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We consider the 3D fluid system with the linear Soret effect. We obtain a logarithmically improved
regularity criterion in the BMO space.

1. Introduction and Main Results

In this paper, we consider the regularity of the following fluid system with the linear Soret
effect:

u+u-Vu+VP=(0+d)es, (x,1) €R®x(0,00),
6 +u-VO-A0 =0,
i +u-Vo—Ap= A6, (1.1)
V-u=0,
u(x,0) =up, 0(x,0)=60y, ¢(x,0)=do,
where u = (u!(x,t), u?(x,t), u>(x,t)) denotes the fluid velocity vector field, P = P(x, t) is the
scalar pressure, 0(x, t) is the scalar temperature, and ¢ is the concentration field, ez = (0,0, 1)T,
while ug, 6y, and ¢y are the given initial velocity, initial temperature, and initial concentration,

respectively, with V -1 = 0. The term A0 in (1.1) is the linear Soret effect (see page 102 in [1],
[2-4]).



2 Abstract and Applied Analysis

The question of global existence or blow-up in finite time of smooth solutions for the
3D incompressible Euler or Navier-Stokes equations has been one of the most outstanding
open problems in applied analysis, as well as that for the 3D incompressible magnetohydro-
dynamics (MHD) equations. This challenging problem has attracted significant attention. In
the absence of the global well-posedness, the development of blow-up or non-blow-up theory
is of major importance for both theoretical and practical purposes.

When 6 = ¢ = 0, (1.1) is the well-known Euler system, Beale-Kato-Majda [5] and
Kozono-Taniuchi [6] showed the following regularity criteria, respectively:

Vxuel! <O,T;L°°<R3>>,
(1.2)
V x u € L'(0, T; BMO).

When ¢ = 0, (1.1) is the well-known Boussinesq system with zero viscosity, Fan and
Zhou [7] proved the following blow-up criterion:

vxuel'(0,T;B,,(R)). (1.3)

Here BY, . denotes the homogeneous Besov space.

Recently, Chan and Vasseur [8] and Zhou and Lei [9] proved some logarithmically
improved regularity criterion for the 3D Navier-Stokes equations. Qiu et al. [10] obtained
Serrin-type blow-up criteria of smooth solution for the 3D viscous Boussinesq equations.
They showed that smooth solution (u(:,t),0(-,t)) for 0 < t < T remains smooth at time t =T,
provided that the following condition holds:

T
IV x u|lgpo

0 \/ln(e + IV x ullpmo)

dt < co. (1.4)

Motivated by the previous results on the regularity criteria of the fluid dynamics equations,
the purpose of this paper is to establish a logarithmically improved regularity criterion in
terms of the vorticity field for (1.1) in the BMO space, which is defined in Section 2.

Now we state our main results as follows.

Theorem 1.1. Let T > 0, and (uo(x),00(x), Po(x)) € H>(R®) with divug = 0 in R, Assume that
(u, 0, @) is a local smooth solution of (1.1). Then the solution (u, 0, ¢) can be smoothly extended after
time t = T provided that (1.4) is satisfied.

Remark 1.2. In the process of proof in [7, 10], they used the important fact that
101l < 1160l - (1.5)
Due to the linear Soret effect, we cannot prove

ol <C (1.6)
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Thus the method in [7, 10] cannot be used here. We need new interpolation inequal-
ities.

Remark 1.3. In [10], authors researched the regularity for the 3D viscous Boussinesq equations
under condition (1.4). However, when ¢ = 0, (1.1) is the well-known Boussinesq system with
zero viscosity, so our results improve result of [10].

2. Preliminaries and Lemmas

First, we recall some definitions and lemmas, which play an important role in studying the
regularity of solution to partial differential equations.

Definition 2.1. BMO denotes the space of functions of bounded mean oscillation of John and
Nirenberg associated with the norm

A
(z)dz|d (2.1)
oo = xe]R R>0|BR(X)| Br(x) )= |BR(x)| BR(x) / Y
In order to prove Theorem 1.1, we need the following Gagliardo-Nirenberg inequality.
Lemma 2.2. There exists a uniform positive constant C > 0 such that
i i/m) i/ .
194]] 0. < A 1977127, 0 <i<m 22)

holds for all f € L*(R™) N H™(R").

Lemma 2.3 (see [9]). There exists a uniform positive constant C > 0 such that

19 < (117l 19 Flonio (e + 1) ): 23

Lemma 2.4 (see [11]). The following calculus inequality holds:

Asl

14 (f8) = A8l < (19 N, 1Al lgll ). (24)

La1

withs >0, A* = (~A)?and 1/p =1/pr +1/q1 = 1/p2 + 1/ qs.

Lemma 2.5 (see [12]). In three-dimensional space, the following inequalities

1/3
VAl <ClfIEE ,
1/4 3/4
£l < ClIfIl2 , (2.5)
/
I£1 < ClIfFI

hold.
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3. Proofs of the Main Results

In this section, we prove Theorem 1.1.

Proof of Theorem 1.1. Multiplying both the sides of the second equation of (1.1) by 6 and the
third equation of (1.1) by @, respectively, and integrating by parts over R?, we obtain

di||9||§2 +I |VO|*dx =0, (3.1)
t -

N —

1d
3ol [ 1vpPax< [ |vgPax+ ;[ |vpPax 62
R3
Combining (3.1) with (3.2), and using Gronwall’s inequality, we infer that

||9||Lw(0,T;L2) + ||9||L2(0,T;H1 G

”‘f’”Lw(OTLZ) + ||¢||L2(0TH1) C.

(3.3)

Multiplying both the sides of the first equation of (1.1) by u, and integrating by parts
over R?, by (3.3), we get

d
Sl = [ @+ ges-uatx < 0+l lls < Chls, (34

N =

which implies
el 0,722) < C- (3.5)

Next we go to estimate L?-norm of Vu, V6 and V¢. Multiplying the first equation, the
second equation and the third equation of (1.1) by —Au, —A6, and —A¢, respectively, then
integrating by parts over R?, we deduce that

%%”Vu”iz = —Z I a]'ui . aiu . ajudx + J V((e + ¢)€3)V‘Li dx
i R3 R3

(3.6)
< UVl [Vl + (1901 + | IVl
1d
3 VO + 186 = -3, [ duoeo,0dx < CIvul Vel @)
ij
1d 2 5
SNVl + A5 == | djuidipd;pdx— | ABApdx
2 dt
e “ (3.8)

< CIVul |V + 5 (1I1861F: + | Ad]2).
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Now combining (3.6), (3.7) with (3.8) and using Gronwall’s inequality, we obtain
IVuC, I + 190C, Ol + [V, D]l

t (3.9)
< (IVa) 172 + IVO(E) T + [Vt [I7. )exp®n 1=,

Noting (1.4), one concludes that for any small constant € > 0, there exists T* < T such that

g IV x ullgppmo

T \/ln(e +[IV x ullgpmo)

dt < e. (3.10)

Set
3 2 3 2 3 2
A(t) = sup <HA u(.,r)” 7t ||A 6(.,7-)” L+ ”A P(,7) 2>, (3.11)
T*<r<t L L L
where AS = (-=A)*/2.
It follows from (3.9), (3.10), and Lemma 2.3 that
Va1 + IVOCDIE: + [V, D7
< Clexpcﬁ* V1]l oo s
(3.12)
< CleXpCosln(e+A(t))

<Cile+ A1), T <t<T,

where C; depends on ||Vu(T*)|Z, + [[VO(T*)|Z, + [[V$(T*)||2,, and C is an absolute positive
constant.

Finally we go to estimate for H3>-norm of u, 6, and ¢. Applying the operation A® on
both the sides of the first equation of (1.1), then multiplying A%y, and integrating by parts
over R3, by (2.4), (3.12), Holder’s inequality, and Young’s inequality, we have

lif
234t )

2
A3u' <—I [A3(u-Vu)—u-VA3u]A3udx+f N0 +¢)es- Nudx
R3 R3

< avule- |2, + ([ae] .+ [ )| 42w, 613)
< civul ol + el + g+ o],

< C([Vullp= + 1) (e + A(H))-



6 Abstract and Applied Analysis

Similarly, by (2.4), Holder’s inequality, and Young's inequality, we obtain

1d
A3 2 A4 2d
o¥ T, f 0] + IRS 0|°dx
- f [Az(u VO) - u- VA29] A% dx
R3 (3.14)
< Cl|Vull- 140112 | A*6| , + Cllaull VOl A%
= A + As.
Combining Lemma 2.5, Young’s inequality with (3.12), we deduce
Ay < CJ|Vul| | VOIS
||A4 ,+ ClIVull. VoIl
s (3.15)
< w6l + crvudnvulZ| au ver,
2
<3 ||A49 L+ CllVull (e + A®) A4 ).
Using Lemmas 2.2 and 2.5, Young's inequality, and (3.12), we obtain
< ClIvull2? ||ve||3/4
4/3
||A49H e vl | 1ol
. (3.16)
< 3|lwel}, + vl au v,

2
p +C||Vu||Lw(e+A(t))(25/24)C06A19/24(t).

<l

Inserting the above estimates A, and Az into (3.14), we get

1d 2 1
FINLCRTIN

< ClIVullpe (e + AW) VD AYAE) + Cl|Vull e (e + A@) PPIDCAPZ () (317

2
9| dx

< Cl[Vul| - (e + A(t))
< C(IVullp- + 1) (e + A(t)),

provided that Coe < 1/5, which can be achieved by the absolute continuous property of
integral (1.4).
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Similarly, for the ¢-equation, we have

1d s 2 1
zafR3A¢| +1fR3

1 2
< Vil o (e + A() 5D A3/A(1) + Cl| V|| o (e + A(t)) B/20C0e A19/24 (1) 5 J |A49| dx
R’%

A4qb|2dx

2
< C||\ Vil (e + A(H)) + 1[ |A49| dx
2 )

2
< CIVull + e+ A®) + 2 f || dx.
]R3

(3.18)

Combining (3.13), (3.17) with (3.18), we easily conclude that

alf el = el <[ el

S C(IVullp= + 1) (e + A()).

(3.19)

By Lemma 2.3 and (3.19), we infer that

%ln(e + A1) < C(I V] + 1)

< c(1 +1V % llgyo\/Ine + ||u||Hs>)
IV % ullgpo >
<Cl1+
< VIn(e + IV x tllgyo) (3:20)

)

IV > ullgmo
< C<1 + N GEINETYS) > [1+In(e+ A(t))].

X

1+ ln(e + ||A3u||; + ||A39||; +[|a%

Using Gronwall’s inequality, we have

(s Jaul, + [ + o],

< ln(||u(T*)||H3 +[10(T*) || g5 + ||q’)(T*) ”H3)eXpC(T+fTT*(HVXHIIBMO/\/ln(6+|\‘7><u||BMo))dt).
(3.21)
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Therefore, ||u||gs + 10||ms + [|$]| 2 can be bounded provided that

T

\%
IV > ullgvio < . (3.22)
T \/ln(e +[IV x ullpumo)
This completes the proof of Theorem 1.1. O

Appendix
In this section, we give the following local well-posedness of the system (1.1).

Theorem A.1 (local well-posedness). Let s >3/2+1, and (ug, 0o, ¢o) € H*(R?). Then there exist
T > 0 and a unique solution (u, 0, ¢) of the system (1.1) such that

ue C([o, T|; H® (R3>), (6,9) € c([o, T]; H® <R3>> n L2<0, T; H**! <R3)>. (A1)

Proof. The proof is similar to Theorem 3.1 in [4, 13], so we omit it here. O
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