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Delayed plant disease mathematical models including continuous cultural control strategy and
impulsive cultural control strategy are presented and investigated. Firstly, we consider continuous
cultural control strategy in which continuous replanting of healthy plants is taken. The existence
and local stability of disease-free equilibrium and positive equilibrium are studied by analyzing the
associated characteristic transcendental equation. And then, plant disease model with impulsive
replanting of healthy plants is also considered; the sufficient condition under which the infected
plant-free periodic solution is globally attritive is obtained. Moreover, permanence of the system
is studied. Some numerical simulations are also given to illustrate our results.

1. Introduction

Plant viruses or pathogens are an important constraint to crop production worldwide
and cause major production and economic losses in agriculture and forestry. For example,
soybean rust (a fungal disease in soybeans) has caused a significant economic loss, and
just by removing 20% of the infection, the farmers may benefit with an approximately 11
million-dollar profit [1]. Several plant diseases caused by plant viruses in cassava (Manihot
esculenta) and sweet potato (Ipomoea batatas) are among the main constraints to sustainable
production of these vegetatively propagated staple food crops in lesser-developed countries
[2–4]. A strain of the virus causing cassava mosaic disease gives rise to losses in Africa
[5]. Therefore, people have turned more attention to plant diseases. Several conferences
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have been held to discuss how to control or prevent plant virus. Therefore, farmers have
been evolving practices for controlling plant diseases, which involves a number of dynamic
processes such as the growth of plants and the spread of diseases. Recently, the integrated
disease management (IDM) which combines biological, cultural, and chemical tactics and
so on to reduce the numbers of infected individuals to a tolerable level and aims to
minimize losses and maximize returns [6, 7] has been developed gradually. IDM includes
four main control strategies for vegetatively propagated plant diseases, which are containing
transmission vectors, improving the production of planting material, controlling the crop
sanitation through removal of infected plants, and breeding plants for resistance to the virus.
Breeding plants for resistance to the virus as an cultural strategy has been widely used into
practice [8–11]. In the system of IDM, mathematical modeling has shown its unique value
on describing, analyzing, and predicting plant epidemics [12–16]. Meng and Li have inves-
tigated vegetatively propagated plant diseases and developed a mathematical model with
continuous control strategies and impulsive cultural control strategies [17], which leads to

S′(t) = ρ − βS(t)I(t)
1 + αS(t)

− μS(t) +ωI(t),

I ′(t) =
βS(t)I(t)
1 + αS(t)

− (d + r +ω)I(t),

(1.1)

where S(t) and I(t) denote the number of susceptible and infected plants, respectively. β is
the transmission rate, α denotes potentially density dependent, μ either denotes harvest time
or the end of reproductive life time of plants, ρ represents the total rate at which the suscepti-
ble plants enter the system, r is the removal rate for the infected plants, ω is the recovery rate
of the cured diseased plants, and the infected plants suffer an extra disease-related death with
constant rate d. In system (1.1), the authors refer to two-control strategy: one is continuous
control and the other is impulsive control by implementing periodic replanting of healthy
plants or removing infected plants at a critical time. A model for the spread of an infectious
disease (involving only susceptibles and infective individuals) transmitted by a vector after
an incubation time was proposed by Cooke [18]. This is called the phenomena of time delay.
Many authors have directly incorporated time delays in modeling equations, and, as a result,
the models take the form of delay differential equations [19–23]. Motivated by Meng, we get
the following reasonable plant disease models by introducing time delay:

S′(t) = ρ − βe−μτ S(t)I(t − τ)
1 + αS(t)

− μS(t) +ωI(t),

I ′(t) = βe−μτ
S(t)I(t − τ)
1 + αS(t)

− (d + r +ω)I(t),

(1.2)

S′(t) = −βe−μτ S(t)I(t − τ)
1 + αS(t)

− μS(t) +ωI(t),

I ′(t) = βe−μτ
S(t)I(t − τ)
1 + αS(t)

− (d + r +ω)I(t),
t /=nT,

S(t+) = S(t) + ρ,

I(t+) = I(t),
t = nT.

(1.3)
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From the point of biology, we only consider system (1.2) and (1.3) in the biological
meaning region: D = {(S, I ) | S, I ≥ 0}. Let

C+ =
{
φ =
(
φ1(s), φ2(s) ∈ C : φi(0) > 0 (i = 1, 2)

}
, (1.4)

where φi(s) is positive, bounded, and continuous function for s ∈ [−τ, 0]. Motivated by the
application of systems (1.2) and (1.3) to population dynamics (refer to [24]), we assume that
solutions of systems (1.1) satisfy the following initial conditions:

φ ∈ C+, φ(0) > 0. (1.5)

2. Plant Disease Continuous Control for System (1.2)

In this section, we consider system (1.2) with continuous replanting and removing and
without impulsive effect. By Smith [25, Theorem 5.2.1] or Zhao and Zou [26], for any φ ∈ C+,
there is a unique solution (S(t, φ), I(t, φ)) of system (1.2)with (S(ζ, φ), I(ζ, φ)) = φ(ζ), for any
ζ ∈ [−τ, 0] and S(ζ, φ) ≥ 0, I(ζ, φ) ≥ 0 for all t ≥ 0 in its maximal interval of existence.

DefineN(t) = S(t) + I(t); then we have

dN(t)
dt

+ LN(t) = ρ +
(
L − μ)S(t) + (L − d − r)I(t). (2.1)

Let L = min{μ, d + r}; we have

dN(t)
dt

+ LN(t) ≤ ρ. (2.2)

Then

N(t) ≤N(0)e−Lt +
ρ

L

(
1 − e−Lt

)
−→ ρ

L
=M (2.3)

as t → +∞. Hence, system (1.2) is uniformly bounded.
Since S(t) and I(t) denote the number of susceptible and infected plants, respectively,

it is easy to observe that system (1.2) has a disease-free of the form E1(ρ/μ, 0), and a unique
infection equilibrium E2(S∗, I∗) provided that we have the following condition:

(H)

βe−μτ >
(
α +

μ

ρ

)
(d + r +ω), (2.4)

where

S∗ =
d + r +ω

βe−μτ − α(d + r +ω)
, I∗ =

ρ − μS∗

d + r
. (2.5)
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2.1. The Stability of the Disease-Free Equilibrium E1(ρ/μ, 0)

Wemay firstly consider the stability of the disease-free equilibria E1(ρ/μ, 0). Let x(t) = S(t)−
ρ/μ, y(t) = I(t); then system (1.2) can be rewritten as the following equivalent system:

x′(t) = ρ − βe−μτ
(
x(t) + ρ/μ

)
y(t − τ)

1 + α
(
x(t) + ρ/μ

) − μ(x(t) + S∗) +ωy(t),

y′(t) = βe−μτ
(
x(t) + ρ/μ

)
y(t − τ)

1 + α
(
x(t) + ρ/μ

) − (d + r +ω)y(t).

(2.6)

Thus, the disease-free equilibrium E1(ρ/μ, 0) of system (1.2) is transformed into zero
equilibrium of system (2.6). Linearizing system (2.6) about the equilibrium (0, 0) yields the
following linear system:

x′(t) = −μx(t) − βρe−μτ

μ + αρ
y(t − τ) +ωy(t),

y′(t) =
βρe−μτ

μ + αρ
y(t − τ) − (d + r +ω)y(t),

(2.7)

with characteristic equation:

det

⎛

⎜⎜⎜
⎝

−μ − λ ω − βρe−μτ

μ + αρ
e−λτ

0
βρe−μτ

μ + αρ
e−λτ − (d + r +ω) − λ

⎞

⎟⎟⎟
⎠

= 0, (2.8)

that is,

(−μ − λ)
(
βρe−μτ

μ + αρ
e−λτ − (d + r +ω) − λ

)
= 0. (2.9)

The stability of trivial solution of system (1.2) depends on the locations of roots of
characteristic equation (2.9). When all roots of (2.9) locate in the left half-plane of complex
plane, the trivial solution of system (1.2) is stable; otherwise, it is unstable. In the following,
we will investigate the distribution of roots of (2.9). Obviously, λ1 = −μ < 0. Let

βρe−μτ

μ + αρ
e−λτ − (d + r +ω) − λ = 0. (2.10)

For (2.10), the root of (2.10)with τ = 0 always has negative real part provided that βρe−μτ/(μ+
αρ) < d + r +ω.
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In addition, i
(
 > 0) is a root of (2.10) if and only if 
 satisfies the following
equation:

i
 =
βρe−μτ

μ + αρ
(cos
τ − i sin
τ) − (d + r +ω). (2.11)

Separating the real and imaginary parts of (2.11) gives the following equations:

βρe−μτ

μ + αρ
cos
τ = d + r +ω,

βρe−μτ

μ + αρ
sin
τ = −
.

(2.12)

Thus we can have


2 =
(
βρe−μτ

μ + αρ

)2

− (d + r +ω)2. (2.13)

Then if βρe−μτ/(μ + αρ) < d + r + ω, (2.13) has not positive real root, which leads to (2.10)
that has not purely imaginary root. By the Rouche Theory, we know that all the roots of
(2.9) have always negative real parts. So the equilibrium E1(ρ/μ, 0) of system (1.2) is locally
asymptotically stable.

Define

τ1 =
1
μ
ln

β
(
α + μ/ρ

)
(d + r +ω)

. (2.14)

For system (1.2), we have the following result on stability of the disease-free equilibrium
E1(ρ/μ, 0).

Theorem 2.1. For system (1.2), the following statements are true.

(i) If τ ∈ [0, τ1), then the disease-free equilibrium E1(ρ/μ, 0) of system (1.2) is unstable.

(ii) If τ ∈ (τ1,+∞), then the disease-free equilibrium E1(ρ/μ, 0) of system (1.2) is locally
asymptotically stable.

2.2. The Stability of the Positive Equilibrium E2(S∗, I∗) of System (1.2)

In this section, we show that the disease equilibrium is asymptotically stable in the case that
time delay τ is less than the unity (τ < τ1); then we have the following theorem.

Theorem 2.2. For system (1.2), if τ ∈ [0, τ1), then the positive equilibrium E2(S∗, I∗) of system
(1.2) is asymptotically stable.
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Proof. Under the hypothesis (H), let x(t) = S(t) − S∗, y(t) = I(t) − I∗, then system (1.2) can be
rewritten as the following equivalent system:

x′(t) = ρ − βe−μτ (x(t) + S
∗)
(
y(t − τ) + I∗)

1 + α(x(t) + S∗)
− μ(x(t) + S∗) +ω

(
y(t) + I∗

)
,

y′(t) = βe−μτ
(x(t) + S∗)

(
y(t − τ) + I∗)

1 + α(x(t) + S∗)
− (d + r +ω)

(
y(t) + I∗

)
.

(2.15)

Thus, the positive equilibrium E∗(S∗, I∗) of system (1.2) is transformed into zero
equilibrium of system (2.15). Linearizing system (2.15) about the equilibrium (0, 0) yields
the following linear system:

x′(t) = −
(

βe−μτI∗

(1 + αS∗)2
+ μ

)

x(t) − βe−μτS∗

1 + αS∗ y(t − τ) +ωy(t),

y′(t) =

(
βe−μτI∗

(1 + αS∗)2

)

x(t) +
βe−μτS∗

1 + αS∗ y(t − τ) − (d + r +ω)y(t),

(2.16)

with characteristic equation:

det

⎛

⎜⎜⎜⎜
⎝

−
(

βe−μτI∗

(1 + αS∗)2
+ μ

)

− λ ω − βe−μτS∗

1 + αS∗ e
−λτ

βe−μτI∗

(1 + αS∗)2
βe−μτS∗

1 + αS∗ e
−λτ − (d + r +ω) − λ

⎞

⎟⎟⎟⎟
⎠

= 0. (2.17)

The stability of trivial solution of system (1.2) depends on the locations of roots of
characteristic equation (2.17). For the sake of simplicity, let

p =
βe−μτI∗

(1 + αS∗)2
+ μ + d + r +ω > 0,

q = −μβe
−μτS∗

1 + αS∗ = −μ(d + r +ω) < 0,

g = −βe
−μτS∗

1 + αS∗ = −(d + r +ω) < 0,

s = (d + r)

(
βe−μτI∗

(1 + αS∗)2
+ μ

)

+ μω > 0.

(2.18)

Then (2.17) can be briefly denoted as the following equation:

λ2 + pλ + qe−λτ + gλe−λτ + s = 0. (2.19)

For (2.19), we can claim that the two roots of (2.19) have always negative real parts. We will
prove it in the following two steps.
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Step 1. If τ = 0, (2.19) can be simplified as

λ2 +
(
p + g

)
λ + q + s = 0. (2.20)

Note that

p + g =
βe−μτI∗

(1 + αS∗)2
+ μ + d +ω − (d +ω) =

βe−μτI∗

(1 + αS∗)2
+ μ > 0,

q + s = −μ(d +ω) + d

(
βe−μτI∗

(1 + αS∗)2
+ μ

)

+ μω = d

(
βe−μτI∗

(1 + αS∗)2

)

> 0.

(2.21)

Therefore, the two roots of (2.19) with τ = 0 have always negative real parts.

Step 2. If τ > 0, iω (ω > 0) is a root of (2.15) if and only if ω satisfies the following equation:

−ω2 + pωi + q(cosωτ − i sinωτ) + rωi(cosωτ − i sinωτ) + s = 0. (2.22)

Separating the real and imaginary parts of (2.22) gives the following equations:

s −ω2 + q cosωτ + rω sinωτ = 0,

pω − q sinωτ + rω cosωτ = 0.
(2.23)

One can obtain

ω4 +
(
p2 − r2 − 2s

)
ω2 + s2 − q2 = 0. (2.24)

We can easily see that

p2 − r2 − 2s =

(
βe−μτI∗

(1 + αS∗)2
+ μ + d +ω

)2

− (d +ω)2 − 2

(

d

(
βe−μτI∗

(1 + αS∗)2
+ μ

)

+ μω

)

=
2ωβe−μτI∗

(1 + αS∗)2

> 0,

s2 − q2 =
(

d

(
βe−μτI∗

(1 + αS∗)2
+ μ

)

+ μω

)2

− (μ(d +ω)
)2

= d
βe−μτI∗

(1 + αS∗)2

(

d
βe−μτI∗

(1 + αS∗)2
+ 2μ(d +ω)

)

> 0.
(2.25)
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So (2.24) has not positive real root, which leads to (2.19) that has not purely imaginary
root. By the Rouche Theory, we know that all the roots of (2.19) have always negative real
parts. So the equilibrium E2(S∗, I∗) of system (1.2) is asymptotically stable. The proof is
complete.

3. Plant Disease Impulsive Control for System (1.3)

3.1. Boundedness

Let the initial data be S(0) > 0, I(0) > 0. Then, one can easily prove that the solutions
(S(t), I(t)) of system (1.3) are positive for all t > 0. Now, let N(t) = S(t) + I(t). We calculate
the upper right derivative ofN(t) along with a solution of system (1.3)with t /=nT :

dN(t)
dt

= −μS(t) − (d + r)I(t). (3.1)

Since μ, d, r > 0, one can deduce that

dN(t)
dt

≤ −LN(t), (3.2)

where L = min{μ, d + r}. We consider the following impulse differential inequalities:

dN(t)
dt

≤ −LN(t), t /=nT,

N(nT+) =N(nT) + ρ, t = nT.
(3.3)

According to impulse differential inequalities theory, we get

N(t) ≤N(0)e−Lt +
∑

0<nT<t

(
ρe−L(t−nT)

)
−→ ρeLT

eLT − 1
(3.4)

as t → +∞.
So N(t) is uniformly ultimately bounded. Hence, by the definition of N(t), for any

ε > 0, there exists a constant M′ = ρeLT/(eLT − 1) + ε such that S(t) < M′ and I(t) < M′ for
each solution of (1.3)with t being large enough.

3.2. Global Attractivity of the Disease-Free Periodic Solution of System (1.3)

In the following, we shall prove that the disease-free periodic is stable if it exists. For this
purpose, we give firstly some basic properties of the following subsystem:

S′(t) = −μS(t), t /=nT,

S(t+) = S(t) + ρ, t = nT.
(3.5)
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We can find a unique positive periodic solution S∗(t) = ρe−μ(t−nT)/(1−e−μT ), nT < t ≤ (n+1)T ,
which is globally asymptotically stable by using stroboscopic map. As a consequence, system
(3.5) always has a disease-free periodic solution (S∗(t), 0). Now, we give the conditions which
assure the global attractivity of disease-free periodic solution of the system (1.3).

Denote

A =
ωM′

μ
+

ρ

1 − e−μT , 	1 =
Aβe−μτ

(d + r +ω)(1 + αA)
. (3.6)

Theorem 3.1. The disease-free periodic solution (S∗(t), 0) of system (1.3) is globally attractive
provided that

	1 < 1. (3.7)

Proof. Let (S(t), I(t)) be any solution of system (1.3). From the first equation of system (1.3),
it follows that Ṡ(t) < −μS(t) + ωM′, S(t+) = S(t) + ρ, for nT < t ≤ (n + 1)T ; then we consider
the following impulse differential system:

ż(t) = −μz(t) +ωM′, t /=nT,

z(t+) = z(t) + ρ, t = nT.
(3.8)

Obviously, system (3.8) has a globally asymptotically stable positive periodic solution:

z∗(t) =
ωM′

μ
+
ρe−μ(t−nT)

1 − e−μT , t ∈ (nT, (n + 1)T]. (3.9)

By the comparison theorem in impulsive differential equation, for any sufficiently small
positive ε, there exists an integer n1 such that

S(t) < z∗(t) + ε <
ωM′

μ
+

ρ

1 − e−μT + ε = A + ε, n > n1. (3.10)

Therefore, from the second equation of system (1.3), we have

İ(t) ≤ βe−μτ(A + ε)
1 + α(A + ε)

I(t − τ) − (d + r +ω)I(t), t > n1T + τ. (3.11)

Now we consider the following comparison equation:

Ṙ(t) =
βe−μτ(A + ε)
1 + α(A + ε)

R(t − τ) − (d + r +ω)R(t), t > n1T + τ. (3.12)
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Since 	1 < 1, we have

βe−μτA
1 + αA

< d + r +ω. (3.13)

We may choose three sufficiently small positive constants ε such that

βe−μτ(A + ε)
1 + α(A + ε)

< d + r +ω. (3.14)

According to the theory of delay differential equation [24], we obtain that limt→+∞R(t) = 0.
By impulsive comparison theorem, we have I(t) < R(t)with t being large enough. Therefore,
we obtain that limt→+∞I(t) = 0.

Then for a sufficiently small ε1 > 0 and all t being large enough, we have 0 < I(t) < ε1.
Without loss of generality, we may assume 0 < I(t) < ε1 as t ≥ 0. From the first equation of
system (1.3), we have

Ṡ(t) > −(βe−μτε1 + μ
)
S(t), t /=nT,

S(t+) = S(t) + ρ, t = nT.
(3.15)

Consider the following comparison system:

ẏ(t) = −(βe−μτε1 + μ
)
y(t), t /=nT,

y(t+) = y(t) + ρ, t = nT.
(3.16)

Then, system (3.16) has a positive periodic solution:

y∗(t) =
ρe−(βe

−μτ ε1+μ)(t−nT)

1 − e−(βe−μτ ε1+μ)T , (3.17)

which is globally asymptotically stable. Thus, for a sufficiently small ε > 0, when t is large
enough, we have

S(t) > y(t) > y∗(t) − ε. (3.18)

From the first equation of system (1.3), we also have

Ṡ(t) < −μS(t) + ε1ω, t /=nT,

S(t+) = S(t) + ρ, t = nT.
(3.19)



Abstract and Applied Analysis 11

Consider the following comparison system:

ẋ(t) = −μx(t) + ε1ω, t /=nT,

x(t+) = x(t) + ρ, t = nT.
(3.20)

System (3.20) has a globally asymptotically stable positive periodic solution:

x∗(t) =
ε1ω

μ
+
ρe−μ(t−nT)

1 − e−μT , t ∈ (nT, (n + 1)T]. (3.21)

Thus, for a sufficiently small ε > 0, when t is large enough, we have

S(t) < x(t) < x∗(t) + ε. (3.22)

Combining (3.18) with (3.22), we obtain

y∗(t) − ε < S(t) < x∗(t) + ε. (3.23)

Let ε1 → 0; we have S∗(t)− ε < S(t) < S∗(t)+ ε, which implies limt→+∞S(t) = S∗(t). The proof
is completed.

3.3. Permanence of the System (1.3)

Definition 3.2. System (1.3) is said to be permanent if there exist constants k, K > 0
(independent of initial value) and a finite time T0 such that for every positive solution
(S(t), I(t)) with initial conditions (1.3) satisfies k < S(t) < K, k < I(t) < K for all t > T0.
Here T0 may depend on the initial condition.

Denote

	2 =
ρ
(
βe−μτ − α(d + r +ω)

)

(d + r +ω)
(
eμT − 1

) ,

S∗ =
d + r +ω

βe−μτ − α(d + r +ω)
,

I∗ =
(1/T) ln

((
eμT − 1

)	2 + 2
) − μ

βe−μτ
.

(3.24)

Lemma 3.3. If 	2 > 1, then there exists a positive constantm2 such that limt→∞ inf I(t) ≥ m2.

Proof. Define

U(t) = I(t) +
βe−μτS∗

1 + αS∗

∫ t

t−τ
I
(
�
)
d�. (3.25)
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Calculating the derivative ofU(t) along with the solution of (1.3), we can get

U̇(t) = İ +
βe−μτS∗

1 + S∗ (I(t) − I(t − τ))

= βe−μτ
(

S(t)
1 + αS(t)

− S∗

1 + αS∗

)
I(t − τ)

(3.26)

for t ≥ 0.
Since 	2 > 1, then I∗ = ((1/T) ln((eμT − 1)	2 + 2) − μ)/βe−μτ > ((1/T) ln(eμT +

1) − μ)/βe−μτ > ((1/T) ln(eμT) − μ)/βe−μτ = 0. Note that 	2 = ρ/S∗(eμT − 1) and I∗ =
(1/T)(ln((eμT −1)	2+2)−μ)/βe−μτ > ((1/T) ln((eμT −1)	2+1)−μ)/βe−μτ = ((1/T) ln(ρ/S∗+
1) − μ)/βe−μτ .

Solving the aforementioned inequality, we can have that

S∗ <
ρe−(βe

−μτ I∗+μ)T

1 − e−(βe−μτ I∗+μ)T .
(3.27)

We can choose ε > 0 being small enough such that

S∗ <
ρe−(βe

−μτ I∗+μ)T

1 − e−(βe−μτ I∗+μ)T − ε = SΔ. (3.28)

For any positive constant t0, we claim that the inequality I(t) < I∗ cannot hold for all t ≥ t0.
Otherwise, there exists a positive constant t0 such that I(t) < I∗ for all t ≥ t0. From the first
equation of (1.3), we have

Ṡ(t) > −(βe−μτI∗ + μ)S(t), t /=nT,

S(t+) = S(t) + ρ, t = nT.
(3.29)

Similarly, we know that there exists such T1 > t0 + τ , for t > T1 that

S(t) >
ρe−(βe

−μτ I∗+μ)T

1 − e−(βe−μτ I∗+μ)T − ε = SΔ. (3.30)

Then, by (3.30), we have that, for t > T1,

U̇(t) = İ +
βe−μτS∗

1 + S∗ (I(t) − I(t − τ))

> βe−μτ
(

SΔ

1 + αSΔ
− S∗

1 + αS∗

)
I(t − τ).

(3.31)

Let

Il = min
t∈[T1,T1+τ]

I(t). (3.32)
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We show that I(t) ≥ Il for all t ≥ T1. Otherwise, there exists a nonnegative constant T2 such
that I(t) ≥ Il for t ∈ [T1, T1 + τ + T2], I(T1 + τ + T2) = Il and İ(T1 + τ + T2) ≤ 0. Thus from the
second equation of (1.3) and (3.30), we easily see that

İ(T1 + τ + T2) >
(
βe−μτ

S(t)
1 + αS(t)

− (d + r +ω)
)
Il

= (d + r +ω)
(

βe−μτ

d + r +ω
S(t)

1 + αS(t)
− 1
)
Il

> (d + r +ω)
(
SΔ/(1 + αSΔ)
S∗/(1 + αS∗)

− 1
)
Il > 0,

(3.33)

which is a contradiction. Hence we get that I(t) ≥ Il > 0 for all t ≥ T1. Therefore, for all
t > T1 + τ , we have

U̇(t) > βe−μτ
(

SΔ

1 + αSΔ
− S∗

1 + αS∗

)
Il > 0, (3.34)

which impliesU(t) → +∞ as t → +∞. This is a contradiction toU(t) ≤M(1+ βτe−μτ(S∗/1+
αS∗)) for being t large enough. Therefore, for any positive constant t0, the inequality I(t) < I∗

cannot hold for all t ≥ t0.
On the one hand, if I(t) ≥ I∗ holds true for all t being large enough, then our aim is

obtained. Otherwise, I(t) is oscillatory about I∗.
Let

m2 = min
{
I∗

2
, I∗e−(d+r+ω)τ

}
. (3.35)

In the following, wewill show that I(t) ≥ m2 for t being large enough. There exist two positive
constants t, ψ such that

I
(
t
)
= I
(
t + ψ

)
= I∗, (3.36)

I(t) < I∗, for t < t < t + ψ. (3.37)

Since I(t) is continuous and bounded and is not effected by impulses, we conclude that I(t) is
uniformly continuous. Hence there exists a constant T3 (with 0 < T3 < τ and T3 is independent
of the choice of t) such that I(t) > I∗/2 for all t ≤ t ≤ t + T3.

If ψ ≤ T3, our aim is obtained.
If T3 < ψ ≤ τ , from the second equation of (1.3), we have that İ(t) ≥ −(d + r + ω)I(t)

for t < t ≤ t + ψ. Then we have I(t) ≥ I∗e−(d+r+ω)τ for t < t ≤ t + ψ ≤ t + τ since I(t) = I∗. It is
clear that I(t) ≥ m2 for t < t ≤ t + ψ.

If ψ ≥ τ , then we have that I(t) ≥ I∗e−(d+r+ω)τ for t < t ≤ t + τ . Next, we will show
that I(t) ≥ I∗e−(d+r+ω)τ for t + τ < t ≤ t + ψ. In fact, if not, there exists a T4 > 0 such that
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I(t) ≥ I∗e−(d+r+ω)τ for t < t ≤ t + τ + T4. I(t + τ + T4) = I∗e−(d+r+ω)τ and İ(t + τ + T4) ≤ 0. When t
is large enough, from (3.37) and the first equation of (1.3), we have

Ṡ(t) > −(βe−μτI∗ + μ)S(t), t /=nT,

S(t+) = S(t) + ρ, t = nT.
(3.38)

Similarly, we know that there exists T5 > t + τ , for t > T5 that

S(t) >
ρe−(βe

−μτ I∗+μ)T

1 − e−(βe−μτ I∗+μ)T − ε = SΔ. (3.39)

Then the inequality S(t) > SΔ holds true for t+ τ < t < t+ψ. On the other hand, we have from
the second equation of (1.3) that

İ
(
t + τ + T4

)
>

(
βe−μτ

S(t)
1 + αS(t)

− (d + r +ω)
)
I∗e−(d+r+ω)τ

= (d + r +ω)
(

βe−μτ

d + r +ω
S(t)

1 + αS(t)
− 1
)
I∗e−(d+r+ω)τ

> (d + r +ω)
(
SΔ/(1 + αSΔ)
S∗/(1 + αS∗)

− 1
)
I∗e−(d+r+ω)τ > 0.

(3.40)

This is a contradiction to İ(t + τ + T4) ≤ 0. Therefore, I(t) ≥ m2 for t ∈ [t, t + ψ].
Since this kind of interval [t, t + ψ] is arbitrarily chosen, we get that I(t) ≥ m2 for t

being large enough. In view of our arguments previously, the choice of m2 is independent
of the positive solution of (1.3) which satisfies that I(t) ≥ m2 for sufficiently large t. This
completes the proof.

Theorem 3.4. If 	2 > 1, the system (1.3) is permanent; that is, there exist two positive constants
m1,m2 such that S(t) ≥ m1, I(t) ≥ m2 for t being large enough.

Proof. Suppose that X(t) = (S(t), I(t)) is any positive solution of system (1.3). From the first
and third equations of (1.3), we have that

Ṡ(t) > −(βe−μτM′ + μ
)
S(t), t /=nT,

S(t+) = S(t) + ρ, t = nT.
(3.41)
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Figure 1: Time series of S(t)with different initial values and parameters ρ = 0.3, μ = 0.2, β = 1.5, α = 1, r =
0.5, d = 0.2, ω = 0.1, and τ = 1.

Similarly, we can get such t large enough and ε > 0 small enough that

S(t) ≥ ρe−(βe
−μτM′+μ)T

1 − e−(βe−μτM′+μ)T
− ε = m1. (3.42)

Set

D =
{
(S, I) ∈ R2 | m1 ≤ S(t) ≤M′, m2 ≤ I(t) ≤M′

}
. (3.43)

Then D is a bounded compact region which has positive distance from coordinate axes. By
Lemma 3.3, one obtains that every solution of system (1.3) eventually enters and remains in
the region D. The proof of Theorem 3.4 is completed.

4. Numerical Simulation and Conclusion

To verify the theoretical results obtained in this paper, we will give some numerical
simulations.

Under the continuous control strategy, we consider the hypothetical set of parameter
values as ρ = 0.3, μ = 0.2, β = 1.5, α = 1, r = 0.5, d = 0.2, and ω = 0.1, with S(0) =
1, and I(0) = 1. Through calculation, we know τ1 = 0.5889 and E1(1.5, 0).

(i) If τ = 1 > τ1, then according to Theorem 2.1, we know the disease-free equilibrium
E1 of system (1.2) is local stable for this case (see Figures 1, 2, and 3).

(ii) If τ = 0.5 < τ1, through calculation, we know E2(1.4356, 0.0644). Then according to
Theorem 2.2, the positive equilibrium E2 of system (1.2) is local stable for this case
(see Figures 4, 5, and 6).
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Figure 2: Time series of I(t)with different initial values and parameters ρ = 0.3, μ = 0.2, β = 1.5, α = 1, r =
0.5, d = 0.2, ω = 0.1, and τ = 1.
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Figure 3: Phase diagram of S(t) with different initial values and parameters ρ = 0.3, μ = 0.2, β = 1.5, α =
1, r = 0.5, d = 0.2, ω = 0.1, and τ = 1.

Its epidemiological implication is that if time delay τ is greater than some key value τ1, then
diseased plants will disappear in local scope. In contrast, if time delay τ is less than some key
value τ1, then susceptible plants and diseased plants will coexist in local scope.

Under the impulsive control strategy, We consider the hypothetical set of parameter
values as μ = 0.2, β = 1.2, α = 1, r = 0.6, d = 0.2, ω = 0.1, T = 1, and τ = 0 with S(0) =
1, and I(0) = 1.

(i) We consider the susceptible plants rate ρ = 0.8. Through calculation, we have 	2 =
1.2044. Then according to Theorem 3.4, we know that system (1.3) is permanence,
for this case (see Figures 10, 11, and 12).
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Figure 4: Time series of S(t)with different initial values and parameters ρ = 0.3, μ = 0.2, β = 1.5, α = 1, r =
0.5 , d = 0.2, ω = 0.1, and τ = 0.5.
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Figure 5: Time series of I(t)with different initial values and parameters ρ = 0.3, μ = 0.2, β = 1.5, α = 1, r =
0.5, d = 0.2, ω = 0.1, and τ = 0.5.

(ii) If we decrease the susceptible plants rate ρ to 0.3, through calculation, we know
	1 = 0.9505. Then according to Theorem 3.1, the disease-free periodic solution of
system is globally attractive, for this case (see Figures 7, 8, and 9).

We have other hypothetical parameter values under the impulsive control strategy as μ =
0.1, β = 1, α = 1, r = 0.3, d = 0.2, ω = 0.2, T = 0.8, and τ = 0.2. with S(0) = 0.5, and I(0) =
0.1

(i) We consider the susceptible plants rate ρ = 5. Through calculation, we have 	2 =
1.2044. Then according to Theorem 3.4, we know that system (1.3) is permanence,
for this case (see Figures 16, 17, and 18 ).
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Figure 6: Phase diagram of S(t) with different initial values and parameters ρ = 0.3, μ = 0.2, β = 1.5, α =
1, r = 0.5, d = 0.2, ω = 0.1, and τ = 0.5.
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Figure 7: Time series of S(t) with parameters ρ = 0.8, μ = 0.2, β = 1.2, α = 1, r = 0.6, d = 0.2, ω = 0.1, T =
1, and τ = 0.

(ii) If we decrease the susceptible plants rate ρ to 0.4, through calculation, we know
	1 = 0.9505. Then according to Theorem 3.1, the disease-free periodic solution of
system is globally attractive, for this case (see Figures 13, 14, and 15).

Its epidemiological implication is that we took such a strategy by improving planting
susceptible plants in practice; as a result, if the susceptible plants rate is greater than some key
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Figure 8: Time series of I(t) with parameters ρ = 0.8, μ = 0.2, β = 1.2, α = 1, r = 0.6, d = 0.2, ω = 0.1, T =
1, and τ = 0.
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Figure 9: Phase diagram of S(t) and I(t) with parameters ρ = 0.8, μ = 0.2, β = 1.2, α = 1, r = 0.6, d =
0.2, ω = 0.1, T = 1, and τ = 0.
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Figure 10: Time series of S(t) with parameters ρ = 0.3, μ = 0.2, β = 1.2, α = 1, r = 0.6, d = 0.2, ω = 0.1, T =
1, and τ = 0.
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Figure 11: Time series of I(t) with parameters ρ = 0.3, μ = 0.2, β = 1.2, α = 1, r = 0.6, d = 0.2, ω = 0.1, T =
1, and τ = 0.
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Figure 12: Phase diagram of S(t) and I(t) with parameters ρ = 0.3, μ = 0.2, β = 1.2, α = 1, r = 0.6, d =
0.2, ω = 0.1, T = 1, and τ = 0.
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Figure 13: Time series of S(t) with parameters ρ = 0.4, μ = 0.1, β = 1, α = 1, r = 0.3, d = 0.2, ω = 0.2, T =
0.8, and τ = 0.2.

value ρ∗, both susceptible plants and diseased plants will coexist. In contrast, if we decrease
the susceptible plants rate ρ andmake it less than some key value ρ∗, then diseased plants will
die out at length. In a word, we find that the impulse plants rate has played a very important
role in the actual plant epidemic prevention.
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Figure 14: Time series of I(t) with parameters ρ = 0.4, μ = 0.1, β = 1, α = 1, r = 0.3, d = 0.2, ω = 0.2, T =
0.8, and τ = 0.2.
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Figure 15: Phase diagram of S(t) and I(t) with parameters ρ = 0.4, μ = 0.1, β = 1, α = 1, r = 0.3, d =
0.2, ω = 0.2, T = 0.8, and τ = 0.2.

In this paper, delay SIS plant epidemic model is constructed and investigated. We
proposed two different control strategies in themodel. Our primary results are to compare the
difference between the two control methods. Firstly, we consider continuous cultural control
strategy by continuous replanting of healthy plants. We come to the conclusion that if ρ < ρΔ,
then diseased plants will disappear in local scope where ρΔ = μ(d+r+ω)/(βe−μτ−α(d+r+ω)).
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Figure 16: Time series of S(t) with parameters ρ = 5, μ = 0.1, β = 1, α = 1, r = 0.3, d = 0.2, ω = 0.2, T =
0.8, and τ = 0.2.
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Figure 17: Time series of I(t) with parameters ρ = 5, μ = 0.1, β = 1, α = 1, r = 0.3, d = 0.2, ω = 0.2, T =
0.8, and τ = 0.2.

And if ρ > ρΔ, then diseased plants will exist for a long time in local scope. Secondly,
impulsive control strategy of plant disease model is considered; in this case, we get that if
ρ < ρ∗, then diseased plants will disappear finally where ρ∗ = ((1 − e−LT )/(μ + ω))(μ(d + r +
ω)/(βe−μτ −α(d+ r +ω))). And if ρ > ρ∗, then diseased plants will exist for a long time where
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Figure 18: Phase diagram of S(t) and I(t) with parameters ρ = 5, μ = 0.1, β = 1, α = 1, r = 0.3, d = 0.2, ω =
0.2, T = 0.8, and τ = 0.2.

ρ∗ = (eμT − 1)(μ(d + r +ω)/(βe−μτ − α(d + r +ω))). We think that our results will offer help to
the actual plant infectious disease management.
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