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This paper is concerned with a class of fractional differential inclusions whose multivalued term
depends on lower-order fractional derivative with fractional (non)separated boundary conditions.
The cases of convex-valued and non-convex-valued right-hand sides are considered. Some
existence results are obtained by using standard fixed point theorems. A possible generalization
for the inclusion problem with integral boundary conditions is also discussed. Examples are given
to illustrate the results.

1. Introduction

Recently, the subject of fractional differential equations has emerged as an important area
of investigation. Indeed, we can find numerous applications of fractional-order derivatives
in the mathematical modeling of physical and biological phenomena in various fields of
science and engineering [1–3]. A variety of results on initial and boundary value problems
of fractional differential equations and inclusions can easily be found in the literature on
this topic. For some recent results, we can refer to, for instance, [4–20] (equations) [21–27]
(inclusions) and the references therein.

Ahmad and Ntouyas [22] considered a boundary value problem of fractional
differential inclusions with fractional separated boundary conditions given by

cDqx(t) ∈ F(t, x(t)), t ∈ [0, 1], 1 < q ≤ 2,

α1x(0) + β1
(cDpx(0)

)
= γ1, α2x(1) + β2

(cDpx(1)
)
= γ2, 0 < p < 1,

(1.1)
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where cDq denotes the Caputo fractional derivative of order q, F : [0, 1] × R → 2R is a
multivalued map, and αi, βi, γi (i = 1, 2) are real constants, with α1 /= 0.

In Cernea [24], the following multipoint boundary value problem for a fractional-
order differential inclusion was studied

Dαx(t) ∈ F(t, x(t), x′(t)
)

a.e. t ∈ [0, 1], 2 < α ≤ 3,

x(0) = x′(0) = 0, x(1) −
m∑

i=1

aix(ξi) = λ,
(1.2)

where Dα is the standard Riemann-Liouville fractional derivative, m ≥ 1, 0 < ξ1 < ξ2 < · · · <
ξm < 1,

∑m
i=1 aiξ

α−1
i < 1, λ > 0, ai > 0, i = 1, 2, . . . , m, and F : [0, 1]×R×R → 2R is a multivalued

map.
In Khan et al. [11], the authors studied the existence and uniqueness results of

nonlinear fractional differential equation of the type

cDqx(t) = f
(
t, x(t), cDσx(t)

)
, t ∈ [0, T],

αx(0) − βx′(0) =
∫T

0
g(s, x)ds, γx(T) + δx′(T) =

∫T

0
h(s, x)ds,

(1.3)

where 0 < σ < 1, 1 < q < 2, α, δ > 0, β, γ ≥ 0 (or α, δ ≥ 0, β, γ > 0) and cDq, cDσ are the Caputo
fractional derivatives. The results in [11, 22, 24] are obtained by using appropriate standard
fixed point theorems.

Motivated by the papers cited above, in this paper, we consider the existence results
for a new class of fractional differential inclusions of the form

cDαx(t) ∈ F
(
t, x(t), cDβx(t)

)
, a.e. t ∈ [0, T], (1.4)

where cDα denotes the Caputo fractional derivative of order α, F : [0, 1] × R × R → 2R is a
multivalued map, 1 < α ≤ 2, 0 < β ≤ 1, and T > 0. We study (1.4) subject to two families of
boundary conditions:

(1) separated boundary conditions

a1x(0) + b1
(cDγx(0)

)
= c1, a2x(T) + b2

(cDγx(T)
)
= c2, (1.5)

(2) Nonseparated boundary conditions

a1x(0) + b1x(T) = c1, a2
(cDγx(0)

)
+ b2

(cDγx(T)
)
= c2, (1.6)

where ai, bi, ci, i = 1, 2 are real constants and 0 < γ < 1.
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The results of this paper can easily to be generalized to the boundary value problems
of fractional differential inclusions (1.4)with the following integral boundary conditions:

a1x(0) + b1
(cDγx(0)

)
= c1

∫T

0
g(s, x(s))ds,

a2x(T) + b2
(cDγx(T)

)
= c2

∫T

0
h(s, x(s))ds,

(1.7)

a1x(0) + b1x(T) = c1

∫T

0
g(s, x(s))ds,

a2
(cDγx(0)

)
+ b2

(cDγx(T)
)
= c2

∫T

0
h(s, x(s))ds,

(1.8)

where g, h : [0, T] × R → R are given functions.
We remark that when the third variable of the multifunction F in (1.4) vanishes, the

problem (1.4), (1.5) reduces to the case considered in [22]. When a1 = b1 = 1, a2 = b2 = 1,
and c1 = c2 = 0, the problem (1.4), (1.6) reduces to an antiperiodic fractional boundary value
problem (the case of F = f a given continuous function was studied in [4, 15]). Our results
generalize some results from the literature cited above and constitute a contribution to this
emerging field of research.

The rest of the paper is organized as follows: in Section 2 we present the notations
and definitions and give some preliminary results that we need in the sequel, Section 3 is
dedicated to the existence results of the fractional differential inclusion (1.4) with boundary
conditions (1.5) and (1.6), in Section 4 we indicate a possible generalization for the inclusion
problem (1.4) with integral boundary conditions (1.7) and (1.8), and two illustrative
examples are given in Section 5.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts that will be used in
the remainder of this paper.

Let (X, ‖ · ‖) be a normed space. We use the notations P(X) = {Y ⊆ X : Y /= ∅}, Pcl(X) =
{Y ∈ P(X) : Y closed}, Pb(X) = {Y ∈ P(X) : Y bounded}, Pcp(X) = {Y ∈ P(X) : Y compact},
Pcp,c(X) = {Y ∈ P(X) : Y compact, convex}, and so on.

Let A,B ∈ Pcl(X); the Pompeiu-Hausdorff distance of A, B is defined as

h(A,B) = max

{

sup
a∈A

d(a, B), sup
b∈B

d(b,A)

}

. (2.1)

Amultivalued map F : X → P(X) is convex (closed) valued if F(x) is convex (closed)
for all x ∈ X. F is said to be completely continuous if F(B) is relatively compact for every
B ∈ Pb(X). F is called upper semicontinuous on X, if for every x0 ∈ X, the set F(x0) is a
nonempty closed subset of X, and for every open set O of X containing F(x0), there exists an
open neighborhoodU0 of x0 such that F(U0) ⊆ O. Equivalently, F is upper semicontinuous if
the set {x ∈ X : F(x) ⊆ O} is open for any open set O of X. F is called lower semicontinuous
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if the set {x ∈ X : F(x) ∩ O/= ∅} is open for each open set O in X. If a multivalued map F
is completely continuous with nonempty compact values, then F is upper semicontinuous if
and only if F has a closed graph, that is, if xn → x∗ and yn → y∗, then yn ∈ F(xn) implies
y∗ ∈ F(x∗) [28].

A multivalued map F : [0, T] → Pcl(X) is said to be measurable if, for every x ∈ X,
the function t → d(x, F(t)) = inf{d(x, y) : y ∈ F(t)} is a measurable function.

Definition 2.1. A multivalued map F : X → Pcl(X) is called

(1) γ-Lipschitz if there exists γ > 0 such that

h
(
F(x), F

(
y
)) ≤ γd(x, y), for each x, y ∈ X, (2.2)

(2) a contraction if it is γ-Lipschitz with γ < 1.

Definition 2.2. A multivalued map F : [0, T] × R × R → P(R) is said to be Carathéodory if

(1) t → F(t, x, y) is measurable for each x, y ∈ R;

(2) (x, y) → F(t, x, y) is upper semicontinuous for a.e. t ∈ [0, T].

Further, a Carathéodory function F is said to be L1- Carathéodory if

(3) for each l > 0, there exists ϕl ∈ L1([0, T],R+) such that

∥∥F
(
t, x, y

)∥∥ = sup
{|v| : v ∈ F(t, x, y)} ≤ ϕl(t) (2.3)

for all |x| ≤ l, |y| ≤ l and a.e. t ∈ [0, T].

Lemma 2.3 (see [29]). Let X be a Banach space. Let G : [0, T] × X → Pcp,c(X) be an L1-
Carathéodory multivalued map and Γ a linear continuous map from L1([0, T], X) to C([0, T], X),
then the operator

Γ ◦ SG : C([0, T], X) −→ Pcp,c(C([0, T], X)), y −→ (Γ ◦ SG)
(
y
)
= Γ

(
SG,y

)
(2.4)

is a closed graph operator in C([0, T], X) × C([0, T], X).

Here SG,y = {v ∈ L1([0, T], X) : v(t) ∈ G(t, y(t)) for a.e. t ∈ [0, T]}.

Definition 2.4 (see [30]). The Riemann-Liouville fractional integral of order q for a function f
is defined as

Iqf(t) =
1

Γ
(
q
)
∫ t

0

f(s)

(t − s)1−q
ds, q > 0, (2.5)

provided the integral exists.
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Definition 2.5 (see [30]). For at least n-times differentiable function f , the Caputo derivative
of order q is defined as

cDqf(t) =
1

Γ
(
n − q)

∫ t

0
(t − s)n−q−1f (n)(s)ds, n − 1 < q < n, n =

[
q
]
+ 1, (2.6)

where [q] denotes the integer part of the real number q.

Lemma 2.6 (see [20]). Let α > 0; then the differential equation

cDαh(t) = 0 (2.7)

has solutions h(t) = c0 + c1t + c2t2 + · · · + cn−1tn−1 and

IαcDαh(t) = h(t) + c0 + c1t + c2t2 + · · · + cn−1tn−1; (2.8)

here ci ∈ R, i = 0, 1, 2, . . . , n − 1, n = [α] + 1.

The following lemma obtained in [6] is useful in the rest of the paper.

Lemma 2.7 (see [6]). For a given y ∈ C([0, T],R), the unique solution of the fractional separated
boundary value problem

cDαx(t) = y(t), t ∈ [0, T], 1 < α ≤ 2,

a1x(0) + b1
(cDγx(0)

)
= c1, a2x(T) + b2

(cDγx(T)
)
= c2, 0 < γ < 1,

(2.9)

is given by

x(t) =
∫ t

0

(t − s)α−1
Γ(α)

y(s)ds

− t

v1

(

a2

∫T

0

(T − s)α−1
Γ(α)

y(s)ds + b2

∫T

0

(T − s)α−γ−1
Γ
(
α − γ) y(s)ds

)

+ v2t +
c1
a1
,

(2.10)

where

v1 =
a2TΓ

(
2 − γ) + b2T1−γ

Γ
(
2 − γ) , v2 =

a1c2 − a2c1
a1v1

. (2.11)

We notice that the solution (2.10) of the problem (2.9) does not depend on the
parameter b1, that is to say, the parameter b1 is of arbitrary nature for this problem. And
by (2.10), we should assume that a1 /= 0 and a2TγΓ(2 − γ)/= − b2.
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Lemma 2.8. For any y ∈ C([0, T],R), the unique solution of the fractional nonseparated boundary
value problem

cDαx(t) = y(t), t ∈ [0, T], 1 < α ≤ 2,

a1x(0) + b1x(T) = c1, a2
(cDγx(0)

)
+ b2

(cDγx(T)
)
= c2, 0 < γ < 1,

(2.12)

is given by

x(t) =
∫ t

0

(t − s)α−1
Γ(α)

y(s)ds − tΓ
(
2 − γ)

T1−γ

∫T

0

(T − s)α−γ−1
Γ
(
α − γ) y(s)ds +

tΓ
(
2 − γ)c2
T1−γb2

− b1
a1 + b1

(∫T

0

(T − s)α−1
Γ(α)

y(s)ds − TγΓ(2 − γ)
∫T

0

(T − s)α−γ−1
Γ
(
α − γ) y(s)ds

)

− 1
a1 + b1

(
b1c2T

γΓ
(
2 − γ)

b2
− c1

)

.

(2.13)

Proof. For 1 < α ≤ 2, by Lemma 2.6, we know that the general solution of the equation
cDαx(t) = y(t) can be written as

x(t) = Iαy(t) − k1 − k2t =
∫ t

0

(t − s)α−1
Γ(α)

y(s)ds − k1 − k2t, (2.14)

where k1, k2 ∈ R are arbitrary constants. Since cDγk = 0 (k is a constant), cDγ t = t1−γ/Γ(2− γ),
cDγIαy(t) = Iα−γy(t) (see [30]), from (2.14), we have

cDγx(t) = Iα−γy(t) − k2t
1−γ

Γ
(
2 − γ) =

∫ t

0

(t − s)α−γ−1
Γ
(
α − γ) y(s)ds − k2t

1−γ

Γ
(
2 − γ) . (2.15)

Using the boundary conditions, we obtain

a1(−k1) + b1
(∫T

0

(T − s)α−1
Γ(α)

y(s)ds − k1 − k2T
)

= c1,

a2 × 0 + b2

(∫T

0

(T − s)α−γ−1
Γ
(
α − γ) y(s)ds − k2T

1−γ

Γ
(
2 − γ)

)

= c2.

(2.16)
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Therefore, we have

k1 =
1

a1 + b1

(
b1c2T

γΓ
(
2 − γ)

b2
− c1

)

+
b1

a1 + b1

(∫T

0

(T − s)α−1
Γ(α)

y(s)ds − TγΓ(2 − γ)
∫T

0

(T − s)α−γ−1
Γ
(
α − γ) y(s)ds

)

,

k2 =
Γ
(
2 − γ)

T1−γ

(∫T

0

(T − s)α−γ−1
Γ
(
α − γ) y(s)ds − c2

b2

)

.

(2.17)

Substituting the values of k1, k2 in (2.14), we obtain (2.13). This completes the proof.

From the proof of the above lemma, we notice that the solution (2.13) of the problem
(2.12) does not depend on the parameter a2, that is to say, the parameter a2 is of arbitrary
nature for this problem. In this situation, we need to assume that a1 + b1 /= 0 and b2 /= 0.

Let us define what we mean by a solution of the problem (1.4), (1.5) and the problem
(1.4), (1.6).

Definition 2.9. A function x ∈ AC1([0, T],R) is a solution of the problem (1.4), (1.5) if it
satisfies the boundary conditions (1.5) and there exists a function f ∈ L1([0, T],R) such that
f(t) ∈ F(t, x(t), cDβx(t)) a.e. on t ∈ [0, T] and

x(t) =
∫ t

0

(t − s)α−1
Γ(α)

f(s)ds

− t

v1

(

a2

∫T

0

(T − s)α−1
Γ(α)

f(s)ds + b2

∫T

0

(T − s)α−γ−1
Γ
(
α − γ) f(s)ds

)

+ v2t +
c1
a1
.

(2.18)

Definition 2.10. A function x ∈ AC1([0, T],R) is a solution of the problem (1.4), (1.6) if it
satisfies the boundary conditions (1.6) and there exists a function f ∈ L1([0, T],R) such that
f(t) ∈ F(t, x(t), cDβx(t)) a.e. on t ∈ [0, T] and

x(t) =
∫ t

0

(t − s)α−1
Γ(α)

f(s)ds − tΓ
(
2 − γ)

T1−γ

∫T

0

(T − s)α−γ−1
Γ
(
α − γ) f(s)ds +

tΓ
(
2 − γ)c2
T1−γb2

− b1
a1 + b1

(∫T

0

(T − s)α−1
Γ(α)

f(s)ds − TγΓ(2 − γ)
∫T

0

(T − s)α−γ−1
Γ
(
α − γ) f(s)ds

)

− 1
a1 + b1

(
b1c2T

γΓ
(
2 − γ)

b2
− c1

)

.

(2.19)

Let C([0, T],R) be the space of all continuous functions defined on [0, T]. Define the
space X = {x : x and cDβx ∈ C([0, T],R)} (0 < β ≤ 1) endowed with the norm ‖x‖ =
maxt∈[0,T]|x(t)| +maxt∈[0,T]|cDβx(t)|. We know that (X, ‖ · ‖) is a Banach space (see [14]).

We end this section with two fixed point theorems, which will be used in the sequel.



8 Abstract and Applied Analysis

Theorem 2.11 (nonlinear alternative of Leray-Schauder type [31]). Let X be a Banach space, C
a closed convex subset of X,U an open subset of C with 0 ∈ U. Suppose that F : U → Pcp,c(C) is an
upper semicontinuous compact map. Then either (1) F has a fixed point inU, or (2) there is a x ∈ ∂U
and λ ∈ (0, 1) such that x ∈ λF(x).

Theorem 2.12 (Covitz and Nadler Jr. [32]). Let (X, d) be a complete metric space. If F : X →
Pcl(X) is a contraction, then F has a fixed point.

3. Existence Results

In this section, wewill give some existence results for the problems (1.4), (1.5) and (1.4), (1.6).
For each x ∈ X, define the set of selections of F by

SF,x =
{
v ∈ L1([0, T],R) : v(t) ∈ F

(
t, x(t), cDβx(t)

)
for a.e. t ∈ [0, T]

}
. (3.1)

In view of Lemmas 2.7 and 2.8, we define operatorsN,M : X → P(X) as

N(x) = {h ∈ X : h(t) = (Su)(t), u ∈ SF,x}, (3.2)

M(x) = {h ∈ X : h(t) = (Ku)(t), u ∈ SF,x} (3.3)

with

(Su)(t) =
∫ t

0

(t − s)α−1
Γ(α)

u(s)ds

− t

v1

(

a2

∫T

0

(T − s)α−1
Γ(α)

u(s)ds + b2

∫T

0

(T − s)α−γ−1
Γ
(
α − γ) u(s)ds

)

+ v2t +
c1
a1
,

(Ku)(t) =
∫ t

0

(t − s)α−1
Γ(α)

u(s)ds − tΓ
(
2 − γ)

T1−γ

∫T

0

(T − s)α−γ−1
Γ
(
α − γ) u(s)ds +

tΓ
(
2 − γ)c2
T1−γb2

− b1
a1 + b1

(∫T

0

(T − s)α−1
Γ(α)

u(s)ds − TγΓ(2 − γ)
∫T

0

(T − s)α−γ−1
Γ
(
α − γ) u(s)ds

)

− 1
a1 + b1

(
b1c2T

γΓ
(
2 − γ)

b2
− c1

)

.

(3.4)

It is clear that if x ∈ X is a fixed point of the operatorN (the operatorM), then x is a solution
of the problem (1.4), (1.5) (the problem (1.4), (1.6)).

Now we are in a position to present our main results. The methods used to prove the
existence results are standard; however, their exposition in the framework of problems (1.4),
(1.5) and (1.4), (1.6) is new.
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3.1. Convex Case

We consider first the case when F is convex valued.

(H1): (1) F : [0, T]×R×R → Pcp,c(R) is a Carathéodory multivalued map; (2) there exist
m ∈ L∞([0, T],R+) and ϕ, ψ : [0,∞) → (0,∞) continuous, nondecreasing such that

∥
∥F

(
t, x, y

)∥∥ = sup
{|v| : v ∈ F(t, x, y)} ≤ m(t)

(
ϕ(|x|) + ψ(∣∣y∣∣)) (3.5)

for x, y ∈ R and a.e. t ∈ [0, T].

Theorem 3.1. Assume that (H1) is satisfied and there exists L > 0 such that

L

P +
(
ϕ(L) + ψ(L)

)‖m‖L∞Q
> 1, (3.6)

where

P = |v2|T +
|c1|
|a1| +

|v2|T1−β

Γ
(
2 − β) ,

Q =
Tα−β

Γ
(
α − β + 1

) +
Tα

Γ(α + 1)
+

T

|v1|

(

1 +
T−β

Γ
(
2 − β)

)(
|a2|Tα
Γ(α + 1)

+
|b2|Tα−γ

Γ
(
α − γ + 1

)

)

.

(3.7)

Then the problem (1.4), (1.5) has at least one solution on [0, T].

Proof. Consider the operator N : X → P(X) defined by (3.2). From (H1), we have for each
x ∈ X, the set SF,x is nonempty [29]. For x ∈ X, let u ∈ SF,x and h = Su, that is, h ∈ N(x), we
have

cDβh(t) =
∫ t

0

(t − s)α−β−1
Γ
(
α − β) u(s)ds − kt1−β

Γ
(
2 − β) , (3.8)

where k is a constant given by

k =
1
v1

(

a2

∫T

0

(T − s)α−1
Γ(α)

u(s)ds + b2

∫T

0

(T − s)α−γ−1
Γ
(
α − γ) u(s)ds

)

− v2. (3.9)

Hence we know that the operatorN : X → P(X) is well defined.
We put Su = S1u + S2uwhere

(S1u)(t) =
∫ t

0

(t − s)α−1
Γ(α)

u(s)ds, (S2u)(t) = −kut + c1
a1
. (3.10)

Here ku means that the constant k defined by (3.9) is related to u.
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We will show that N satisfies the requirements of the nonlinear alternative of Leray-
Schauder type. The proof will be given in five steps.

Step 1 (N(x) is convex valued). Since F is convex valued, we know that SF,x is convex and
therefore it is obvious thatN(x) is convex for each x ∈ X.

Step 2 (N maps bounded sets into bounded sets inX). Let Br be a bounded subset ofX such
that for any x ∈ Br , ‖x‖ ≤ r, r > 0. We prove that there exists a constant l > 0 such that for
each x ∈ Br , one has ‖h‖ ≤ l for each h ∈ N(x). Let x ∈ Br and h ∈ N(x), then there exists
u ∈ SF,x such that

h(t) = (Su)(t) for t ∈ [0, T]. (3.11)

By simple calculations, we have

|(S1u)(t)| ≤
∫ t

0

(t − s)α−1
Γ(α)

|u(s)|ds ≤ (
ϕ(r) + ψ(r)

)‖m‖L∞
Tα

Γ(α + 1)
,

|(S2u)(t)| ≤
(
ϕ(r) + ψ(r)

)‖m‖L∞T

|v1|

(
|a2|Tα
Γ(α + 1)

+
|b2|Tα−γ

Γ
(
α − γ + 1

)

)

+ |v2|T +
|c1|
|a1| ,

∣∣∣cDβh(t)
∣∣∣ ≤

∫ t

0

(t − s)α−β−1
Γ
(
α − β) |u(s)|ds + |ku|T1−β

Γ
(
2 − β)

≤ (
ϕ(r) + ψ(r)

)‖m‖L∞
Tα−β

Γ
(
α − β + 1

) +
|v2|T1−β

Γ
(
2 − β)

+

(
ϕ(r) + ψ(r)

)‖m‖L∞T1−β

|v1|Γ
(
2 − β)

(
|a2|Tα
Γ(α + 1)

+
|b2|Tα−γ

Γ
(
α − γ + 1

)

)

.

(3.12)

Hence we obtain

‖h‖ ≤ |v2|T +
|c1|
|a1| +

|v2|T1−β

Γ
(
2 − β) +

(
ϕ(r) + ψ(r)

)‖m‖L∞

×
(

Tα−β

Γ
(
α − β + 1

) +
Tα

Γ(α + 1)
+

(
T

|v1| +
T1−β

|v1|Γ
(
2 − β)

)(
|a2|Tα
Γ(α + 1)

+
|b2|Tα−γ

Γ
(
α − γ + 1

)

))

≤ P +
(
ϕ(r) + ψ(r)

)‖m‖L∞Q = l (a constant).
(3.13)

Step 3 (N maps bounded sets into equicontinuous sets inX). Let Br be a bounded set ofX as
in Step 2. Let 0 ≤ t1 < t2 ≤ T and x ∈ Br . For each h ∈ N(x), then there is u ∈ SF,x such that
h(t) = (Su)(t). Since
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|(S1u)(t2) − (S1u)(t1)| =
∣
∣
∣
∣
∣

∫ t2

t1

(t2 − s)α−1
Γ(α)

u(s)ds +
∫ t1

0

(t2 − s)α−1 − (t1 − s)α−1
Γ(α)

u(s)ds

∣
∣
∣
∣
∣

≤
(
ϕ(r) + ψ(r)

)‖m‖L∞

Γ(α + 1)
(
(t2 − t1)α +

∣
∣tα2 − (t2 − t1)α − tα1

∣
∣)

≤
(
ϕ(r) + ψ(r)

)‖m‖L∞
(
tα2 − tα1

)

Γ(α + 1)
,

|(S2u)(t2) − (S2u)(t1)| =
∣
∣
∣
∣−kut2 +

c1
a1

+ kut1 − c1
a1

∣
∣
∣
∣

≤
((

ϕ(r) + ψ(r)
)‖m‖L∞

|v1|

(
|a2|Tα
Γ(α + 1)

+
|b2|Tα−γ

Γ
(
α − γ + 1

)

)

+ |v2|
)

(t2 − t1),

∣∣∣cDβh(t2) − cDβh(t1)
∣∣∣ =

∣
∣∣∣∣∣
Iα−βu(t2) −

kut
1−β
2

Γ
(
2 − β) − Iα−βu(t1) +

kut
1−β
1

Γ
(
2 − β)

∣
∣∣∣∣∣

≤
((

ϕ(r) + ψ(r)
)‖m‖L∞

|v1|Γ
(
2 − β)

(
|a2|Tα
Γ(α + 1)

+
|b2|Tα−γ

Γ
(
α − γ + 1

)

)

+
|v2|

Γ
(
2 − β)

)(
t
1−β
2 − t1−β1

)
+

(
ϕ(r) + ψ(r)

)‖m‖L∞

(
t
α−β
2 − tα−β1

)

Γ
(
α − β + 1

) ,

(3.14)

we obtain that (since α > 1, α − β > 0 and 1 − β ≥ 0)

|h(t2) − h(t1)| −→ 0,
∣∣∣cDβh(t2) − cDβh(t1)

∣∣∣ −→ 0 as t2 −→ t1 (3.15)

and the limits are independent of x ∈ Br and h ∈N(x).
Step 4 (N has a closed graph). Let xn → x∗, hn ∈ N(xn), and hn → h∗; we need to show
h∗ ∈N(x∗). Now hn ∈N(xn) implies that there exists un ∈ SF,xn such that hn(t) = (Sun)(t) for
t ∈ [0, T]. Let us consider the continuous linear operator Γ : L1([0, T],R) → X given by

(Γu)(t) =
∫ t

0

(t − s)α−1
Γ(α)

u(s)ds − t

v1

(

a2

∫T

0

(T − s)α−1
Γ(α)

u(s)ds + b2

∫T

0

(T − s)α−γ−1
Γ
(
α − γ) u(s)ds

)

(3.16)

and denote w(t) = v2t + c1/a1. Then hn(t) −w(t) = (Γun)(t) and

‖hn − h∗‖ = max
t∈[0,T]

|hn(t) −w(t) − (h∗(t) −w(t))|

+ max
t∈[0,T]

∣∣∣cDβ(hn −w)(t) − cDβ(h∗ −w)(t)
∣∣∣ −→ 0 as n −→ ∞.

(3.17)
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We apply Lemma 2.3 to find that Γ ◦ SF has closed graph and from the definition of Γ we get
hn − w ∈ Γ ◦ SF(xn). Since xn → x∗, hn − w → h∗ − w, it follows the existence of u∗ ∈ SF,x∗
such that h∗ −w = Γ(u∗). This means that h∗ ∈N(x∗).

Step 5 (a priori bounds on solutions). Let x ∈ λN(x) for some λ ∈ (0, 1). Then there exists
u ∈ SF,x such that x(t) = λ(Su)(t) for t ∈ [0, T]. With the same arguments as in Step 2 of our
proof, for each t ∈ [0, T], we obtain

|x(t)| +
∣
∣
∣cDβx(t)

∣
∣
∣ ≤ P +

(
ϕ(‖x‖) + ψ(‖x‖))‖m‖L∞Q. (3.18)

Thus

‖x‖ ≤ P +
(
ϕ(‖x‖) + ψ(‖x‖))‖m‖L∞Q. (3.19)

Now we set

U = {x ∈ X : ‖x‖ < L}. (3.20)

Clearly, U is an open subset of X and 0 ∈ U. As a consequence of Steps 1–4, together with
the Arzela-Ascoli theorem, we can conclude thatN : U → Pcp,c(X) is upper semicontinuous
and completely continuous. From the choice of the U, there is no x ∈ ∂U such that x ∈
λN(x) for some λ ∈ (0, 1). Therefore, by the nonlinear alternative of Leary-Schauder type
(Theorem 2.11), we deduce thatN has a fixed point x ∈ U, which is a solution of the problem
(1.4), (1.5). This completes the proof.

Theorem 3.2. Assume that (H1) is satisfied and there exists L1 > 0 such that

L1

P1 +
(
ϕ(L1) + ψ(L1)

)‖m‖L∞Q1
> 1, (3.21)

where

P1 =
TγΓ

(
2 − γ)|c2|
|b2|

(

1 +
T−β

Γ
(
2 − β)

)

+

∣∣∣∣∣
b1c2T

γΓ
(
2 − γ)

(a1 + b1)b2
− c1
a1 + b1

∣∣∣∣∣
,

Q1 = Tα
(
1 +

|b1|
|a1 + b1|

)(
1

Γ(α + 1)
+

Γ
(
2 − γ)

Γ
(
α − γ + 1

)

)

+ Tα−β
(

1
Γ
(
α − β + 1

) +
Γ
(
2 − γ)

Γ
(
2 − β)Γ(α − γ + 1

)

)

.

(3.22)

Then the problem (1.4), (1.6) has at least one solution on [0, T].

Proof. To obtain the result, the main aim is to study the properties of the operatorM defined
in (3.3). The proof of them is similar to those of Theorem 3.1, so we omit the details. Here
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we just give some estimations, which are needed in the following theorems. Let x ∈ X and
h ∈M(x); then there exists u ∈ SF,x such that

h(t) = (Ku)(t), for t ∈ [0, T]. (3.23)

We put Ku = K1u +K2u and

(K1u)(t) =
∫ t

0

(t − s)α−1
Γ(α)

u(s)ds, (K2u)(t) = −ku2 t − ku1 ; (3.24)

here ku1 and ku2 are constants given by

ku1 =
b1c2T

γΓ
(
2 − γ)

(a1 + b1)b2
− c1
a1 + b1

+
b1

a1 + b1

(∫T

0

(T − s)α−1
Γ(α)

u(s)ds − TγΓ(2 − γ)
∫T

0

(T − s)α−γ−1
Γ
(
α − γ) u(s)ds

)

,

ku2 =
Γ
(
2 − γ)

T1−γ

(∫T

0

(T − s)α−γ−1
Γ
(
α − γ) u(s)ds − c2

b2

)

.

(3.25)

By simple calculations, we have

|(K1u)(t)| ≤
∫ t

0

(t − s)α−1
Γ(α)

|u(s)|ds ≤ (
ϕ(‖x‖) + ψ(‖x‖))‖m‖L∞

Tα

Γ(α + 1)
,

|(K2u)(t)| ≤ T
∣∣ku2

∣∣ +
∣∣ku1

∣∣,

T
∣∣ku2

∣∣ ≤ TγΓ(2 − γ)
(
(
ϕ(‖x‖) + ψ(‖x‖))‖m‖L∞

Tα−γ

Γ
(
α − γ + 1

) +
|c2|
|b2|

)

,

∣∣ku1
∣∣ ≤ |b1|

|a1 + b1|

(
(
ϕ(‖x‖) + ψ(‖x‖))‖m‖L∞

Tα

Γ(α + 1)
+
(
ϕ(‖x‖) + ψ(‖x‖))‖m‖L∞

Γ
(
2 − γ)Tα

Γ
(
α − γ + 1

)

)

+

∣∣∣∣∣
b1c2T

γΓ
(
2 − γ)

(a1 + b1)b2
− c1
a1 + b1

∣∣∣∣∣
,

∣∣∣cDβh(t)
∣∣∣ ≤

∫ t

0

(t − s)α−β−1
Γ
(
α − β) |u(s)|ds +

∣∣ku2
∣∣T1−β

Γ
(
2 − β)

≤ (
ϕ(‖x‖) + ψ(‖x‖))‖m‖L∞

Tα−β

Γ
(
α − β + 1

) +
Γ
(
2 − γ)Tγ−β
Γ
(
2 − β)

×
(
(
ϕ(‖x‖) + ψ(‖x‖))‖m‖L∞

Tα−γ

Γ
(
α − γ + 1

) +
|c2|
|b2|

)

.

(3.26)
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Hence we obtain

‖h‖ ≤ TγΓ
(
2 − γ)|c2|
|b2|

(

1 +
T−β

Γ
(
2 − β)

)

+

∣
∣
∣
∣
∣
b1c2T

γΓ
(
2 − γ)

(a1 + b1)b2
− c1
a1 + b1

∣
∣
∣
∣
∣

+
(
ϕ(‖x‖) + ψ(‖x‖))‖m‖L∞Tα

(
1 +

|b1|
|a1 + b1|

)(
1

Γ(α + 1)
+

Γ
(
2 − γ)

Γ
(
α − γ + 1

)

)

+
(
ϕ(‖x‖) + ψ(‖x‖))‖m‖L∞Tα−β

(
1

Γ
(
α − β + 1

) +
Γ
(
2 − γ)

Γ
(
2 − β)Γ(α − γ + 1

)

)

.

(3.27)

This is the end of the proof.

3.2. Nonconvex Case

Now we study the case when F is not necessarily convex valued.
A subset A of L1([0, T],R) is decomposable if for all u, v ∈ A and J ⊆ [0, T] Lebesgue

measurable, then uχJ + vχ[0,T]−J ∈ A, where χ stands for the characteristic function.

(H2): F : [0, T]×R×R → Pcp(R) is a multivalued map such that (1) (t, x, y) → F(t, x, y)
is Σ ⊗ BR ⊗ BR measurable; (2) (x, y) → F(t, x, y) is lower semicontinuous for a.e.
t ∈ [0, T].

Theorem 3.3. Let (H1)(2), (H2), and relation (3.6) hold; then the problem (1.4), (1.5) has at least
one solution on [0, T].

Proof. From (H1)(2), (H2), and [33, Lemma 4.1], the map

F : X → P
(
L1([0, T],R)

)
, x −→ F(x) = SF,x (3.28)

is lower semicontinuous and has nonempty closed and decomposable values. Then from a
selection theorem due to Bressan and Colombo [34], there exists a continuous function f :
X → L1([0, T],R) such that f(x) ∈ F(x) for all x ∈ X. That is to say, we have f(x)(t) ∈
F(t, x(t), cDβx(t)) for a.e. t ∈ [0, T]. Now consider the problem

cDαx(t) = f(x)(t), t ∈ [0, T] (3.29)

with the boundary conditions (1.5). Note that if x ∈ X is a solution of the problem (3.29),
then x is a solution to the problem (1.4), (1.5).

Problem (3.29) is then reformulated as a fixed point problem for the operator N1 :
X → X defined by

N1(x)(t) =
(
Sf(x)

)
(t). (3.30)

It can easily be shown that N1 is continuous and completely continuous and satisfies all
conditions of the Leray-Schauder nonlinear alternative for single-valued maps [31]. The
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remaining part of the proof is similar to that of Theorem 3.1, so we omit it. This completes
the proof.

Theorem 3.4. Let (H1)(2), (H2), and relation (3.21) hold, then the problem (1.4), (1.6) has at least
one solution on [0, T].

The proof of this theorem is similar to that of Theorem 3.3.

(H3): F : [0, T] × R × R → Pcp(R) is a multivalued map such that (1) F is integrably
bounded and the map t → F(t, x, y) is measurable for all x, y ∈ R; (2) there exists
m ∈ L∞([0, T],R+) such that for a.e. t ∈ [0, T] and all x1, x2, y1, y2 ∈ R,

h
(
F
(
t, x1, y1

)
, F

(
t, x2, y2

)) ≤ m(t)
(|x1 − x2| +

∣
∣y1 − y2

∣
∣). (3.31)

Theorem 3.5. Let (H3) hold, if, in addition,

‖m‖L∞

[
Tα

Γ(α + 1)
+

Tα−β

Γ
(
α − β + 1

) +

(
T

|v1| +
T1−β

|v1|Γ
(
2 − β)

)(
|a2|Tα
Γ(α + 1)

+
|b2|Tα−γ

Γ
(
α − γ + 1

)

)]

< 1,

(3.32)

then the problem (1.4), (1.5) has at least one solution on [0, T].

Proof. From (H3), we have that the multivalued map t → F(t, x(t), cDβx(t)) is measurable
[28, Proposition 2.7.9] and closed valued for each x ∈ X. Hence it has measurable selection
[28, Theorem 2.2.1] and the set SF,x is nonempty. LetN be defined in (3.2). We will show that,
under this situation,N satisfies the requirements of Theorem 2.12.

Step 1. For each x ∈ X, N(x) ∈ Pcl(X). Let hn ∈ N(x), n ≥ 1 such that hn → h in X. Then
h ∈ X and there exists un ∈ SF,x, n ≥ 1 such that

hn(t) = (Sun)(t), t ∈ [0, T]. (3.33)

By (H3), the sequence un is integrable bounded. Since F has compact values, we may pass to
a subsequence if necessary to get that un converges to u in L1([0, T],R). Thus u ∈ SF,x and for
each t ∈ [0, T]

hn(t) −→ h(t) = (Su)(t). (3.34)

This means that h ∈N(x) andN(x) is closed.

Step 2. There exists ρ < 1 such that

h
(
N(x),N

(
y
)) ≤ ρ∥∥x − y∥∥, ∀x, y ∈ X. (3.35)

Let x, y ∈ X and h1 ∈N(y); then there exists u1 ∈ SF,y such that

h1(t) = (Su1)(t), t ∈ [0, T]. (3.36)
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From (H3)(2), we deduce

h
(
F
(
t, x(t), cDβx(t)

)
, F

(
t, y(t), cDβy(t)

))

≤ m(t)
(∣
∣x(t) − y(t)∣∣ +

∣
∣
∣cDβx(t) − cDβy(t)

∣
∣
∣
)
.

(3.37)

Hence, for a.e. t ∈ [0, T], there exists v ∈ F(t, x(t), cDβx(t)) such that

|u1(t) − v| ≤ m(t)
(∣
∣x(t) − y(t)∣∣ +

∣
∣
∣cDβx(t) − cDβy(t)

∣
∣
∣
)
. (3.38)

Consider the multivalued map V : [0, T] → P(R) given by

V (t) =
{
u ∈ R : |u1(t) − u| ≤ m(t)

(∣∣x(t) − y(t)∣∣ +
∣∣∣cDβx(t) − cDβy(t)

∣∣∣
)}
. (3.39)

Since u1(t), α(t) = m(t)(|x(t)−y(t)|+ |cDβx(t)− cDβy(t)|) are measurable, [35, Theorem III.41]
implies that V is measurable. It follows from (H3) that the map t → F(t, x(t), cDβx(t)) is
measurable. Hence by (3.38) and [28, Proposition 2.1.43], the multivalued map t → V (t) ∩
F(t, x(t), cDβx(t)) is measurable and nonempty closed valued. Therefore, we can find u2(t) ∈
F(t, x(t), cDβx(t)) such that for a.e. t ∈ [0, T],

|u1(t) − u2(t)| ≤ m(t)
(∣∣x(t) − y(t)∣∣ +

∣∣∣cDβx(t) − cDβy(t)
∣∣∣
)
. (3.40)

Let h2(t) = (Su2)(t), that is, h2 ∈N(x). Since

|(S1u1)(t) − (S1u2)(t)| =
∣∣∣∣∣

∫ t

0

(t − s)α−1
Γ(α)

(u1(s) − u2(s))ds
∣∣∣∣∣

≤
∫ t

0

(t − s)α−1
Γ(α)

m(s)
(∣∣x(s) − y(s)∣∣ +

∣∣∣cDβx(s) − cDβy(s)
∣∣∣
)
ds

≤ ‖m‖L∞Tα

Γ(α + 1)

∥∥x − y∥∥,

|(S2u1)(t) − (S2u2)(t)| = |t(ku1 − ku2)|

≤ T
∣∣∣∣∣
a2
v1

∫T

0

(T − s)α−1
Γ(α)

(u1(s) − u2(s))ds

+
b2
v1

∫T

0

(T − s)α−γ−1
Γ
(
α − γ) (u1(s) − u2(s))ds

∣∣∣∣∣

≤ ‖m‖L∞T

|v1|

(
|a2|Tα
Γ(α + 1)

+
|b2|Tα−γ

Γ
(
α − γ + 1

)

)
∥∥x − y∥∥,
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∣
∣
∣cDβh1(t) − cDβh2(t)

∣
∣
∣ =

∣
∣
∣
∣
∣
Iα−βu1(t) −

ku1t
1−β

Γ
(
2 − β) − Iα−βu2(t) +

ku2t
1−β

Γ
(
2 − β)

∣
∣
∣
∣
∣

≤ ‖m‖L∞Tα−β

Γ
(
α − β + 1

)
∥
∥x − y∥∥

+
‖m‖L∞T1−β

|v1|Γ
(
2 − β)

(
|a2|Tα
Γ(α + 1)

+
|b2|Tα−γ

Γ
(
α − γ + 1

)

)
∥
∥x − y∥∥,

(3.41)

we obtain

‖h1 − h2‖ ≤ ‖m‖L∞

[
Tα

Γ(α + 1)
+

Tα−β

Γ
(
α − β + 1

)

+

(
T

|v1| +
T1−β

|v1|Γ
(
2 − β)

)(
|a2|Tα
Γ(α + 1)

+
|b2|Tα−γ

Γ
(
α − γ + 1

)

)]
∥∥x − y∥∥.

(3.42)

Denote

ρ = ‖m‖L∞

[
Tα

Γ(α + 1)
+

Tα−β

Γ
(
α − β + 1

) +

(
T

|v1| +
T1−β

|v1|Γ
(
2 − β)

)(
|a2|Tα
Γ(α + 1)

+
|b2|Tα−γ

Γ
(
α − γ + 1

)

)]

.

(3.43)

By using an analogous relation obtained by interchanging the roles of x and y, we get

h
(
N(x),N

(
y
)) ≤ ρ∥∥x − y∥∥. (3.44)

Therefore, from condition (3.32), Theorem 2.12 implies that N has a fixed point, which is a
solution of the problem (1.4), (1.5). This completes the proof.

Theorem 3.6. Let (H3) hold, if, in addition,

‖m‖L∞Tα
(
1 +

|b1|
|a1 + b1|

)(
1

Γ(α + 1)
+

Γ
(
2 − γ)

Γ
(
α − γ + 1

)

)

+ ‖m‖L∞Tα−β
(

1
Γ
(
α − β + 1

) +
Γ
(
2 − γ)

Γ
(
2 − β)Γ(α − γ + 1

)

)

< 1,

(3.45)

then the problem (1.4), (1.6) has at least one solution on [0, T].
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Using the arguments employed in the proof of Theorem 3.5, we can prove this theorem
similarly. Hence the details are omitted here.

4. Integral Boundary Conditions

In this section, the existence results of the problems (1.4), (1.5) and (1.4), (1.6) obtained in
the previous section will be extended to the ones of the problems of fractional differential
inclusions (1.4) subject to the integral boundary conditions (1.7) and (1.8).

Lemma 4.1. For any y, ξ, χ ∈ C([0, T],R), the unique solution of the fractional separated integral
boundary value problem,

cDαx(t) = y(t), t ∈ [0, T], 1 < α ≤ 2,

a1x(0) + b1
(cDγx(0)

)
= c1

∫T

0
ξ(s)ds,

a2x(T) + b2
(cDγx(T)

)
= c2

∫T

0
χ(s)ds, 0 < γ < 1,

(4.1)

is given by

x(t) =
∫ t

0

(t − s)α−1
Γ(α)

y(s)ds

− t

v1

(

a2

∫T

0

(T − s)α−1
Γ(α)

y(s)ds + b2

∫T

0

(T − s)α−γ−1
Γ
(
α − γ) y(s)ds

)

+
c2t

v1

∫T

0
χ(s)ds +

c1(v1 − a2t)
a1v1

∫T

0
ξ(s)ds.

(4.2)

Lemma 4.2. For any y,ξ,χ ∈ C([0, T],R), the unique solution of the fractional nonseparated integral
boundary value problem,

cDαx(t) = y(t), t ∈ [0, T], 1 < α ≤ 2,

a1x(0) + b1x(T) = c1

∫T

0
ξ(s)ds,

a2
(cDγx(0)

)
+ b2

(cDγx(T)
)
= c2

∫T

0
χ(s)ds, 0 < γ < 1,

(4.3)
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is given by

x(t) =
∫ t

0

(t − s)α−1
Γ(α)

y(s)ds − tΓ
(
2 − γ)

T1−γ

∫T

0

(T − s)α−γ−1
Γ
(
α − γ) y(s)ds +

tΓ
(
2 − γ)c2
T1−γb2

∫T

0
χ(s)ds

− b1
a1 + b1

(∫T

0

(T − s)α−1
Γ(α)

y(s)ds − TγΓ(2 − γ)
∫T

0

(T − s)α−γ−1
Γ
(
α − γ) y(s)ds

)

− b1T
γΓ
(
2 − γ)c2

b2(a1 + b1)

∫T

0
χ(s)ds +

c1
a1 + b1

∫T

0
ξ(s)ds.

(4.4)

To obtain the existence results of the problems (1.4), (1.7) and (1.4), (1.8), in view of
Lemmas 4.1 and 4.2, we define two operators Π,Ω : X → P(X) as

Π(x) = {h ∈ X : h = Hv, v ∈ SF,x}, (4.5)

Ω(x) = {h ∈ X : h = Zv, v ∈ SF,x} (4.6)

with

(Hv)(t) =
∫ t

0

(t − s)α−1
Γ(α)

v(s)ds

− t

v1

(

a2

∫T

0

(T − s)α−1
Γ(α)

v(s)ds + b2

∫T

0

(T − s)α−γ−1
Γ
(
α − γ) v(s)ds

)

+
c2t

v1

∫T

0
h(s, x(s))ds +

c1
a1

∫T

0
g(s, x(s))ds − c1a2t

a1v1

∫T

0
g(s, x(s))ds,

(Zv)(t) =
∫ t

0

(t − s)α−1
Γ(α)

v(s)ds − tΓ
(
2 − γ)

T1−γ

∫T

0

(T − s)α−γ−1
Γ
(
α − γ) v(s)ds

+
tΓ
(
2 − γ)c2
T1−γb2

∫T

0
h(s, x(s))ds

− b1
a1 + b1

(∫T

0

(T − s)α−1
Γ(α)

v(s)ds − TγΓ(2 − γ)
∫T

0

(T − s)α−γ−1
Γ
(
α − γ) v(s)ds

)

− b1T
γΓ
(
2 − γ)c2

b2(a1 + b1)

∫T

0
h(s, x(s))ds +

c1
a1 + b1

∫T

0
g(s, x(s))ds.

(4.7)

Observe that if x ∈ X is a fixed point of the operator Π (the operator Ω), that is, x ∈ Π(x)
(x ∈ Ω(x)), then x is a solution of the problem (1.4), (1.7) (the problem (1.4), (1.8)).

From the definitions of the operators N, Π (see (3.2), (4.5)), we know that the
difference between them is very apparent, that is, c1, c2 in (3.2) were replaced by
c1

∫T
0 g(s, x(s))ds and c2

∫T
0 h(s, x(s))ds in (4.5). This fact is also true for the operators M,

Ω (see (3.3), (4.6)).
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In the following, we state some existence results for the problems (1.4), (1.7) and (1.4),
(1.8). We omit the proofs as these are similar to the ones given in Section 3.

(A1): The functions g, h : [0, T] × R → R are continuous. There exist functions m2, m3 ∈
L1([0, T],R+) and ϕ2, ϕ3 : [0,∞) → (0,∞) continuous, nondecreasing such that

∣
∣g(t, x)

∣
∣ ≤ m2(t)ϕ2(|x|), |h(t, x)| ≤ m3(t)ϕ3(|x|) (4.8)

for all x ∈ R and a.e. t ∈ [0, T].

Theorem 4.3. Assume that (H1) and (A1) hold. If there exists a constant I > 0 such that

I
(
ϕ(I) + ψ(I)

)‖m‖L∞Q + ϕ3(I)‖m3‖L1R + ϕ2(I)‖m2‖L1W
> 1, (4.9)

here Q is defined by (3.7) and

R =
|c2|T
|v1|

(

1 +
T−β

Γ
(
2 − β)

)

, W =
|c1|
|a1|

(

1 +
|a2|T
|v1|

(

1 +
T−β

Γ
(
2 − β)

))

. (4.10)

Then the boundary value problem (1.4), (1.7) has at least one solution on [0, T].

Theorem 4.4. Assume that (H1) and (A1) hold. If there exists a constant I1 > 0 such that

I1(
ϕ(I1) + ψ(I1)

)‖m‖L∞Q1 + ϕ3(I1)‖m3‖L1R1 + ϕ2(I1)‖m2‖L1W1
> 1, (4.11)

here Q1 is defined by (3.22) and

R1 =
|c2|TγΓ

(
2 − γ)

|b2|

(

1 +
|b1|

|a1 + b1| +
T−β

Γ
(
2 − β)

)

, W1 =
|c1|

|a1 + b1| . (4.12)

Then the boundary value problem (1.4), (1.8) has at least one solution on [0, T].

Theorem 4.5. Assume that (H1)(2), (H2), (A1) and condition (4.9) hold. Then the boundary value
problem (1.4), (1.7) has at least one solution on [0, T].

Theorem 4.6. Assume that (H1)(2), (H2), (A1) and condition (4.11) hold. Then the boundary value
problem (1.4), (1.8) has at least one solution on [0, T].

(A2): The functions g, h : [0, T] × R → R are continuous and satisfy

∣∣g(t, x) − g(t, y)∣∣ ≤ m2(t)
∣∣x − y∣∣, ∣∣h(t, x) − h(t, y)∣∣ ≤ m3(t)

∣∣x − y∣∣ (4.13)

for all x, y ∈ R and a.e. t ∈ [0, T]; herem2,m3 ∈ L1([0, T],R+).
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Theorem 4.7. Assume that (H3) and (A2) hold. If, in addition,

‖m‖L∞Q + ‖m3‖L1R + ‖m2‖L1W < 1, (4.14)

here Q is defined by (3.7) and R, W are defined by (4.10), then the boundary value problem (1.4),
(1.7) has at least one solution on [0, T].

Theorem 4.8. Assume that (H3) and (A2) hold. If, in addition,

‖m‖L∞Q1 + ‖m3‖L1R1 + ‖m2‖L1W1 < 1, (4.15)

hereQ1 is defined by (3.22) and R1,W1 are defined by (4.12), then the boundary value problem (1.4),
(1.8) has at least one solution on [0, T].

5. Examples

In this section, we give two simple examples to show the applicability of our results.

Example 5.1. Consider the following fractional boundary value problem:

cD3/2x(t) ∈ F
(
t, x(t), cD3/4x(t)

)
, t ∈ [0, 1],

x(0) − 1
2

(
cD1/2x(0)

)
= 2.5,

2x(1) +
1
3

(
cD1/2x(1)

)
= −1

3
,

(5.1)

where α = 3/2, β = 3/4, γ = 1/2, a1 = 1, b1 = −1/2, c1 = 2.5, a2 = 2, b2 = 1/3, c2 = −1/3, T = 1,
and F : [0, 1] × R × R → P(R) is a multivalued map given by

F
(
t, x, y

)
=

{

u ∈ R : e−|x| −
∣∣y

∣∣

1 +
∣∣y

∣∣ + sin t ≤ u ≤ 5 +
|x|

1 + x2
+ 6t3 + cosy

}

. (5.2)

In the context of this problem, we have

∥∥F
(
t, x, y

)∥∥ = sup
{|v| : v ∈ F(t, x, y)} ≤ 7 + 6t3 ≤ 13, for t ∈ [0, 1], x, y ∈ R. (5.3)

It is clear that F is convex compact valued and is of Carathéodory type. Let m(t) ≡ 1 and
ϕ(|x|) ≡ 3, ψ(|y|) ≡ 10; we get for t ∈ [0, 1], x, y ∈ R

∥∥F
(
t, x, y

)∥∥ = sup
{|v| : v ∈ F(t, x, y)} ≤ m(t)

(
ϕ(|x|) + ψ(∣∣y∣∣)). (5.4)
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As for the condition (3.6), since P + (ϕ(|x|) +ψ(|y|))‖m‖L∞Q = P + 13Q (P ,Q defined in (3.6))
is a constant, we can choose L large enough so that

L

P +
(
ϕ(L) + ψ(L)

)‖m‖L∞Q
> 1. (5.5)

Thus, by the conclusion of Theorem 3.1, the boundary value problem (5.1) has at least one
solution on [0, 1].

Example 5.2. Consider the following fractional differential inclusion with integral boundary
conditions:

cD7/4x(t) ∈ F
(
t, x(t), cD1/2x(t)

)
, t ∈ [0, 1],

3x(0) +
1
3
x(1) =

∫1

0
g(s, x(s))ds,

2
(
cD1/4x(0)

)
+ 3

(
cD1/4x(1)

)
=

1
4

∫1

0
h(s, x(s))ds,

(5.6)

where α = 7/4, β = 1/2, γ = 1/4, T = 1, a1 = 3, b1 = 1/3, c1 = 1, a2 = 2, b2 = 3, c2 = 1/4,

F
(
t, x, y

)
=

[

−l1(t) − sinx

(4 + t)2
− 2,− 1

10

]
⋃

[

0,
1
16

∣∣y
∣∣

1 +
∣∣y

∣∣ + l2(t)

]

,

g(t, x) =
1

(3 + t)2
cosx, h(t, x) = x,

(5.7)

and l1, l2 ∈ L1([0, 1],R+).
From the data given above, we have for t ∈ [0, 1], x, y ∈ R,

sup
{|u| : u ∈ F(t, x, y)} ≤ 3 +

1

(4 + t)2
+ l1(t) + l2(t),

h
(
F
(
t, x1, y1

)
, F

(
t, x2, y2

)) ≤ 1

(4 + t)2
|x1 − x2| + 1

16
∣∣y1 − y2

∣∣,

∣∣g(t, x) − g(t, y)∣∣ ≤ 1

(3 + t)2
∣∣x − y∣∣, ∣∣h(t, x) − h(t, y)∣∣ ≤ ∣∣x − y∣∣.

(5.8)

Then letm2(t) = 1/(3 + t)2,m3(t) = 1, andm(t) = 1/16 + 1/(4 + t)2; we have

h
(
F
(
t, x1, y1

)
, F

(
t, x2, y2

)) ≤ m(t)
(|x1 − x2| +

∣∣y1 − y2
∣∣),

‖m‖L∞Q1 + ‖m3‖L1R1 + ‖m2‖L1W1 ≤ 1
8
× 3.1071 + 1 × 0.1707 +

1
9
× 3
10

= 0.5924 < 1.
(5.9)
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Here Q1 is defined by (3.22) and R1, W1 are defined by (4.12). Hence all the assumptions of
Theorem 4.8 are satisfied, and by the conclusion of it, the boundary value problem (5.6) has
at least one solution on [0, 1].
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