p,

(3.26)

for k = 1, 2, . . . with initial values x0
p = x0 and y0

i = 0 for i = 1, 2, . . . , p. If Ω :=
⋂p

i=1 Ωi /= ∅, then
{xk

i } converges to x∗ = PΩ(x0), where PΩ(x) := arg infy∈Ω‖y − x‖2, for all x ∈ R
n.

4. Applications

The so-called convex feasibility problem for a family of mappings {Ti}∞i=1 is to find a point in the
nonempty intersection

⋂∞
i=1 F(Ti), which exactly illustrates the importance of finding fixed

points of infinite families. The following example also clarifies the same thing.

Example 4.1. LetE be a smooth, strictly convex, and reflexive Banach space,C a nonempty and
closed convex subset of E, and {fi}∞i=1 : C → C a countable family of bifunctions satisfying
the conditions: for each i ≥ 1,

(A1) fi(x, x) = 0;

(A2) fi is monotone, that is, fi(x, y) + fi(y, x) ≤ 0;

(A3) lim supt↓0fi(x + t(z − x), y) ≤ fi(x, y);

(A4) the mapping y �→ fi(x, y) is convex and lower semicontinuous.

A system of equilibrium problems for {fi}∞i=1 is to find an x∗ ∈ C such that

fi
(

x∗, y
) ≥ 0, ∀y ∈ C, i ≥ 1, (4.1)

whose set of common solutions is denoted by EP :=
⋂∞

i=1 EP(fi), where EP(fi) denotes the set
of solutions to the equilibrium problem for fi (i = 1, 2, . . .). It will be shown in Theorem 4.3
that such a system of problems can be reduced to approximation of some fixed points of a
countable family of nonexpansive mappings.

Example 4.2 (see [23]). Let r > 0. Define a countable family of mappings {Tr,i}∞i=1 : E → C as
follows:

Tr,i(x) =
{

z ∈ C : fi
(

z, y
)

+
1
r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C

}

, ∀i ≥ 1. (4.2)
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Then we have that

(1) {Tr,i}∞i=1 is a sequence of single-valued mappings;

(2) {Tr,i}∞i=1 is a sequence of closed relatively quasi-nonexpansive mappings;

(3) F :=
⋂∞

i=1 F(Tr,i) = EP .

Now, we have the following result.

Theorem 4.3. Let C,E, and {αn} be the same as those in Theorem 3.1. Let {fi}∞i=1 : C → C be
a countable family of bifunctions satisfying the conditions (A1)–(A4). Let {Tr,i}∞i=1 : E → C be a
countable family of mappings defined by (4.2). Let {xn} be the sequence generated by

x1 ∈ C, C0 = Q0 = C;

fin
(

un, y
)

+
1
r
〈y − un, Jun − Jxn〉 ≥ 0, ∀y ∈ C,

yn = J−1(αnJxn + (1 − αn)Jun),

Cn =
{

z ∈ Cn−1 ∩Qn−1 : φ
(

z, yn

) ≤ φ(z, xn)
}

,

Qn = {z ∈ Cn−1 ∩Qn−1 : 〈xn − z, Jx1 − Jxn〉 ≥ 0},
xn+1 = Πnx1, ∀n ≥ 1,

(4.3)

where in satisfies the positive integer equation: n = i + (m − 1)m/2 (m ≥ i, n = 1, 2, . . .). If F :=
⋂∞

i=1 F(Tr,i)/= ∅, then {xn} strongly converges to ΠFx1 which is a common solution of the system of
equilibrium problems for {fi}∞i=1.

Proof. Since each Tr,i is single-valued, un = Tr,inxn for all n ≥ 1. In addition, we have
pointed out in Example 4.2 that F = EP and {Tr,i}∞i=1 is a sequence of closed relatively quasi-
nonexpansive mappings. Hence, (4.3) can be rewritten as follows:

x1 ∈ C, C0 = Q0 = C;

yn = J−1(αnJxn + (1 − αn)JTr,inxn),

Cn =
{

z ∈ Cn−1 ∩Qn−1 : φ
(

z, yn

) ≤ φ(z, xn)
}

,

Qn = {z ∈ Cn−1 ∩Qn−1 : 〈xn − z, Jx1 − Jxn〉 ≥ 0},
xn+1 = Πnx1, ∀n ≥ 1.

(4.4)

Therefore, this conclusion can be obtained immediately from Theorem 3.1.
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