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The complete convergence for weighted sums of sequences of negatively dependent random varia-
bles is investigated. By applying moment inequality and truncation methods, the equivalent con-
ditions of complete convergence for weighted sums of sequences of negatively dependent random
variables are established. These results not only extend the corresponding results obtained by Li et
al. (1995), Gut (1993), and Liang (2000) to sequences of negatively dependent random variables,
but also improve them.

1. Introduction

In many stochastic model, the assumption that random variables are independent is not plau-
sible. Increases in some random variables are often related to decreases in other random var-
iables, so an assumption of negatively dependence is more appropriate than an assumption
of independence.

Lehmann [1] introduced the notion of negatively quadrant dependent (NQD) random
variables in the bivariate case.

Definition 1.1. Random variables X and Y are said to be NQD if

P
(
X ≤ x, Y ≤ y

) ≤ P(X ≤ x)P
(
Y ≤ y

)
, (1.1)

for all x, y ∈ R. A sequence of random variables {Xn, n ≥ 1} is said to be pairwise NQD if for
all i, j(i /= j), Xi and Xj are NQD.
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It is important to note that (1.1) is equivalent to

P
(
X > x, Y > y

) ≤ P(X > x)P
(
Y > y

)
, (1.2)

for all x, y ∈ R. However, (1.1) and (1.2) are not equivalent for a collection of three or more
random variables. Consequently, the definition of NQDwas extended to themultivariate case
by Ebrahimi and Ghosh [2].

Definition 1.2. A finite family of random variables {Xi, 1 ≤ i ≤ n} is said to be negatively
dependent (ND) if for all real numbers x1, x2, . . . , xn,

P

(
n⋂

i=1

(Xi ≤ xi)

)

≤
n∏

i=1

P(Xi ≤ xi),

P

(
n⋂

i=1

(Xi > xi)

)

≤
n∏

i=1

P(Xi > xi).

(1.3)

An infinite family of random variables is ND if every finite subfamily is ND.

Negative dependence has been very useful in reliability theory and applications. Since
the paper of Ebrahimi and Ghosh [2] appeared, Taylor et al. [3, 4] studied the laws of large
numbers for arrays of rowwise ND random variables, Ko and Kim [5] and Ko et al. [6]
investigated the strong laws of large numbers for weighted sums of ND random variables.
Volodin [7] obtained the Kolmogorov exponential inequality for ND random variables,
Amini and Bozorgnia [8] studied the complete convergence for ND random variable seq-
uences, Volodin et al. [9] obtained the convergence rates in the form of a Baum-Katz, andWu
[10] investigated complete convergence for weighted sums of sequences of negatively depen-
dent random variables.

The concept of negatively associated random variables was introduced by Alam and
Saxena [11] and carefully studied by Joag-Dev and Proschan [12].

Definition 1.3. A finite family of random variables {Xi, 1 ≤ i ≤ n} is said to be negatively
associated (NA), if for every pair disjoint subset A and B of {1, 2, . . . , n} and any real
nondecreasing coordinate-wise functions f1 on R

A and f2 on R
B,

Cov
(
f1(Xi, i ∈ A), f2(Xi, i ∈ B)

) ≤ 0, (1.4)

whenever the covariance exists. An infinite family of random variables {Xi,−∞ < i < ∞} is
NA if every finite subfamily is NA.

As pointed out and proved by Joag-Dev and Proschan [12], a number of well-
known multivariate distributions posses the NA property, such as multinomial, convolution
of unlike multinomial, multivariate hypergeometric, Dirichlet, permutation distribution,
random sampling without replacement, and joint distribution of ranks.

Obviously, NA implies ND from the definition of NA and ND. But ND does not
imply NA, so ND is much weaker than NA. Hence, the extending the limit properties of



Abstract and Applied Analysis 3

independent random variables to the case of ND random variables is highly desirable and
considerably significant in the theory and application.

The concept of complete convergence of a sequence of random variables was intro-
duced byHsu and Robbins [13] as follows. A sequence {Xn, n ≥ 1} of random variables is said
to converge completely to a constant C if

∞∑

n=1

P(|Xn − C| > ε) < ∞ ∀ε > 0. (1.5)

In view of the Borel-Cantelli lemma, the complete convergence implies almost sure
convergence. Therefore, the complete convergence is very important tool in establishing
almost sure convergence. When {Xn, n ≥ 1} is independent and identically distributed (i.i.d),
Baum and Katz [14] proved the following remarkable result concerning the convergence rate
of the tail probabilities P(|Sn| > εn1/p) for any ε > 0.

Theorem A. Let 0 < p < 2 and r ≥ p. Then,

∞∑

n=1

nr/p−2P
(
|Sn| > εn1/p

)
< ∞ ∀ε > 0, (1.6)

if and only if E|X1|r < ∞, where EX1 = 0 whenever 1 ≤ p < 2.

There is an interesting and substantial literature of investigation of extending the
Baum-Katz Theorem along a variety of different paths. Since partial sums are a particular case
of weighted sums and the weighted sums are often encountered in some actual questions, the
complete convergence for the weighted sums seems more important. Li et al. [15] discussed
the complete convergence for independent weighted sums. Gut [16] discussed complete con-
vergence of Cesàro means of i.i.d random variables. Liang [17] extended the conclusions of
Li et al. [15] and Gut [16] to NA random variables and obtained the following results.

Theorem B. Let {X,Xn, n ≥ 1} be a sequence of identically distributedNA random variables and let
r > 1. Assume β > −1 and {ani ≈ (i/n)β(1/n), 1 ≤ i ≤ n, n ≥ 1} is a triangular array of real num-
bers such that

∑n
i=1 ani = 1 for all n ≥ 1. Then, the following are equivalent:

(i)

E|X|(r−1)/(1+β) < ∞, for − 1 < β < −1
r
,

E|X|r log(1 + |X|) < ∞, for β = −1
r
,

E|X|r < ∞, for β > −1
r
,

EX = 0,

(1.7)

(ii)

∞∑

n=1

nr−2P

(

max
1≤k≤n

∣∣∣∣∣

k∑

i=1

aniXi

∣∣∣∣∣
> ε

)

< ∞ ∀ε > 0. (1.8)
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Theorem C. Let {X,Xn, n ≥ 0} be a sequence of identically distributedNA random variables and let
r > 1, 0 < α ≤ 1. Then, the following are equivalent:

(i)

E|X|(r−1)/α < ∞, for 0 < α < 1 − 1
r
,

E|X|r log(1 + |X|) < ∞, for α = 1 − 1
r
,

E|X|r < ∞, for 1 − 1
r
< α ≤ 1,

EX = 0,

(1.9)

(ii)

∞∑

n=1

nr−2P

(

max
0≤k≤n

∣∣∣∣∣

k∑

i=0

Aα−1
n−i Xi

∣∣∣∣∣
> εAα

n

)

< ∞ ∀ε > 0, (1.10)

where Aα
n = (α + 1)(α + 2) · · · (α + n)/n!, n = 1, 2, . . ., and Aα

0 = 1.

In the current work, we study the complete convergence for ND random variables.
Equivalent conditions of complete convergence for weighted sums of sequences of ND
random variables are established. As a result, we not only promote and improve the results of
Liang [17] for NA random variables to ND random variables without necessarily imposing
any extra conditions, but also relax the range of β.

For the proofs of the main results, we need to restate a few lemmas for easy reference.
Throughout this paper, The symbol C denotes a positive constant which is not necessarily
the same one in each appearance and I(A) denotes the indicator function of A. Let an � bn
denote that there exists a constant C > 0 such that an ≤ Cbn for sufficiently large n, and let
an ≈ bn mean an � bn and bn � an. Also, let logx denote lnmax(e, x).

Lemma 1.4 (see [11]). Let {Xn, n ≥ 1} be a sequence of ND random variables and let {fn, n ≥ 1}
be a sequence of Borel functions all of which are monotone increasing (or all are monotone decreasing).
Then, {fn(Xn), n ≥ 1} is still a sequence of ND random variables.

Lemma 1.5 (see [18]). Let {Xi, 1 ≤ i ≤ n} be a sequence of ND random variables, EXi =
0, E|Xi|M < ∞, 1 ≤ i ≤ n, M ≥ 2. Then,

E

∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣

M

≤ C

⎡

⎣
n∑

i=1

E|Xi|M +

(
n∑

i=1

E|Xi|2
)M/2

⎤

⎦, (1.11)

where C depends only on M.

Lemma 1.6 (see [10]). Let {Xn, n ≥ 1} be a sequence of ND random variables. Then, there exists a
positive constant C such that for any x ≥ 0 and all n ≥ 1,

(
1 − P(max

1≤i≤n
|Xi| > x)

)2 n∑

i=1

P(|Xi| > x) ≤ CP

(
max
1≤i≤n

|Xi| > x

)
. (1.12)
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By Lemma 1.2 and Theorem 3 in [19], we can obtain the following lemma.

Lemma 1.7. Let {Xi, 1 ≤ i ≤ n} be a sequence of ND random variables, EXi = 0, E|Xi|M < ∞, 1 ≤
i ≤ n, M ≥ 2. Then,

Emax
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

Xi

∣
∣
∣
∣
∣

M

≤ C logM n

⎛

⎝
n∑

i=1

E|Xi|M +

(
n∑

i=1

E|Xi|2
)M/2

⎞

⎠, (1.13)

where C depends only on M.

By using Fubini’s theorem, the following lemma can be easily proved. Here, we omit
the details of the proof.

Lemma 1.8. Let X be a random variable, then

(i)
∫∞
1 uβE|X|αI(|X| > uγ)du � E|X|(β+1)/γ+α for any α ≥ 0, γ > 0 and β > −1;

(ii)
∫∞
1 uβ loguE|X|αI(|X| > uγ)du � E|X|(β+1)/γ+α log(1 + |X|) for any α ≥ 0, γ > 0 and
β > −1.

2. Main Results

Now we state our main results. The proofs will be given in Section 3.

Theorem 2.1. Let {X,Xn, n ≥ 1} be a sequence of identically distributed ND random variables,
r > 1, p > 1/2, β + p > 0 and suppose that EX = 0 for 1/2 < p ≤ 1. Assume that {ani ≈
(i/n)β(1/np), 1 ≤ i ≤ n, n ≥ 1} is a triangular array of real numbers. Then, the following are
equivalent:

(i)

E|X|(r−1)/(p+β) < ∞, for − p < β < −p
r
,

E|X|r/p log(1 + |X|) < ∞, for β = −p
r
,

E|X|r/p < ∞, for β > −p
r
,

(2.1)

(ii)

∞∑

n=1

nr−2P

(

max
1≤k≤n

∣∣∣∣∣

k∑

i=1

aniXi

∣∣∣∣∣
> ε

)

< ∞ ∀ε > 0. (2.2)

Theorem 2.2. Let {X,Xn, n ≥ 0} be a sequence of identically distributed ND random variables,
r > 1, p > 1/2, β + p > 0 and suppose that EX = 0 for 1/2 < p ≤ 1. Assume that {ani ≈
((n − i)/n)β(1/np), 0 ≤ i ≤ n − 1, n ≥ 1} is a triangular array of real numbers. Then, the following
are equivalent:
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(i)

E|X|(r−1)/(p+β) < ∞, for − p < β < −p
r
,

E|X|r/p log(1 + |X|) < ∞, for β = −p
r
,

E|X|r/p < ∞, for β > −p
r
,

(2.3)

(ii)

∞∑

n=1

nr−2P

(

max
0≤k≤n−1

∣
∣
∣
∣
∣

k∑

i=0

aniXi

∣
∣
∣
∣
∣
> ε

)

< ∞ ∀ε > 0. (2.4)

Remark 2.3. Since NA random variables are a special case of ND random variables, taking
p = 1 in Theorem 2.1, we obtain the result of Liang [17]. Thus, we not only promote and
improve the results of Liang [17] for NA random variables to ND random variables without
necessarily imposing any extra conditions, but also relax the range of β.

Remark 2.4. Taking β = 0, ani = 1/np, 1 ≤ i ≤ n, n ≥ 1 in Theorem 2.1, we improve the result
of Baum and Katz [14].

Corollary 2.5. Let {X,Xn, n ≥ 0} be a sequence of identically distributed ND random variables, r >
1, p > 1/2, 0 < α ≤ 1, and EX = 0. LetAα

n = (α+1)(α+2) · · · (α+n)/n!, n = 1, 2, . . . and Aα
0 =

1. Then, the following are equivalent:
(i)

E|X|(r−1)/(pα) < ∞, for 0 < α < 1 − 1
r
,

E|X|r/p log(1 + |X|) < ∞, for α = 1 − 1
r
,

E|X|r/p < ∞, for 1 − 1
r
< α ≤ 1,

(2.5)

(ii)

∞∑

n=1

nr−2P

(

max
0≤k≤n

∣∣∣∣∣

k∑

i=0

(
Aα−1

n−i
)p

Xi

∣∣∣∣∣
> ε(Aα

n)
p

)

< ∞ ∀ε > 0. (2.6)

3. Proofs of the Main Results

Proof of Theorem 2.1. First, we prove (2.1)⇒ (2.2). Note that ani = a+
ni − a−

ni, where a+
ni =

max(ani, 0) and a−
ni = max(−ani, 0). Thus, to prove (2.2), it suffices to show that

∞∑

n=1

nr−2P

(

max
1≤k≤n

∣∣∣∣∣

k∑

i=1

a+
niXi

∣∣∣∣∣
> ε

)

< ∞,
∞∑

n=1

nr−2P

(

max
1≤k≤n

∣∣∣∣∣

k∑

i=1

a−
niXi

∣∣∣∣∣
> ε

)

< ∞. (3.1)
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So, without loss of generality, we can assume that ani > 0, 1 ≤ i ≤ n, n ≥ 1. Choose δ > 0
being small enough and sufficient large integer K. Let, for every 1 ≤ i ≤ n, n ≥ 1,

X
(1)
ni = −n−δI

(
aniXi < −n−δ

)
+ aniXiI

(
|aniXi| ≤ n−δ

)
+ n−δI

(
aniXi > n−δ

)
,

X
(2)
ni =

(
aniXi − n−δ

)
I
(
n−δ < aniXi <

ε

K

)
,

X
(3)
ni =

(
aniXi + n−δ

)
I
(
− ε

K
< aniXi < −n−δ

)
,

X
(4)
ni =

(
aniXi + n−δ

)
I
(
aniXi ≤ − ε

K

)
+
(
aniXi − n−δ

)
I
(
aniXi ≥ ε

K

)
.

(3.2)

Obviously,
∑k

i=1 aniXi =
∑k

i=1 X
(1)
ni +

∑k
i=1 X

(2)
ni +

∑k
i=1 X

(3)
ni +

∑k
i=1 X

(4)
ni . Note that

(

max
1≤k≤n

∣∣∣∣∣

k∑

i=1

aniXi

∣∣∣∣∣
> 4ε

)

⊂
4⋃

j=1

(

max
1≤k≤n

∣∣∣∣∣

k∑

i=1

X
(j)
ni

∣∣∣∣∣
> ε

)

. (3.3)

Thus, in order to prove (2.2), it suffices to show that

Ij =:
∞∑

n=1

nr−2P

(

max
1≤k≤n

∣∣∣∣∣

k∑

i=1

X
(j)
ni

∣∣∣∣∣
> ε

)

< ∞, j = 1, 2, 3, 4. (3.4)

By the definition of X(4)
ni , we see that (max1≤k≤n|

∑k
i=1 X

(4)
ni | > ε) ⊂ (max1≤i≤n|aniXi| > ε/K).

Since ani ≈ (i/n)β(1/np), by Lemma 1.8, we have

I4 ≤
∞∑

n=1

nr−2
n∑

i=1

P
(
|aniXi| > ε

K

)
≤

∞∑

n=1

nr−2
n∑

i=1

P

(
|X| > ε

CK
np+βi−β

)

≈
∫∞

1
xr−2

∫x

1
P

(
|X| > ε

CK
xp+βy−β

)
dy dx

(
letting u = xp+βy−β, v = y

)

=
1

p + β

∫∞

1
du

∫u1/p

1
u(r−1)/(p+β)−1vβ(r−1)/(p+β)P

(
|X| > ε

CK
u

)
dv

≈

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫∞
1 u(r−1)/(p+β)−1P

(
|X| > ε

CK
u

)
du � E|X|(r−1)/(p+β) for − p < β < −p

r
,

∫∞
1 ur/p−1 loguP

(
|X| > ε

CK
u

)
du � E|X|r/p log(1 + |X|) for β = −p

r
,

∫∞
1 ur/p−1P

(
|X| > ε

CK
u

)
du � E|X|r/p for β > −p

r
.

(3.5)
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Therefore, by (2.1), I4 < ∞. From the definition ofX(2)
ni , we knowX

(2)
ni > 0. By using the defini-

tion of ND family, we have

P

(

max
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

X
(2)
ni

∣
∣
∣
∣
∣
> ε

)

= P

(
n∑

i=1

X
(2)
ni > ε

)

≤ P
(
there are at least K indices i ∈ [1, n] such that aniXi > n−δ

)

≤
∑

1≤i1<i2<···<iK≤n

K∏

j=1

P
(
anijXij > n−δ

)
≤
⎛

⎝
n∑

j=1

P
(
anjX > n−δ

)
⎞

⎠

K

.

(3.6)

Since (2.1) implies E|X|r/p < ∞, by Markov’s inequality and (3.6), we obtain

I2 ≤
∞∑

n=1

nr−2

⎛

⎝
n∑

j=1

P
(
anjX > n−δ

)
⎞

⎠

K

≤
∞∑

n=1

nr−2

⎛

⎝
n∑

j=1

nrδ/p
∣∣anj

∣∣r/pE|X|r/p
⎞

⎠

K

≈

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∞∑

n=1
nr−2−Kr(p+β−δ)/p, for − p < β < −p

r
,

∞∑

n=1
nr−2−K(r−1−rδ/p) logn, for β = −p

r
,

∞∑

n=1
nr−2−K(r−1−rδ/p), for β > −p

r
.

(3.7)

Noting that r > 1, p + β > 0, we can choose δ being small enough and sufficient large integer
K such that r − 2 −Kr(p + β − δ)/p < −1 and r − 2 −K(r − 1 − rδ/p) < −1. Thus, by (3.7), we
get I2 < ∞. Similarly, we can obtain I3 < ∞. In order to estimate I1, we first verify that

max
1≤k≤n

∣∣∣∣∣

k∑

i=1

EX
(1)
ni

∣∣∣∣∣
−→ 0 as n −→ ∞. (3.8)

Note that (2.1) implies E|X|r/p < ∞ and E|X|1/p < ∞. When p > 1, noting that |X(1)
ni | ≤ n−δ and

|X(1)
ni | ≤ |aniXi|, by Hölder’s inequality we have

max
1≤k≤n

∣∣∣∣∣

k∑

i=1

EX
(1)
ni

∣∣∣∣∣
≤

n∑

i=1

E
∣∣∣X(1)

ni

∣∣∣

≤ n−δ(1−(1/p))
n∑

i=1

E|aniXi|1/p � n−δ(1−1/p)
n∑

i=1

|ani|1/p
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≤ n−δ(1−1/p)n(r−1)/r
(

n∑

i=1

|ani|r/p
)1/r

� n−δ(1−1/p)+1−1/r
(

n∑

i=1

n−r(p+β)/piβr/p
)1/r

≈

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n−δ(1−1/p)−1/r−β/p, for − p < β < −p
r
,

n−δ(1−1/p) logn, for β = −p
r
,

n−δ(1−1/p), for β > −p
r

−→ 0 as n −→ ∞.

(3.9)

When 1/2 < p ≤ 1, noting that EX = 0, by choosing δ being small enough such that −δ(1 −
r/p) + 1 − r < 0, we have

max
1≤k≤n

∣∣∣∣∣

k∑

i=1

EX
(1)
ni

∣∣∣∣∣
≤ 2

n∑

i=1

E|aniXi|I
(
|aniXi| > n−δ

)
≤ 2n−δ(1−r/p)

n∑

i=1

E|aniXi|r/p

� n−δ(1−r/p)
n∑

i=1

|ani|r/p � n−δ(1−r/p)
(

n∑

i=1

n−r(p+β)/piβr/p
)

≈

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−δ−r(p+β−δ)/p, for − p < β < −p
r
,

n−δ(1−r/p)+1−r logn, for β = −p
r
,

n−δ(1−r/p)+1−r , for β > −p
r

−→ 0 as n −→ ∞.

(3.10)

Therefore, to prove I1 < ∞, it suffices to prove that

I∗1 =:
∞∑

n=1

nr−2P

(

max
1≤k≤n

∣∣∣∣∣

k∑

i=1

(
X

(1)
ni − EX

(1)
ni

)
∣∣∣∣∣
> ε

)

< ∞. (3.11)

Note that {X(1)
ni , 1 ≤ i ≤ n, n ≥ 1} is still ND by Lemma 1.4. Using Markov’s inequality, Cr

inequality, and Lemma 1.7, we get for a suitably large M, which will be determined later,

P

(

max
1≤k≤n

∣∣∣∣∣

k∑

i=1

(
X

(1)
ni − EX

(1)
ni

)
∣∣∣∣∣
> ε

)

� (logn)M
⎛

⎝
n∑

i=1

E
∣∣∣X(1)

ni

∣∣∣
M

+

(
n∑

i=1

E
(
X

(1)
ni

)2
)M/2

⎞

⎠.

(3.12)
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Choosing sufficient largeM such that −2 − δM + r(δ − β)/p < −1, −1 − (M − r/p)δ < −1, we
have

∞∑

n=1

nr−2(logn
)M n∑

i=1

E
∣
∣
∣X(1)

ni

∣
∣
∣
M �

∞∑

n=1

nr−2n−δ(M−r/p)(logn
)M n∑

i=1

|ani|r/p

�
∞∑

n=1

nr−2−δ(M−r/p)(logn
)M n∑

i=1

irβ/pn−r(p+β)/p

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑

n=1
n−2−δM+r(δ−β)/p(logn

)M
, for − p < β < −p

r
,

∞∑

n=1
n−1−(M−r/p)δ(logn

)M+1
, for β = −p

r
,

∞∑

n=1
n−1−(M−r/p)δ(logn

)M
, for β > −p

r

< ∞.

(3.13)

When r/p ≥ 2, (2.1) implies EX2 < ∞. Noting that p+β > 0, p > 1/2, we can choose sufficient
large M such that r − 2 −M(p + β) < −1, r − 2 − (2p − 1)M/2 < −1. Then,

∞∑

n=1

nr−2(logn
)M
(

n∑

i=1

E
(
X

(1)
ni

)2
)M/2

�
∞∑

n=1

nr−2(logn
)M
(

n∑

i=1

a2
ni

)M/2

�
∞∑

n=1

nr−2(logn
)M
(

n∑

i=1

i2βn−2(p+β)
)M/2

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑

n=1
nr−2−M(p+β)(logn

)M
, for − p < β < −1

2
,

∞∑

n=1
nr−2−(2p−1)M/2(logn

)3M/2
, for β = −1

2
,

∞∑

n=1
nr−2−(2p−1)M/2(logn

)M
, for β > −1

2

< ∞.

(3.14)

When r/p < 2, choosing sufficient large M such that r − 2 − [δ(2 − r/p) + r(p + β)/p]M/2 <
−1, r − 2 − [δ(2 − r/p) + r − 1]M/2 < −1, we have

∞∑

n=1

nr−2(logn
)M
(

n∑

i=1

E
(
X

(1)
ni

)2
)M/2

�
∞∑

n=1

nr−2n−δ(2−r/p)M/2(logn
)M
(

n∑

i=1

a
r/p

ni

)M/2



Abstract and Applied Analysis 11

�
∞∑

n=1

nr−2n−δ(2−r/p)M/2(logn
)M
(

n∑

i=1

irβ/pn−r(p+β)/p
)M/2

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∞∑

n=1
nr−2−[δ(2−r/p)+r(p+β)/p]M/2(logn

)M
, for − p < β < −p

r
,

∞∑

n=1
nr−2−[δ(2−r/p)+r−1]M/2(logn

)3M/2
, for β = −p

r
,

∞∑

n=1
nr−2−[δ(2−r/p)+r−1]M/2(logn

)M
, for β > −p

r

< ∞.

(3.15)

Thus, by (3.13), (3.14), and (3.15), we have I∗1 < ∞.
Now,we proceed to prove (2.2)⇒ (2.1). Sincemax1≤k≤n|ankXk| ≤ 2max1≤k≤n|

∑k
i=1 aniXi|,

by (2.2), we have
∞∑

n=1

nr−2P
(
max
1≤k≤n

|ankXk| > ε

)
< ∞. (3.16)

Next, we shall prove

P

(
max
1≤k≤n

|ankXk| > ε

)
−→ 0 as n −→ ∞. (3.17)

In fact, when r ≥ 2, (3.16) obviously implies (3.17). When 1 < r < 2, noting that ani ≈
(i/n)β(1/np), by (3.16), we obtain

∞∑

n=1

nr−2P
(
max
1≤k≤n

∣∣∣kβXk

∣∣∣ > εnp+β
)

< ∞ ∀ε > 0. (3.18)

Obviously, {max1≤k≤n|kβXk|, n ≥ 1} is a nondecreasing sequence of nonnegative random
variables. By (3.18), we have

∞ >
∞∑

n=1

nr−2P
(
max
1≤k≤n

∣∣∣kβXk

∣∣∣ > εnp+β
)

=
∞∑

j=0

2j+1−1∑

n=2j
nr−2P

(
max
1≤k≤n

∣∣∣kβXk

∣∣∣ > εnp+β
)

≥
∞∑

j=0

2j2(j+1)(r−2)P
(
max
1≤k≤2j

∣∣∣kβXk

∣∣∣ > ε2(j+1)(p+β)
)

= 2r−2
∞∑

j=0

2j(r−1)P
(
max
1≤k≤2j

∣∣∣kβXk

∣∣∣ > ε21+β2j(p+β)
)
.

(3.19)

Noting that r − 1 > 0, by (3.19), we have

lim
j→∞

P

(
max
1≤k≤2j

∣∣∣kβXk

∣∣∣ > ε12j(p+β)
)

= 0 ∀ε1 > 0. (3.20)
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Now, for each n ≥ 1, let j be such that 2j ≤ n < 2j+1 − 1. Then, for all ε > 0

P

(
max
1≤k≤n

∣
∣
∣kβXk

∣
∣
∣ > εnp+β

)
≤ P

(
max

1≤k≤2j+1

∣
∣
∣kβXk

∣
∣
∣ > ε2j(p+β)

)

= P

(
max

1≤k≤2j+1

∣
∣
∣kβXk

∣
∣
∣ > ε2−(1+β)2(j+1)(p+β)

)
−→ 0 as n −→ ∞.

(3.21)

Noting that ani ≈ (i/n)β(1/np), we have

P

(
max
1≤k≤n

|ankXk| > ε

)
≤ P

(
max
1≤k≤n

∣
∣
∣kβXk

∣
∣
∣ >

ε

C
np+β

)
. (3.22)

Therefore, by (3.21) and (3.22), we get that (3.17) holds.
Thus, by (3.17) and Lemma 1.6, we have

n∑

i=1

P(|aniXi| > ε) � P

(
max
1≤k≤n

|ankXk| > ε

)
. (3.23)

Now (3.16) and (3.23) yield

∞∑

n=1

nr−2
n∑

i=1

P(|aniXi| > ε) < ∞. (3.24)

By the process of proof of (3.5), we see that (3.24) is equivalent to (2.1).

Proof of Theorem 2.2. The proof is similar to that of Theorem 2.1 and is omitted.

Proof of Corollary 2.5. Put ani = (Aα−1
n−i /A

α
n)

p, 0 ≤ i ≤ n, n ≥ 1. Note that, for α > −1, Aα
n ≈

nα/Γ(α + 1). Therefore, for α > 0, we obtain ani ≈ (n − i)p(α−1)n−pα, 0 ≤ i < n, n ≥ 1,ann ≈ n−pα.
Thus, letting β = p(α−1) in Theorem 2.2, we can conclude that (2.5) is equivalent to (2.6).
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