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The nonlinear boundary value problem describing the nanoboundary-layer flow with linear
Navier boundary condition is investigated theoretically and numerically in this paper. The G′/G-
expansion method is applied to search for the all possible exact solutions, and its results are then
validated by the Chebyshev pseudospectral differentiation matrix (ChPDM) approach which has
been recently introduced and successfully used. This numerical technique is firstly applied and, on
comparing with the other recent work, it is found that the results are very accurate and effective
to deal with the current problem. It is then used to examine and validate the present analytical
analysis. Although the G′/G-expansion method has been used widely to solve nonlinear wave
equations, its application for nonlinear boundary value problems has not been discussed yet, and
the present paper may be the first to address this point. It is clarified that the exact solutions
obtained via the G′/G-expansion method cannot be obtained by using some of the other methods.
In addition, the domain of the physical parameters involved in the current boundary value
problem is also discussed. Furthermore, the convex, vicinity of zero, and asymptotic solutions
are deduced.

1. Introduction

At nanoscale diameters, it was shown in an interesting paper by He et al. [1] that a fascinating
phenomena arise when the diameter of the electrospun nanofibers is less than 100 nm.
The nanoeffect has been demonstrated for unusual strength, high surface energy, surface
reactivity, and high thermal and electric conductivity.

The notion of a boundary layer was first introduced by Prandtl [2] over a hundred
years ago to explain the discrepancies between the theory of inviscid fluid flow and exper-
iment. In the classical boundary-layer theory, the condition of no-slip near the solid walls
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is usually applied, where the fluid velocity component is assumed to be zero relative to
the solid boundary. However, this is not true for fluid flows at the micro- and nanoscale.
Investigations show that the no-slip condition is no longer valid, and instead, a certain
degree of tangential slipmust be allowed [3]. In words, nanoboundary-layer fluid flowsmean
nanoscale flows which have many applications in microelectromechanical systems. Because
of the microscale dimensions of these devices, the fluid flow behavior deviates significantly
from the traditional no-slip flow. In recent years, some interest has been given to the study
of this type of flow, and some useful results have been introduced by many authors, see, for
example, [4–12].

In this paper we consider themodel proposed byWang [8] to describe the viscous flow
due to a stretching surface with both surface slip and suction (or injection). He considered
two geometries situations, namely, the two-dimensional and axisymmetric of a stretching
surface. Wang [8] applied a similarity transform to convert the Navier-Stokes equations into
a 3rd-order nonlinear ordinary differential equation given by

f ′′′(η
)
+mf

(
η
)
f ′′(η

) − [
f ′(η)

]2 = 0, (1.1)

where m is a parameter describing the type of stretching, where m = 1 describes the two-
dimensional stretching, while m = 2 is for axisymmetric stretching. The flow is subjected to
the following boundary conditions:

f(0) = s, f ′(0) = 1 + λf ′′(0), f ′(∞) = 0, (1.2)

where λ > 0 is a nondimensional slip parameter, and s < 0 when injection from the surface
occurs and s > 0 for suction.

During the past two decades, much effort has been spent on searching for exact
solutions of nonlinear equations due to their importance in understanding its phenomena.
In order to achieve this goal, various direct methods have been proposed, such as tanh-
function [13], Jacobi-elliptic function [14], F-expansion [15], exp-function ([16–20]), the
generalized exp-function [21], G′/G-expansion ([22, 23]), generalized G′/G-expansion [24],
and simplified G′/G-expansion [25]. However, a little attention was devoted for their
applications to solving nonlinear boundary value problems (BVPs). It should be noted that
the current work may be the first to indicate the way of applying theG′/G-expansion method
to solve BVPs, where the advantages of the current method over some of the other ones
mentioned above are clarified later in this paper.

In order to solve the BVP given by (1.1) and (1.2), Van Gorder et al. [11] applied the
homotopy analysis method. They have also discussed the effects of the slip parameter λ and
the suction parameter s on the fluid velocity and on the tangential stress. As expected, they
found that for such fluid flows at nanoscales, the shear stress at the wall decreases (in an
absolute sense)with an increase in the slip parameter λ. The existence and uniqueness results
for each of the two problems were discussed in [8, 9] along with some numerical results.

It is well known that the exact solutions of nonlinear differential equations are not
available in most cases, the reason we sometimes resort to implement accurate numerical
methods instead. However, the numerical methods as declared by Rashidi and Erfani [10]
gave discontinuous points of a curve, and thus, they are often costly and time consuming to
get a complete curve of results. In addition, the stability and convergence of these methods
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should be considered to avoid divergence or inappropriate results; the numerical method
should be therefore chosen carefully.

Chebyshev pseudospectral differentiation matrix (ChPDM) approach has been intro-
duced successfully and applied by Aly et al. [26] to analyze the two-dimensional MHD
boundary-layer flow over a permeable surface, with a power law stretching velocity, in the
presence of a magnetic field applied normally to the surface. Under certain circumstances, it
is shown that the problem has an infinite number of solutions which have been examined by
this technique. Recently, Guedda et al. [27] have applied this method to validate and evidence
the analysis of two-dimensional mixed convection boundary-layer flow over a vertical flat
plate embedded in a porous medium saturated with a water at 4◦C (maximum density) and
an applied magnetic field. Both cases of the assisting and opposing flows are considered.
Multiple similarity solutions are obtained and investigated by ChPDM under the power law
variable wall temperature, or variable heat flux, or variable heat transfer coefficient. Very
recently, Aly et al. [28] have investigated the effect of magnetic field on viscoelastic fluid
flow in boundary-layer through porous media by applying the ChPDM, where the resulting
equations for the similar stream function, velocity, and skin friction coefficient were discussed
for various parameters. It is found that the results were more accurate than those in the
literature.

The motivation of this paper is therefore to extend the applications of both the G′/G-
expansion method and the ChPDM to solve nonlinear BVPs with nonclassical boundary
conditions, where the ChPDM is modified to treat both the infinity and the mixed boundary
conditions in a direct manner. With this modification, we are able to obtain very accurate
numerical results as will be shown later. The procedure we followed in this paper is found
effective in studying the current BVP and may be useful for similar nonlinear problems.
The suggested procedure is based first on obtaining all the possible exact solutions together
with prescribing the domains of the physical parameters. The second step of the suggested
procedure is to validate these results numerically to explore the effectiveness and efficiency
of the proposed numerical approach. Besides, comparisons with other published results are
also presented, where a full agreement is observed. Moreover, various types of solutions such
as the convex, vicinity to zero, and asymptotic are also obtained.

2. Previous Results

In this section, we report some previous results obtained for (1.1) and (1.2). At m = 1 and
s = λ = 0, Crane [29] gave the exact solution

f
(
η
)
= 1 − e−η. (2.1)

At arbitrary values of λ and s, Wang [8] obtained a solution in the following form:

f
(
η
)
= γ − (

γ − s
)
e−γη, (2.2)

where γ is the positive root of the cubic equation

λγ3 + (1 − λs)γ2 − sγ − 1 = 0. (2.3)
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When there is no suction, (2.2) reduces to that of Andersson [30]. Moreover, when there is no
slip, it reduces to that of P. S. Gupta and A. S. Gupta [31]. Finally, Crane’s solution [29] was
recovered when both suction and slip are absent.

3. Validation of ChPDM Technique

A new numerical technique, namely, Chebyshev pseudospectral differentiation matrix
(ChPDM), introduced byAly et al. [26, 28] andGuedda et al. [27], has been briefly introduced
in this section. On supposing that the domain of the problem is [0, η∞], then the following
algebraic mapping:

z =
2η
η∞

− 1 (3.1)

transfers the domain to the Chebyshev one, that is, [−1, 1]. It is known that the Chebyshev
polynomials are usually taken with their associated collocation points in the interval [−1, 1]
given by

zj = cos
( π

N
j
)
, j = 0, 1, . . . ,N. (3.2)

Therefore, the kth derivative of any function, say F(z), at these collocation points can be
approximated by the equation

F(k) = D(k)F, (3.3)

where D(k)F is the Chebyshev pseudospectral approximation of F(k) where F =
[F(z0), F(z1), . . . , F(zN)]T and F(k) = [F(k)(z0), F(k)(z1), . . . , F(k)(zN)]T . The entries of the
matrix D(k) are given by

d
(k)
i,j =

2θj
N

N∑

r=k

r−k∑

n=0
(n+r−k)even

θrb
k
n,r(−1)[(rj+ni)/N]zrj−N[rj/N]zni−N[ni/N], (3.4)

where θj = 1, except for θ0 = θN = 1/2 and

bkn,r =
2kr

(k − 1)!cn
(v − n + k − 1)!(v + k − 1)!

(v)!(v − n)!
, (3.5)

where 2v = r + n − k and c0 = 2, cj = 1, j ≥ 1. The elements d
(k)
0,1 are the major elements

concerning its values. Accordingly, they bear the major error responsibility compared to the
other elements. It is shown that the error in d

(1)
0,1 is of order O(N2εr), where εr is the machine

precision.
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As shown in [26–28], on applying the new ChPDM approach, the derivatives of the
function f(η) at the points zi are given by

f (k)(zi) =
N∑

j=0

d
(k)
i,j f

(
zj
)
, k = 1, 2, 3, i = 1, 2, . . . ,N. (3.6)

Therefore, (1.1) and (1.2) become

N∑

j=0

d
(3)
i,j f

(
zj
)
+mf(zi)

(η∞
2

) N∑

j=0

d
(2)
i,j f

(
zj
) −

(η∞
2

)
⎛

⎝
N∑

j=0

d
(1)
i,j f

(
zj
)
⎞

⎠

2

= 0,

f(zN) = s,
(η∞

2

) N∑

j=0

d
(1)
N,jf

(
zj
)
=
(η∞

2

)2
+ λ

N∑

j=0

d
(2)
N,jf

(
zj
)
,

N∑

j=0

d
(1)
0,j f

(
zj
)
= 0,

(3.7)

respectively.
Before starting the current analysis, ChPDM approach is therefore applied by using

the system (3.7). Figures 1(a) and 1(b) show the comparison between ChPDM solutions
and homotopy analysis method [11] over the current problem for (a) f(η) and (b) f ′(η) for
various values of the investigated parameters,m, λ, and s. As shown, these figures are exactly
the same as Figures 1(a) and 1(b) given in [11]. In addition, Figures 2(a) and 2(b) show the
results of applying ChPDM approach at λ = 0.5 and λ = 5, respectively, in injection (s < 0)
and suction (s > 0) cases. These figures present exactly the same as Figures 2(c), 3(c), 2(d),
and 3(d), respectively, in [11] and as Figures 2(b) and 4(b), respectively, for λ = 0.5, in [10].
Hence, without any hesitation, ChPDM technique may be applied with highly trust in the
next sections.

4. The Generalized G′/G-Expansion Method

In the next subsections, we introduce the basic concept of the generalized G′/G-function
method. It is then applied to solve the BVP given by (1.1) and (1.2).

4.1. Description of the Method

Consider a given nonlinear ordinary differential equation

N

(

f,
df

dη
,
d2f

dη2
,
d3f

dη3
, . . .

)

= 0. (4.1)
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Figure 1: ChPDM solutions (solid line) and homotopy analysis method (circles) [11] for (a) f(η) and (b)
f ′(η) for various values of the investigated parameters.

The generalized G′/G-expansion method is then based on the assumption that the exact
solution can be expressed in the following form:

f
(
η
)
=

n∑

i=−n
ai

(
G′

G

)i

, (4.2)

where ai /= 0 and G = G(η) satisfy the following second-order linear ODE:

G′′ + σG′ + μG = 0, (4.3)

where σ and μ are constants to be determined. Degree of the polynomial n can be determined
by balancing the highest-order derivative with the highest nonlinear terms. Substituting (4.2)
into (4.1), using the second-order linear ODE (4.3), and then equating each coefficient of the
resulted polynomial to zero yield a set of algebraic equations with respect to ai, σ, and μ.
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Figure 2: ChPDM solutions when m = 2 at (a) λ = 0.5 (exactly same as Figures 2(c) and 3(c) in [11]) and
(b) λ = 5 (exactly same as Figures 2(d) and 3(d) in [11]) for various values of s, in injection and suction
cases.

On solving this algebraic system, we may evaluate the values of unknowns. In addition, the
solutions of (4.3) depend on whether σ2 − 4μ(>, < or =)0:

G′

G
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
σ2 − 4μ

2
tanh

⎛

⎜
⎝

√
σ2 − 4μ

2
η + η0

⎞

⎟
⎠ − σ

2
, σ2 − 4μ > 0,

∣∣tanh
(
η0
)∣∣ > 1

√
σ2 − 4μ

2
coth

⎛

⎜
⎝

√
σ2 − 4μ

2
η + η0

⎞

⎟
⎠ − σ

2
, σ2 − 4μ > 0,

∣∣coth
(
η0
)∣∣ < 1

√
4μ − σ2

2
cot

⎛

⎜
⎝

√
4μ − σ2

2
η + η0

⎞

⎟
⎠ − σ

2
, σ2 − 4μ < 0

C2

C1 + C2η
− σ

2
, σ2 − 4μ = 0

1
−1/σ + beσ η

, μ = 0

√
μ
[
C3 cos

(
η
√
μ
) − sin

(
η
√
μ
)]

cos
(
η
√
μ
)
+ C3 sin

(
η
√
μ
) , σ = 0,

(4.4)

where C1, C2, and C3 are constants.
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4.2. Application to the Problem

As mentioned before, we discuss here the applicability of the generalized G′/G-expansion
method to solve (1.1) and (1.2). On using the ansatz (4.2) and considering the homogeneous
balance between f ′′′(η) and f(η)f ′′(η) or [f ′(η)]2 in (1.1), we get n = 1, so the solution can be
supposed in the form

f
(
η
)
= a0 + a1

(
G′

G

)
+ a−1

(
G′

G

)−1
. (4.5)

By substituting (4.5) and (4.3) into (1.1) and collecting all terms with the same power ofG′/G
and G/G′ together, the left-hand side of (4.3) can be converted into another polynomial in
G′/G and G/G′. Equating each coefficient of this polynomial to zero, we obtain the following
equations:

a−1
[
(2m − 1)a−1 + 6μ

]
= 0,

μa−1
[
(3m − 2)σa1 + 2mμa0 + 12μσ

]
= 0,

a−1
[
(m − 1)

(
σ2 + 2μ

)
a−1 + μ

(
2(m + 1)μa1 + 3mσa0 + 8μ + 7σ2

)]
= 0,

a−1
[
8σμ + σ3 + (m − 2)σa−1 +m

(
σ2 + 2μ

)
a0 + 4(m + 1)σμa1

]
= 0,

a−1
[
mσa0 +

(
σ2 + 2μ

)
(1 + 2(m + 1)a1)

]
− μa1

(
σ2 + 2μ −mσa0 + μa1

)
− a2

−1 = 0,

a1

[
4(m + 1)σa−1 −

(
σ2 + 8μ

)
σ +m

(
σ2 + 2μ

)
a0 + (m − 2)σμa1

]
= 0,

a1

[
2(m + 1)a−1 + (m − 1)

(
σ2 + 2μ

)
a1 + 3mσa0 − 7σ2 − 8μ

]
= 0,

a1[2ma0 + σ((3m − 2)a1 − 12)] = 0,

a1[(2m − 1)a1 − 6] = 0.

(4.6)

Solving the above algebraic equations by usingMATHEMATICA 6 yields the following cases:
(1)

m = 1, μ = 0, a1 = 0, a−1 = σ(σ + a0), f
(
η
)
= −σ + σ(σ + a0)beση, (4.7)

(2)

m = 0, a−1 = 0, a1 = −6, σ2 = 4μ,

f
(
η
)
= s +

3η
8γ2 + 2γη

, where 16γ2 − 6γ − 3λ = 0,
(4.8)
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(3)

m = −1, a−1 = 2μ, a0 = 0, a1 = −2, Γ = ±
√
s2 − s3λ

√
2 + s2(−1 + sλ)

,

f
(
η
)
=

s

Γ

(
Γ + tan

(
(s/2Γ)η

)

1 − Γ tan
(
(s/2Γ)η

)

)

.

(4.9)

This is valid in the case of σ = 0, where the expression under the root of Γ should be a negative
to avoid the singularity of the trigonometric function tan((s/2Γ)η):

(4)

m = −1, a0 = σ, a1 = 0, a−1 = 2μ,

f
(
η
)
= σ − 4μ

σ −
√
σ2 − 4μ tanh

[(√(
σ2 − 4μ

)
/2

)
η + η0

] ,
(4.10)

(5)

σ2=4μ, a0=
3σ

1 − 2m
, a1=0, a−1=

6μ
1 − 2m

,

f
(
η
)
=

6σC2

(2m − 1)
(
C1σ − 2C2 + σC2η

) .
(4.11)

Remark 4.1. It should be noted that Fang et al. [32] studied recently the viscous flow over a
shrinking sheet with a second-order slip flowmodel. It is observed in their paper that the full
Navier-Stocks equations reduce to the same nonlinear ordinary differential equation given
by (1.1) in the present paper atm = 1. However, boundary conditions are slightly different at
the second one and given in [32] as

f(0) = s, f ′(0) = −1 + λf ′′(0) + δf ′′′(0), f ′(∞) = 0. (4.12)

In fact, we can easily deduce the exact solution of the model in [32] by using some of our
results as follows. In particular, the exact solution of equation (7) in Fang et al. [32] is already
obtained in the current paper and given by (4.7) as

f
(
η
)
= −σ + σ(σ + a0)beση. (4.13)

The third boundary condition at infinity is satisfied if σ is replaced by −β, where β > 0.
Therefore, the exact solution takes the form

f
(
η
)
= −β + β

(
β − a0

)
be−βη, (4.14)

where a0 and b are unknown parameters determined by applying the boundary conditions
(4.12). So, a0 and b are obtained by solving two resulted algebraic equations. Therefore, by
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substituting their values into (4.14), we get the same results given by equations (11) and
(12) in [32]. Here, it may be important to refer to the importance of the present result in
(4.7) which can be used to obtain many exact solutions for different models with different
boundary conditions. We just apply the boundary conditions to (4.7), and the exact solution
is immediately resulted.

The advantages of the generalized G′/G-expansion method over some of the other
methods are clarified at the end of the next section.

5. Exact and Numerical Solutions

It is important here to mention that the exact solutions in (4.8) and (4.9) are both in the
final form as they satisfied all the boundary conditions. For the other cases (4.7), (4.10), and
(4.11), the boundary conditions are applied to construct more possible exact analytical and
numerical solutions of the current boundary value problem. On the spirit of [9], wheremwas
examined for anym > 0, and to study the possibility of a general solution for the BVP system
(1.1) and (1.2), it should be noted that the values of m, s, and λ have been considered as any
parameters in the following subsections.

Case 1 (at m = 1). Applying the first two boundary conditions to the solution given by (4.7),
it then follows that

−σ + σ(σ + a0)b = s, (5.1)

λσ3(σ + a0)b − σ2(σ + a0)b + 1 = 0. (5.2)

By solving (5.1) for a0 and then substituting it into (4.7) and (5.2), respectively, we obtain the
closed form solution

f
(
η
)
= −σ + (σ + s)eση, (5.3)

where σ satisfies the cubic equation

λσ3 − σ2(1 − λs) − σs + 1 = 0. (5.4)

From (5.3), it should be noted that the third boundary condition at infinity is satisfied
providing that σ is negative. So, σ has to be a negative root of (5.4). Alternatively, the solution
can be written as

f
(
η
)
= σ − (σ − s)e−ση, (5.5)

where σ is a positive root of the cubic equation

λσ3 + σ2(1 − λs) − σs − 1 = 0. (5.6)

The solution given by (5.5) and (5.6) is the same solution reported in [8]. Figures 3(a) and
3(b) show comparison between the solution of ChPDM and G′/G-expansion techniques for
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Figure 3: Profiles of the similar stream function f(η) as a function of η at m = 1 for (a) s = 1, λ = 0.5 and
(b) s = 0, λ = 1, solid and dashed lines are for ChPDM and G′/G-expansion solutions, respectively.

(η, f(η)) plane at m = 1 for (a) s = 1, λ = 0.5 and (b) s = 0, λ = 1. It can be seen from this
figure that the solutions are identical and matching with those results in [11].

Convex Solution. In the current value of m and at λf ′′(0) = −2, we set f = g + k where k ∈ R,
then f is a solution of (1.1) and (1.2) if and only if g satisfies

g ′′′ + kg ′′ =
(
g ′)2 − gg ′′, (5.7)

g(0) = s − k, g ′(0) = −1, g(∞) = 0. (5.8)

We are now looking for functions g such that both hand sides of (5.7) vanish. For s ≥ 2, we
get that the functions f1, f2 : [0,∞) → R given by [33]

fi(x) = Ki +
1
Ki

e−Kix for i = 1, 2 (5.9)

with K1,2 = (1/2)(s ∓
√
s2 − 4) are convex solutions of (1.1) and (1.2).

Case 2 (at m = 0). In this case, we obtain the following closed-form solution:

f
(
η
)
= s +

3η
8γ2 + 2γη

, (5.10)

where γ is a real root of the following cubic equation:

16γ3 − 6γ − 3λ = 0. (5.11)

Figures 4(a) and 4(b) show comparison between the solution of ChPDM andG′/G-expansion
techniques for (η, f(η)) plane atm = 0 for (a) s = 1, λ = 0.5 and (b) s = 0, λ = 1. In this figure,
the solutions are very closed for η in the range [0, 20] and slightly closed in the range [20, η∞].
The solution of the present case is physically acceptable at a certain range for λ, which is
discussed in the following lemma.
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Figure 4: Profiles of the similar stream function f(η) as a function of η at m = 0 for (a) s = 1, λ = 0.5 and
(b) s = 0, λ = 1, solid and dashed lines are for ChPDM and G′/G-expansion solutions, respectively.

Lemma 5.1. The given solution by (5.10) and (5.11) is valid and unique only if λ ∈]√2/3,∞[.

Proof. To get the range of λ at which the solution (5.10) is unique, γ should satisfy the
condition of obtaining only one real root for the cubic equation aγ3 + bγ + c = 0, which is
well known as

4b3 − 27ac2 < 0. (5.12)

Inserting a = 16, b = −6, and c = −λ into (5.12) yields

2 − 9λ2 < 0. (5.13)

On noting that λ > 0, it follows from (5.13) that λ >
√
2/3, and this completes the proof.

Case 3 (at m = −1).

(1) When σ = 0.

As mentioned before, the solution of this case is given in the final form by (4.9).
However, it should be noted that λ and s are to be chosen so that Γ is complex to avoid
the singularities of tan((s/2Γ)η). For more specification, we can write the solution in the
following simplest form:

f
(
η
)
=

s

Λ

[
Λ − tanh

(
(s/2Λ)η

)

1 −Λ tanh
(
(s/2Λ)η

)

]

, where Λ =

√
λs3 − s2

λs3 − s2 + 2
, Γ = iΛ. (5.14)
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Figure 5: Existence four domains of (5.14) and (5.15) in the parameter plane (λ, s) at m = −1 and σ = 0.

Therefore, λ and s have to be specified such that

s3 − s2 + 2 < 0, λs3 − s2 < 0, s3 − s2 + 2 > 0, λs3 − s2 > 0. (5.15)

Figure 5 presents then existence domain of (5.14) and (5.15) in the parameter plane (λ, s) in
the ranges [−5, 5] and [−3, 3] for λ and s, respectively.

It is observed from the solution given above that it posses singular points. These
singularities can be obtained by

ηsingular =
2Λ
s

arctanh
(

1
Λ

)
. (5.16)

For given values of λ and s, we can find the singular points of the solution. However, f(η)
must be continuous in the domain of definition [0,∞[ of the current BVP. This means that
the solution at some given values of the parameters λ and s is physically acceptable if the
singularities lie outside the physical domain, that is, ηsingular should be negative.

Figures 6(a)–6(e) and 7(a)–7(d) present profiles of the similar stream function f(η)
as a function of η at the case under consideration for some values of (λ, s) in the regions R1

and R2, respectively. These figures show that the ChPDM and G′/G-expansion solutions are
identical inside the domains with slightly difference as η → ∞ near the boundaries of R1 and
R2. However, it is found that for any chosen values of λ and s in R3, the singular points lie
within the domain of interest [0,∞[, and hence, the solution is discontinuous in the physical
domain. Table 1 shows singularities in R3 for some values of λ and s. It should be also noted
that the behaviour of the solutions in R4, as λ becomes negative, inverses those in R1, as
shown in Figure 8. However, more investigations regarding these regions may be taken into
account as a future work.
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Figure 6: Profiles of the similar stream function f(η) as a function of η at m = −1, σ = 0 in R1 for (a)
λ = −0.1 and s = −2.5, (b) λ = 0.5 and s = −2, (c) λ = 1 and s = −3, (d) λ = 2 and s = −2, and (e) λ = 5 and
s = −1, where solid and dashed lines are for ChPDM and G′/G-expansion solutions, respectively.

(2) When σ /= 0.

Using the first two boundary conditions to the solution given by (4.10) yields

σ − 4μ

σ −
√
σ2 − 4μ tanh

(
η0
) = s, (5.17)

(
σ cosh

(
η0
) −

√
σ2 − 4μ sinh(η0)

)3

= 2μ
(
4μ − σ2

)[(
σ + 4λμ − λσ2

)
cosh

(
η0
)
+ (λσ − 1)

√
σ2 − 4μ sinh

(
η0
)
]
.

(5.18)
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Figure 7: Profiles of the similar stream function f(η) as a function of η at m = −1, σ = 0 in R2 for (a) λ = 2
and s = 1, (b) λ = 3 and s = 2, (c) λ = 4 and s = 1, and (d) λ = 5 and s = 3, where solid and dashed lines
are for ChPDM and G′/G-expansion solutions, respectively.

0 1 2 3 4 5 6

η

−2.15

−2.1

−2.05

−2

−1.95

−1.9

f
(η
)

R1

R4

λ = 2, s = −2

λ = −2, s = −2

Figure 8: Profiles of the similar stream function f(η) as a function of η atm = −1, σ = 0 in R1, for λ = 2 and
s = −2, and R4, for λ = −2 and s = −2, where solid and dashed lines are for ChPDM and G′/G-expansion
solutions, respectively.

By solving (5.17) for η0, we get

η0 = tanh−1

⎛

⎜
⎝

σ(s − σ) + 4μ

(s − σ)
√
σ2 − 4μ

⎞

⎟
⎠. (5.19)
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Table 1: Some values of λ and swith their singularities in R3.

λ s ηsingular

0.2 2 1.16
0.1 3 0.95
−0.1 2 1.32
−0.1 3 1.12
−1 2 1.69
−3 2 2.07
−4 1 2.66

By substituting η0 from (5.19) into (5.18) and solving the resulted equation for σ, we obtain

σ = ±
√

λs3 − s2 + 2 + 4μ(λs − 1)
λs − 1

. (5.20)

Therefore, the exact solution in this case, m = −1, is given by f(η) in (4.10), where η0 and σ
are defined by (5.19) and (5.20), respectively. This solution can be easily checked by a direct
substitution.

Case 4 (a fractional m). Proceeding as above, we obtain the following equations from
applying the first two boundary conditions to the solution f(η) in (4.11):

6σC2

(2m − 1)(C1σ − 2C2)
= s, (5.21)

(2m − 1)(C1σ − 2C2)3 = 6σ2C2
2[σC1 + 2(λσ − 1)C2]. (5.22)

By solving (5.21) for C1 and substituting the result into f(η) in (4.11) and (5.22), then the
following exact solution can be derived:

f
(
η
)
=

6s
6 + (2m − 1)sη

, (5.23)

provided that m, λ, and s are related by the equation

λ(2m − 1)2s3 + 3(2m − 1)s2 + 18 = 0. (5.24)

The solution given by (5.23) and (5.24) can be also checked by a direct substitution.

Lemma 5.2. From (5.24), it is observed that λ > 0 at the following cases:

(i) at 0 < m < 1/2 when s ∈]
√
−6/(2m − 1),∞[,

(ii) at m > 1/2 when s < 0,

(iii) at m < 0 when s ∈]
√
6/(1 − 2m),∞[∪] −

√
6/(1 − 2m), 0[.
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Proof. On solving (5.24) for λ, we then get

λ = −3(2m − 1)s2 + 18

(2m − 1)2s3
. (5.25)

(i) At 0 < m < 1/2, this leads to 3(2m − 1)s2 < 0. Now setting 3(2m − 1)s2 + 18 < 0,
we obtain s2 > −6/(2m− 1), that is, s ∈]−∞,−

√
−6/(2m − 1)[

⋃
]
√
−6/(2m − 1),∞[.

However, s ∈] −∞,−
√
−6/(2m − 1)[⇒ λ < 0 and s ∈]

√
−6/(2m − 1),∞[⇒ λ > 0.

(ii) When m > 1/2, this means that 3(2m − 1)s2 + 18 >, for all s ∈ �. In this case, the
denominator in (5.25) should be negative so that λ > 0. Hence, s must be negative
real number, that is, s < 0.

(iii) Here, we may rewrite λ in (5.25) as

λ =
3(1 − 2m)s2 − 18

(2m − 1)2s3
. (5.26)

At m = 0, we note that 3(1 − 2m)s2 > 0. Therefore, λ is positive if the numerator and
denominator have the same sign, that is, the following conditions have to be held:

3(1 − 2m)s2 − 18 > 0, s > 0, 3(1 − 2m)s2 − 18 < 0, s < 0. (5.27)

On solving the inequalities in (5.27), we obtain the range of s as

s ∈
⎤

⎦

√
6

1 − 2m
,∞

⎡

⎣
⋃

⎤

⎦−
√

6
1 − 2m

, 0

⎡

⎣. (5.28)

5.1. Important Remark: G′/G-Expansion Method Over the Others

Here, we aim to show that the exact solutions obtained in the previous subsections cannot
be achieved by using some other methods. Ebaid [18] pointed out that the Jacobi-elliptic
function and F-expansion methods cannot be used to search the exact solutions for nonlinear
differential equations that include both odd and even-order derivative terms. However,
He indicated the applicability of the standard exp-function method to solve such kind of
equations. Despite this ability, on applying the exp-function method [17] to solve (1.1) and
(1.2), it does not provide any of the exact solutions obtained by the current method. To clarify
this point, this method is applied to the present BVP when m = 1, and the results are found
as

f
(
η
)
= 1 − (1 − s)e−η, (5.29)
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where λ and s are governed by the following equation:

λ(1 − s) − s = 0 or λ =
s

1 − s
, s /= 1. (5.30)

In view of (5.29), the solution is trivial at s = 1. In the case of λ > 0, this exact solution is
physically acceptable in a very short range for the parameter (s ∈ [0, 1[). The solution given
by (5.29) and (5.30) is therefore just a special case of that obtained by generalized G′/G-
expansion method and given by (5.5) and (5.6). The same conclusion can be also deduced
when applying the standard exp-function method at m = −1. Moreover, the rest of solutions
given by (5.10) and (5.11) (at m = 0) and (5.23) and (5.24) cannot be recovered by using the
exp-function method. In view of this discussion, it may be concluded that the generalized
G′/G-expansion method has many advantages over the exp-function method for the present
BVP. Further, in order to make this point as clear as possible, an appendix containing the
mathematical details of applying the exp-function method to the current problem is added.

6. Solution for 0 < λ 
 1

In the view of Aly et al. [34], the main attention is paid to the construction of solutions for
(1.1) and (1.2), when λ → 0. We look for a solution which has the form

f
(
η
)
= f0 + λf1 + · · · . (6.1)

Substituting (6.1) into (1.1) and (1.2), we obtain the equations

f ′′′
0 + λf ′′′

1 +m
(
f0 + λf1

)(
f ′′
0 + λf ′′

1

) − (
f ′
0 + λf ′

1

)2 = 0,

f0(0) + λf1(0) +O
(
λ2
)
= s,

f ′
0(0) + λf ′

1(0) +O
(
λ2
)
= 1 + λ

[
f ′′
0 (0) + λf ′′

1 (0) +O
(
λ2
)]

,

f ′
0(∞) + λf ′

1(∞) +O
(
λ2
)
= 0.

(6.2)

We obtain at λ0

f ′′′
0 +mf0f

′′
0 − (

f ′
0
)2 = 0,

f0(0) = s, f ′
0(0) = 1, f ′

0(∞) = 0,
(6.3)

where at λ1, we get

f ′′′
1 +m

(
f0f

′′
1 + f1f

′′
0
) − 2f ′

0f
′
1 = 0,

f1(0) = 0, f ′
1(0) = f ′′

0 (0), f ′
1(∞) = 0.

(6.4)
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Equation (6.3) appears in the study of similarity solutions to problems of boundary-layer
theory in some contexts of fluid mechanics, see, for example, [26, 27, 33, 34]. Exact solutions
for these equations can be easily found, for different values of m, by applying the technique
in Section 5. We substitute then this solution in the system (6.4) to get the construction of f1.
This means that the form of f(η) can be therefore evaluated by (6.1).

7. Asymptotic Solution (λ � 1)

As in [26] and by means of a shooting method, the boundary condition at infinity is replaced
by the condition

f ′′(0) = α, (7.1)

where α is the shooting parameter which has to be determined. Regarding the difficulties of
obtaining the numerical solution of the system (1.1) and (1.2) in the case of λ � 1 and as
in [26, 27, 34], we now seek a new set of full equations which do not contain λ on using the
following transformation:

f
(
η
)
= η + εϑH(ζ) where ζ = εγη, (7.2)

where ε = λα; ϑ and γ are constants to be determined. On substituting expressions (7.2) into
(1.1), we obtain

ε2γH ′′′ + εγmηH ′′ + εϑ+γ
[
mHH ′′ −H

′2
]
− 2H ′ − ε−ϑ = 0. (7.3)

In order to ensure that the highest derivative remains present in the resulting equation, so
avoiding the need to disregard any of the boundary conditions, we look for a balance within
the equation of this term. Hence, we obtain ϑ = γ = 1/2. Therefore, when ε → ∞ (i.e.,
λ → ∞), we obtain the following new set of full equations:

H ′′′ +mHH ′′ −H
′2 = 0, (7.4)

H(0) = 0, H ′(0) = 1, H ′′(0) = 0. (7.5)

The boundary conditions (7.5) do not contain ε. As in the last section, (7.4) and (7.5) can be
solved by meaning of Section 5.

8. Conclusion

Third-order nonlinear differential equations describing the nano boundary-layer flow have
been investigated theoretically, using G′/G-expansion method, and numerically, applying
ChPDM approach. The present results are itemized as follows.

(i) It is found that the ChPDM results are very accurate in an excellent manner on
comparing to those published in the literature using the homotopy analysis method
and the modified differential transform-Padé method.
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(ii) For the first time, we have showed the way of applying G′/G-expansion method to
solve nonlinear BVPs. In addition, it has been proven that it has many advantages
over some of the other methods on solving the present BVP, where four certain
domains for the physical parameters have been discussed.

(iii) ChPDM technique has been successfully applied to validate and evidence the
resulted exact solutions, for different positive and negative values of the investi-
gated parameters, m, s, and λ.

(iv) Convex solutions have been obtained atm = 1 in the special case of λf ′′(0) = −2.
(v) Vicinity of zero and asymptotic solutions when 0 < λ 
 1 and λ � 1, respectively,

are also deduced. It should be noted that, in both cases, λ does not exist. Therefore,
the resulting equations are easy to deal with analytically and numerically.

Appendix

In this section, details of applying the exp-function method to the investigated problem (1.1)
and (1.2) are introduced. The aim is to confirm that the solution obtained through this method
given by (5.26) and (5.27) is in fact a special case of the exact one obtained by using theG′/G-
expansion method. Very recently, Ebaid [35] proved that on searching for exact solution by
using the exp-function method, one can go directly by assuming the solution in the form:

f =
a0 + a1 exp

[
η
]
+ a−1 exp

[−η]

b0 + b1 exp
[
η
]
+ b−1 exp

[−η] , (A.1)

where the tedious calculations of the balancing procedure are not required. On substituting
(A.1) into (1.1), multiplying by (b1eη + e−ηb−1 + b0)

4, and then equating the coefficients of
each exp-function to zero, we obtain the following system of algebraic equations:

2
(
2(−1 +m)a2

−1b
2
1 + b−1

(
2(−1 +m)a21b−1 + (1 − 3m)a2

0b1 + a1(2 + (−1 +m)a0 − 16b−1b1)
))

+ 2(a−1(b1(−2 + (−1 +m)a0 + 16b−1b1) + a1(1 +m − 4(−1 +m)b−1b1))) = 0,

(−4 + 3m)a2
1b−1 + b1(−a0(1 +ma0) + (a−1(−5 + (−4 + 5m)a0) + 23a0b−1)b1)

+ a1(1 +ma0 + 2((2 +m)a−1 + (−9 + (2 − 5m)a0)b−1)b1) = 0,

(−4 + 3m)a2
−1b1 + a−1(−1 + 2b−1((2 +m)a1 + 9b1) + a0(m + 2(2 − 5m)b−1b1))

+ b−1(5a1b−1 − a0(−1 +ma0 + b−1((4 − 5m)a1 + 23b1))) = 0,

b21(a0(4 + (−1 +m)a0) − 8a−1b1) + a2
1(−1 +m − 4mb−1b1)

+ 2a1b1(−2 − (−1 +m)a0 + 2(ma−1 + 2b−1)b1)b2−1(a0(−4 + (−1 +m)a0) + 8a1b−1)

+ 2a−1b−1(2 − (−1 +m)a0 + 2b−1(ma1 − 2b1)) + a2
−1(−1 +m − 4mb−1b1) = 0,

b1(ma1 − b1)(a1 − a0b1) = 0,

b−1(ma−1 + b−1)(a−1 − a0b−1) = 0.

(A.2)
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On solving this system, we obtain a nontrivial solution at m = 1 as

a0 = a−1b1 + 1, a1 = b1, b−1 = 0, f = 1 + e−ηa−1. (A.3)

On applying the first boundary condition, we obtain a−1 = s − 1. The exact solution hence
becomes

f = 1 − (1 − s)e−η, (A.4)

which is equivalent to (5.29). Now on applying the second boundary condition, this leads
directly to (5.30).

In conclusion, the above discussion shows that application of the exp-function method
to the present problem gives the same solution in (5.29) and (5.30)which is already shown in
Section 5.1. Exp-function method came therefore as a special case from one of the solutions
provided by the G′/G-expansion method.
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