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We find the greatest value α and the least value β in (1/2, 1) such that the double inequality
C(αa + (1 − α)b, αb + (1 − α)a) < T(a, b) < C(βa + (1 − β)b, βb + (1 − β)a) holds for all a, b > 0
with a/= b. Here, T(a, b) = (a − b)/[2 arctan((a − b)/(a + b))] and C(a, b) = (a2 + b2)/(a + b) are the
Seiffert and contraharmonic means of a and b, respectively.

1. Introduction

For a, b > 0 with a/= b, the Seiffert mean T(a, b) and contraharmonic mean C(a, b) are defined
by

T(a, b) =
a − b

2 arctan((a − b)/(a + b))
, (1.1)

C(a, b) =
a2 + b2

a + b
, (1.2)

respectively. Recently, both mean values have been the subject of intensive research. In
particular, many remarkable inequalities and properties for these means can be found in the
literature [1–12].

Let A(a, b) = (a + b)/2, G(a, b) =
√
ab, S(a, b) =

√
(a2 + b2)/2, and let Mp(a, b) =

((ap + bp)/2)1/p (p /= 0) and M0(a, b) =
√
ab be the arithmetic, geometric, square root, and

pth power means of two positive numbers a and b, respectively. Then it is well known that
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Mp(a, b) is continuous and strictly increasing with respect to p ∈ R for fixed a, b > 0 with
a/= b, and the inequalities

G(a, b) = M0(a, b) < A(a, b) = M1(a, b) < S(a, b) = M2(a, b) < C(a, b) (1.3)

hold for all a, b > 0 with a/= b.
Seiffert [12] proved that the double inequality

A(a, b) = M1(a, b) < T(a, b) < M2(a, b) = S(a, b) (1.4)

holds for all a, b > 0 with a/= b.
Hästö [13] proved that the function T(1, x)/Mp(1, x) is increasing in (0,∞) if p ≤ 1.
In [14], the authors found the greatest value p and the least value q such that the

double inequality Hp(a, b) < T(a, b) < Hq(a, b) holds for all a, b > 0 with a/= b. Here,
Hk(a, b) = ((ak + (ab)k/2 + bk)/3)1/k (k /= 0), andH0(a, b) =

√
ab is the kth power-type Heron

mean of a and b.
Wang et al. [15] answered the question: what are the best possible parameters λ and μ

such that the double inequality Lλ(a, b) < T(a, b) < Lμ(a, b) holds for all a, b > 0 with a/= b,
where Lr(a, b) = (ar+1 + br+1)/(ar + br) is the rth Lehmer mean of a and b.

In [16, 17], the authors proved that the inequalities

α1T(a, b) + (1 − α1)G(a, b) < A(a, b) < β1T(a, b) +
(
1 − β1

)
G(a, b),

α2S(a, b) + (1 − α2)A(a, b) < T(a, b) < β2S(a, b) +
(
1 − β2

)
A(a, b),

Sα3(a, b)A1−α3(a, b) < T(a, b) < Sβ3(a, b)A1−β3(a, b)

(1.5)

hold for all a, b > 0 with a/= b if and only if α1 ≤ 3/5, β1 ≥ π/4, α2 ≤ (4 − π)/[(
√
2 − 1)π],

β2 ≥ 2/3, α3 ≤ 2/3 and β3 ≥ 4 − 2 logπ/ log 2.
For fixed a, b > 0 with a/= b, let x ∈ [1/2, 1] and

J(x) = C(xa + (1 − x)b, xb + (1 − x)a). (1.6)

Then it is not difficult to verify that J(x) is continuous and strictly increasing in
[1/2, 1]. Note that J(1/2) = A(a, b) < T(a, b) and J(1) = C(a, b) > T(a, b). Therefore, it is
natural to ask what are the greatest value α and the least value β in (1/2, 1) such that the
double inequality

C(αa + (1 − α)b, αb + (1 − α)a) < T(a, b) < C
(
βa +

(
1 − β

)
b, βb +

(
1 − β

)
a
)

(1.7)

holds for all a, b > 0 with a/= b. The main purpose of this paper is to answer this question.
Our main result is the following Theorem 1.1.

Theorem 1.1. If α, β ∈ (1/2, 1), then the double inequality

C(αa + (1 − α)b, αb + (1 − α)a) < T(a, b) < C
(
βa +

(
1 − β

)
b, βb +

(
1 − β

)
a
)

(1.8)

holds for all a, b > 0 with a/= b if and only if α ≤ (1 +
√
4/π − 1)/2 and β ≥ (3 +

√
3)/6.
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2. Proof of Theorem 1.1

Proof of Theorem 1.1. Let λ = (1 +
√
4/π − 1)/2 and μ = (3 +

√
3)/6. We first proof that the

inequalities

T(a, b) > C(λa + (1 − λ)b, λb + (1 − λ)a), (2.1)

T(a, b) < C
(
μa +

(
1 − μ

)
b, μb +

(
1 − μ

)
a
)

(2.2)

hold for all a, b > 0 with a/= b.
From (1.1) and (1.2) we clearly see that both T(a, b) and C(a, b) are symmetric and

homogenous of degree 1. Without loss of generality, we assume that a > b. Let t = a/b > 1
and p ∈ (1/2, 1), then from (1.1) and (1.2) one has

C
(
pa +

(
1 − p

)
b, pb +

(
1 − p

)
a
) − T(a, b)

= b

[
pt +

(
1 − p

)]2 +
[(
1 − p

)
t + p

]2

2(t + 1) arctan((t − 1)/(t + 1))

×
{

2 arctan
(
t − 1
t + 1

)
− t2 − 1
[
pt +

(
1 − p

)]2 +
[(
1 − p

)
t + p

]2

}

.

(2.3)

Let

f(t) = 2 arctan
(
t − 1
t + 1

)
− t2 − 1
[
pt +

(
1 − p

)]2 +
[(
1 − p

)
t + p

]2 . (2.4)

Then simple computations lead to

f(1) = 0, (2.5)

lim
t→+∞

f(t) =
π

2
− 1

p2 +
(
1 − p

)2 , (2.6)

f ′(t) =
2f1(t)

{[
pt +

(
1 − p

)]2 +
[(
1 − p

)
t + p

]2}2
(t2 + 1)

, (2.7)

where

f1(t) =
(
4p4 − 8p3 + 10p2 − 6p + 1

)
t4 − 2

(
2p − 1

)2(2p2 − 2p + 1
)
t3

+2
(
12p4 − 24p3 + 18p2 − 6p + 1

)
t2

−2(2p − 1
)2(2p2 − 2p + 1

)
t + 4p4 − 8p3 + 10p2 − 6p + 1,

(2.8)

f1(1) = 0. (2.9)



4 Abstract and Applied Analysis

Let f2(t) = f ′
1(t)/2, f3(t) = f ′

2(t)/2, f4(t) = f ′
3(t)/3. Then from (2.8)we get

f2(t) = 2
(
4p4 − 8p3 + 10p2 − 6p + 1

)
t3 − 3

(
2p − 1

)2(2p2 − 2p + 1
)
t2

+2
(
12p4 − 24p3 + 18p2 − 6p + 1

)
t − (

2p − 1
)2(2p2 − 2p + 1

)
,

(2.10)

f2(1) = 0, (2.11)

f3(t) = 3
(
4p4 − 8p3 + 10p2 − 6p + 1

)
t2 − 3

(
2p − 1

)2(2p2 − 2p + 1
)
t

+12p4 − 24p3 + 18p2 − 6p + 1,
(2.12)

f3(1) = 6p2 − 6p + 1, (2.13)

f4(t) = 2
(
4p4 − 8p3 + 10p2 − 6p + 1

)
t − (

2p − 1
)2(2p2 − 2p + 1

)
, (2.14)

f4(1) = 6p2 − 6p + 1. (2.15)

We divide the proof into two cases.

Case 1 (p = λ = (1 +
√
4/π − 1)/2). Then (2.6), (2.13), and (2.15) lead to

lim
t→+∞

f(t) = 0, (2.16)

f3(1) = −2(π − 3)
π

< 0, (2.17)

f4(1) = −2(π − 3)
π

< 0. (2.18)

Note that

4p4 − 8p3 + 10p2 − 6p + 1 =
4 + 2π − π2

π2
> 0. (2.19)

It follows from (2.8), (2.10), (2.12), (2.14), and (2.19) that

lim
t→+∞

f1(t) = +∞, (2.20)

lim
t→+∞

f2(t) = +∞, (2.21)

lim
t→+∞

f3(t) = +∞, (2.22)

lim
t→+∞

f4(t) = +∞. (2.23)

From (2.14) and inequality (2.19), we clearly see that f4(t) is strictly increasing in
[1,+∞). Then (2.18) and (2.23) lead to the conclusion that there exists t0 > 1 such that f4(t) < 0
for t ∈ [1, t0) and f4(t) > 0 for t ∈ (t0,+∞). Hence, f3(t) is strictly decreasing in [1, t0] and
strictly increasing in [t0,+∞).
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It follows from (2.17) and (2.22) together with the piecewise monotonicity of f3(t) that
there exists t1 > t0 > 1 such that f2(t) is strictly decreasing in [1, t1] and strictly increasing in
[t1,+∞).

From (2.11) and (2.21) together with the piecewise monotonicity of f2(t), we conclude
that there exists t2 > t1 > 1 such that f1(t) is strictly decreasing in [1, t2] and strictly increasing
in [t2,+∞).

Equations (2.7), (2.9), and (2.20) together with the piecewise monotonicity of f1(t)
imply that there exists t3 > t2 > 1 such that f(t) is strictly decreasing in [1, t3] and strictly
increasing in [t3,+∞).

Therefore, inequality (2.1) follows from (2.3)–(2.5) and (2.16) together with the
piecewise monotonicity of f(t).

Case 2 (p = μ = (3 +
√
3)/6). Then (2.8) leads to

f1(t) =
(t − 1)4

9
> 0 (2.24)

for t > 1.
Inequality (2.24) and (2.7) imply that f(t) is strictly increasing in [1,+∞). Therefore,

inequality (2.2) follows from (2.3)–(2.5) together with the monotonicity of f(t).
From inequalities (2.1) and (2.2) together with the monotonicity of J(x) = C(xa + (1 −

x)b, xb+(1−x)a) in [1/2, 1], we know that inequality (1.8) holds for all α ≤ (1+
√
4/π − 1)/2,

β ≥ (3 +
√
3)/6, and all a, b > 0 with a/= b.

Next, we prove that λ = (1 +
√
4/π − 1)/2 is the best possible parameter in [1/2, 1]

such that inequality (2.1) holds for all a, b > 0 with a/= b.
For any 1 > p > λ = (1 +

√
4/π − 1)/2, from (2.6) one has

lim
t→+∞

f(t) =
π

2
− 1

p2 +
(
1 − p

)2 > 0. (2.25)

Equations (2.3) and (2.4) together with inequality (2.25) imply that for any 1 > p > λ =
(1 +

√
4/π − 1)/2 there exists T0 = T0(p) > 1 such that

C
(
pa +

(
1 − p

)
b, pb +

(
1 − p

)
a
)
> T(a, b) (2.26)

for a/b ∈ (T0,+∞).
Finally, we prove that μ = (3+

√
3)/6 is the best possible parameter such that inequality

(2.2) holds for all a, b > 0 with a/= b.
For any 1/2 < p < μ = (3 +

√
3)/6, from (2.13) one has

f3(1) = 6p2 − 6p + 1 < 0. (2.27)

From inequality (2.27) and the continuity of f3(t), we know that there exists δ = δ(p) >
0 such that

f3(t) < 0 (2.28)

for t ∈ (1, 1 + δ).
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Equations (2.3)–(2.5), (2.7), (2.9), and (2.11) together with inequality (2.28) imply that
for any 1/2 < p < μ = (3 +

√
3)/6 there exists δ = δ(p) > 0 such that

T(a, b) > C
(
pa +

(
1 − p

)
b, pb +

(
1 − p

)
a
)

(2.29)

for a/b ∈ (1, 1 + δ).
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