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We study the problem of self-intersection local time of d-dimensional subfractional Brownian
motion based on the property of chaotic representation and the white noise analysis.

1. Introduction

As an extension of Brownian motion, Bojdecki et al. [1] introduced and studied a rather
special class of self-similar Gaussian process. This process arises from occupation time fluc-
tuations of branching particles with Poisson initial condition. It is called the subfractional
Brownian motion. The so-called subfractional Brownian motion with index H ∈ (0, 1) is a
mean zero Gaussian process SH

0 = {SH
0 (t), t ≥ 0} with the covariance function

RH(t, s) = E

[
SH
0 (t)SH

0 (s)
]
= s2H + t2H − 1

2

[
(s + t)2H + |t − s|2H

]
, (1.1)

for all s, t ≥ 0. For H = 1/2, SH
0 coincides with the standard Brownian motion. SH

0 is neither
a semimartingale nor a Markov process unlessH = 1/2, so many of the powerful techniques
from classical stochastic analysis are not available when dealing with SH

0 . The subfractional
Brownian motion has properties analogous to those of fractional Brownian motion, such as
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self-similarity, Hölder continuous paths, and so forth. But its increments are not stationary,
because, for s ≤ t, we have the following estimates:

[(
2 − 22H−1

)
∧ 1
]
(t − s)2H ≤ E

[(
SH
0 (t) − SH

0 (s)
)2]

≤
[(

2 − 22H−1
)
∨ 1
]
(t − s)2H. (1.2)

Let SH = {SH(t), t ∈ N+} be a d-dimensional subfractional Brownian motion with mul-
tiparameters H = (H1,H2, . . . ,Hd). Suppose that d ≥ 2, we are interested in, when it
exists, the self-intersection local time of subfractional Brownian motion SH which is formally
defined as

�HT =
∫T
0

∫ t
0
δ0
(
SH(t) − SH(s)

)
dsdt, (1.3)

where δ0 is the Dirac delta function. It measures the amount of time that the processes spend
intersecting itself on the time interval [0, T] and has been an important topic of the theory of
stochastic process.

More precisely, we study the existence of the limit when ε tends to zero, of the follow-
ing sequence of processes

�HT,ε =
∫T
0

∫ t
0
pε
(
SH(t) − SH(s)

)
dsdt, (1.4)

where

pε(x) = (2πε)−d/2 exp

(
−|x|

2

2ε

)
= (2π)−d

∫

Rd

eiξ·x−(ε|ξ|
2/2)dξ, x ∈ R

d. (1.5)

ForH = 1/2, the process SH
0 is a classical Brownian motion. The self-intersection local

time of the Brownian motion has been studied by many authors such as Albeverio et al. [2],
Calais and Yor [3], He et al. [4], Hu [5], Varadhan [6], and so forth. In the case of planar
Brownian motion, Varadhan [6] has proved that �1/2T,ε does not converge in L2 but it can be

renormalized so that �1/2T,ε − (T/2π) log(1/ε) converges in L2 as ε tends to zero. The limit is
called the renormalized self-intersection local time of the planar Brownianmotion. This result
has been extended by Rosen [7] to the (planar) fractional Brownian motion, where it is
proved that for 1/2 < H < 3/4, �H,fBm

T,ε − CHTε−1+(1/2H) converges in L2 as ε tends to zero,
where CH is a constant depending only on H. Hu [8] showed that, under the condition H <
min(3/(2d), 2/(d+2)), the (renormalized) self-intersection local time of fractional Brownian
motion is in the Meyer-Watanabe test functional space, that is, the L2 space of “differentiable”
functionals. In 2005, Hu and Nualart [9] proved that the renormalized self-intersection local
time of d-dimensional fractional Brownian motion exists in L2 if and only ifH < 3/2d, which
generalizes the Varadhan renormalization theorem to any dimension and with any Hurst
parameter. They also showed that in the case 3/4 > H ≥ 3/2d, r(ε)�H,fBm

T,ε converges in
distribution to a normal law N(0, Tσ2), as ε tends to zero, and r(ε) = | log ε|−1 if H = 3/(2d),
and r(ε) = εd−3/(2H) if 3/(2d) < H. Wu and Xiao [10] proved the existence of the intersection
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local times of (Ni, d), i = 1, 2-fractional Brownian motions, and had a continuous version.
They also established Hölder conditions for the intersection local times and determined
the Hausdorff and packing dimensions of the sets of intersection times and intersection
points. They extended the results of Nualart and Ortiz-Latorre [11], where the existence
of the intersection local times of two independent (1, d)-fractional Brownian motions with
the same Hurst index was studied by using a different method. Moreover, Wu and Xiao
[10] also showed that anisotropy brings subtle differences into the analytic properties of the
intersection local times as well as rich geometric structures into the sets of intersection times
and intersection points. Oliveira et al. [12] presented expansions of intersection local times of
fractional Brownian motions in R

d, for any dimension d ≥ 1, with arbitrary Hurst coefficients
in (0, 1)d. The expansions are in terms of Wick powers of white noises (corresponding
to multiple Wiener integrals), being well-defined in the sense of generalized white noise
functionals. As an application of their approach, a sufficient condition on d for the existence of
intersection local times in L2 was also derived. For the case of subfractional Brownianmotion,
Yan and Shen [13] studied the so-called collision local time �T =

∫T
0 δ(SH1

0 (t)−SH2
0 (t))dt of two

independent subfractional Brownian motion with respective indices Hi ∈ (0, 1), i = 1, 2. By
an elementary method, they showed that �T is smooth in the sense of Meyer-Watanabe if and
only if min(H1,H2) < 1/3.

Motivated by all these results, we will study the self-intersection local time of the
so-called subfractional Brownian motion (see below for a precise definition), which has
been proposed by Bojdecki et al. [1]. Recently, the long-range dependence property has
become an important aspect of stochastic models in various scientific area including
hydrology, telecommunication, turbulence, image processing, and finance. It is well known
that fractional Brownianmotion (fBm in short) is one of the best known andmost widely used
processes that exhibits the long-range dependence property, self-similarity, and stationary
increments. It is a suitable generalization of classical Brownian motion. On the other hand,
many authors have proposed to use more general self-similar Gaussian process and random
fields as stochastic models. Such applications have raised many interesting theoretical
questions about self-similar Gaussian processes and fields in general. However, in contrast
to the extensive studies on fractional Brownian motion, there has been little systematic
investigation on other self-similar Gaussian processes. The main reason for this is the com-
plexity of dependence structures for self-similar Gaussian processes which does not have
stationary increments. The subfractional Brownian motion has properties analogous to
those of fractional Brownian motion (self-similarity, long-range dependence, Hölder paths,
the variation, and the renormalized variation). However, in comparison with fractional
Brownian motion, the subfractional Brownian motion has nonstationary increments and the
increments over nonoverlapping intervals are more weakly correlated and their covariance
decays polynomially as a higher rate in comparison with fractional Brownian motion (for
this reason in Bojdecki et al. [1] is called subfractional Brownian motion). The above
mentioned properties make subfractional Brownian motion a possible candidate for models
which involve long-range dependence, self-similarity, and nonstationary. Therefore, it seems
interesting to study the self-intersection local time of subfractional Brownian motion. Andwe
need more precise estimates to prove our results because of the nonstationary increments. We
will view the self-intersection local time of subfractional Brownian motion as the generalized
white noise functionals. Furthermore, we discuss the existence and expansions of the self-
intersection local times in L2. We have organized our paper as follows: Section 2 contains the
notations, definitions, and results for Gaussian white noise analysis. In Section 3, we present
the main results and their demonstrations.
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Most of the estimates of this paper contain unspecified constants. An unspecified pos-
itive and finite constant will be denoted by C, which may not be the same in each occurrence.
Sometimes we will emphasize the dependence of these constants upon parameters.

2. Gaussian White Noise Analysis

In this section, we briefly recall the concepts and results of white noise analysis used through
out this work, and for details, see Kuo [15], Obata [16], and so forth.

2.1. Subfractional Brownian Motion

The starting point of white noise analysis for the construction of d-dimensional, d ≥ 1, sub-
fractional Brownian motion is the real Gélfand triple

Sd(R) ⊂ L2
(
R,Rd

)
⊂ S′

d(R), (2.1)

where L2(R,Rd) is the real Hilbert space of all vector-valued square integrable functions with
respect to Lebesgue measure on R and Sd(R),S′

d
(R) are the Schwartz spaces of the vectors

valued test functions and tempered distributions, respectively. Denote the norm in L2(R,Rd)
by | · |d or if there is no risk of confusion simply by | · | and the dual pairing between S′

d and
Sd(R) by 〈·, ·〉, which is defined as the bilinear extension of the inner product on L2(R,Rd),
that is

〈g, f〉 =
d∑
i=1

∫

R

gi(x)fi(x)dx, (2.2)

for all g = (g1, g2, . . . gd) ∈ L2(R,Rd) and all f = (f1, f2, . . . , fd) ∈ Sd(R). By the Minlos
theorem, there is a unique probability measure μ on the σ-algebra B generated by the cylinder
sets on S′

d(R) with characteristic function given by

C(f) :=
∫

S′
d
(R)

ei〈 �ω,f〉dμ( �ω) = e−(1/2)|f|
2
, f ∈ Sd(R). (2.3)

In this way, we have defined the white noise measure space (S′
d
(R),B, μ). Then a realization

of vector of independent subfractional Brownian motion SHj , j = 1, 2, . . . , d, is given by

SHj (t) = 〈ωj,KHj〉 =
∫ t
0
KHj (t, s)ωj(s)ds, ωi ∈ S′

d(R). (2.4)
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We recall the explicit formula for the kernel KH(t, s) of a one-dimensional subfractional
Brownian motion with parameter H ∈ (0, 1)

KH(t, s) = −
√
πs1/2−H

2HΓ(H + 1/2)
d

ds

(∫ t
s

(
u2 − s2

)H−1/2
du

)
1[0,t](s)

=
√
πs3/2−H

2HΓ(H + 1/2)

⎛
⎝
(
t2 − s2

)H−1/2

t
+
∫ t
s

(
u2 − s2

)H−1/2

u2
du

⎞
⎠1[0,t](s).

(2.5)

Especially, for H > 1/2, we have

KH(t, s) =
21−H

√
π

Γ(H − 1/2)
s3/2−H

(∫ t
s

(
u2 − s2

)H−3/2
du

)
1[0,t](s). (2.6)

We refer to Bojdecki et al. [1, 17–19], Dzhaparidze and van Zanten [20], Liu and
Yan [21], Liu et al. [22], Shen and Yan [23], Tudor [24–27], Yan and Shen [13, 14], and the
references therein for a complete description of subfractional Brownian motion.

2.2. Hida Distributions and Characterization Results

Let us now consider the complex Hilbert space (L2) := L2(S′
d(R),B, μ). This space is

canonically isomorphic to the symmetric Fock space of symmetric square integrable functions

L2(S′
d(R),B, μ

)
�
(

∞⊕
k=0

SymL2(Rk, k!dkx)

)⊗2d

= G (2.7)

leading to the chaos expansion of the elements in L2(S′
d
(R),B, μ)

F(ω1, ω2, . . . , ωd) =
∑

n=(n1,n2,...,nd)∈Nd

〈
: ω⊗n1

1 : ⊗ · · · ⊗ : ω⊗nd

d
:, fn
〉
, (2.8)

with kernel functions fn in the Fock space, that is, square integrable functions of the m
arguments and symmetric in each ni-tuple.

For simplicity, in the sequel, we will use the notations

n = (n1, . . . , nd) ∈ N
d, n =

d∑
i=1

ni, n! =
d∏
i=1

ni!, (2.9)

which reduces expansion (2.8) to

F(ω) =
∑
n∈Nd

〈
: ω⊗n :, fn

〉
, ω ∈ S′

d(R). (2.10)
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The norm of F is given by

‖F‖2(L2) =
∑
n∈Nd

n!|fn|22,n, (2.11)

where | · |2,n is the norm in L2(Rn, dt).
To proceed further, we have to consider a Gelfand triple around the space (L2). We

will use the space (S)∗ of Hida distributions (or generalized Brownian functionals) and
the corresponding Gelfand triple (S) ⊂ (L2) ⊂ (S)∗. Here (S) is the space of white noise
test functions such that its dual space (with respect to (L2)) is the space (S)∗. Instead of
reproducing the explicit construction of (S)∗ in Theorem 2.2 below we characterize this space
through its S-transform.We recall that given a f ∈ Sd(R), let us consider theWick exponential

: exp〈ω, f〉 := exp
(
〈ω, f〉 − 1

2
(f, f)
)

=
∑
n∈Nd

1
n!
〈
: ω⊗n :, f⊗n

〉
= C(f)e〈ω,f〉, ω ∈ S′

d(R).
(2.12)

We define the S-transform of a Φ ∈ (S)∗ by

SΦ(f) :=
〈〈
Φ, : exp(〈·, f〉) :

〉〉
, ∀f ∈ Sd(R). (2.13)

Here 〈〈·, ·〉〉 denotes the dual pairing between (S)∗ and (S) which is defined as the bilinear
extension of the sesquilinear inner product on (L2). We observe that themultilinear expansion
of (2.13)

SΦ(f) :=
∑
n

〈
Fn, fn⊗n

〉
, (2.14)

extends the chaos expansion to Φ ∈ (S)∗ with distribution valued kernels Fn such that

〈〈
Φ, ϕ
〉〉

=
∑
n
n!
〈
Fn, ϕn

〉
, (2.15)

for every generalized test function ϕ ∈ (S)with kernel function ϕn.
In order to characterize the space (S)∗ through its S-transform, we need the following

definition:

Definition 2.1. A function F : Sd(R) → C is called a U-functional whenever

(1) for every f1, f2 ∈ Sd(R) and λ ∈ R, the mapping λ → F(λf1 + f2) has an entire
extension to λ ∈ C,
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(2) there are constants K1, K2 > 0 such that

|F(zf)| ≤ K1 exp
(
K2|z|2‖f‖2

)
, ∀z ∈ C, f ∈ Sd(R), (2.16)

for some continuous norm ‖ · ‖ on Sd(R).

We are now ready to state the aforementioned characterization result.

Theorem 2.2. The S-transform defines a bijection between the space (S)∗ and the space of U-
functionals.

As a consequence of Theorem 2.2, one may derive the next two statements. The first
one concerns the convergence of sequences of Hida distributions and the second one the
Bochner integration of families of distributions of the same type.

Corollary 2.3. Let (Φn, n ∈ N) be a sequence in (S)∗ such that

(1) for all f ∈ Sd(R), ((SΦn)(f))n∈N
is Cauchy sequence in C;

(2) there are K1, K2 > 0 such that for some continuous norm ‖ · ‖ on Sd(R) one has

|(SΦn)(zf)| ≤ K1e
K2|z|2‖f‖2 , z ∈ C, f ∈ Sd(R), n ∈ N, (2.17)

then (Φn, n ∈ N) converges strongly in (S)∗ to a unique Hida distribution.

Corollary 2.4. Let (Ω,B, m) be a measure space and λ → Φλ be a mapping from Ω to (S)∗. We
assume that the S-transform of Φλ fulfills the following two properties:

(1) the mapping λ → (Sφλ)(f) is measurable for every f ∈ Sd(R),

(2) the (SΦλ)(f) obeys a U-estimate

|(SΦλ)(zf)| ≤ C1(λ)eC2(λ)|z|2‖f‖2 , z ∈ C, f ∈ Sd(R), (2.18)

for some continuous ‖ · ‖ on S2d(R) and for C1 ∈ L1(Ω, m), C2 ∈ L∞(Ω, m). Then

∫

Ω
dm(λ)Φλ ∈ (S)′,

S

(∫

Ω
dm(λ)Φλ

)
(f) =

∫

Ω
dm(λ)SΦλ(f).

(2.19)

3. Self-Intersection Local Time

Let us now consider the d-dimensional subfractional Brownian motion SH(t)with parameter
H = (H1,H2, . . . ,Hd). In view of (2.4), for j = 1, . . . , d, SHj (t) − SHj (s) = 〈ΔKj,ωj〉 with
ΔKj = KHj (t, u) −KHj (s, u).
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Proposition 3.1. For each t and s strictly positive real numbers, the Bochner integral

δ
(
SH(t) − SH(s)

)
:=
(

1
2π

)d ∫

Rd

dλeiλ(S
H(t)−SH(s)) (3.1)

is a Hida distribution with S-transform given by

Sδ
(
SH(t) − SH(s)

)
(f) = (2π)−(d/2)

d∏
j=1

1
(
δHj (t, s)

)1/2 exp
{
−
〈
fj ,ΔKj

〉2

2δHj (t, s)

}
(3.2)

for all f = (f1, . . . , fd) ∈ Sd(R) and δHj (t, s) = |ΔKj |22.

Proof. The proof of this result follows from an applications of Corollary 2.4 to the S-transform
of the integrand function

Φ( �ω) := eiλ(S
H(t)−SH (s)), �ω = (ω1, . . . , ωd). (3.3)

With respect to the Lebesgue measure on R
d. By symmetry, we assume that s ≤ t. For this

purpose, we begin by observing that, for f = (f1, . . . , fd) ∈ Sd(R), and all λ ∈ C, one has

SΦ(f) =
d∏
j=1

S
(
eiλj〈ΔKj ,ωj〉

)(
fj
)
,

S
(
eiλj〈ΔKj ,ωj〉

)(
fj
)

= e−(|fj |
2
2/2)
∫

S′(R)
dμj

(
ωj

)
eiλj〈ΔKj ,ωj〉+〈fj ,ωj〉

= e−(|fj |
2
2/2)
∫

S′(R)
dμj

(
ωj

)
ei〈λjΔKj−ifj ,ωj〉 = e−(λ

2
j |ΔKj |22/2)eiλj〈ΔKj ,fj〉.

(3.4)

The last equality was obtained by the definition of μ. Then we obtain

SΦ(f) =
d∏
j=1

e−(λ
2
j /2)|ΔKj |22eiλj〈ΔKj ,fj〉, (3.5)

which clearly fulfills the measurability condition. Moreover, for all z ∈ C, we find

|SΦ(zf)| =
d∏
j=1

e−(λ
2
j |ΔKj |22/4)

d∏
j=1

∣∣∣e−(λ2j |ΔKj |22/4)+izλj〈ΔKj ,fj〉
∣∣∣

≤
d∏
j=1

e−(λ
2
j |ΔKj |22/4)

d∏
j=1

e−(λ
2
j |ΔKj |22/4)+|z||λj ||〈ΔKj ,fj〉|,

(3.6)
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where, for each j = 1, . . . , d, the corresponding term in the second product is bounded by

exp

⎛
⎝ |z|2∣∣ΔKj

∣∣2
2

·
∣∣〈ΔKj, fj

〉∣∣2
⎞
⎠ (3.7)

because

−
λ2j

4
∣∣ΔKj

∣∣2
2 + |z|

∣∣λj
∣∣∣∣〈ΔKj, fj

〉∣∣

= −
(∣∣λj

∣∣
2
∣∣ΔKj

∣∣
2 −

|z|∣∣ΔKj

∣∣
2

∣∣〈ΔKj, fj
〉∣∣
)2

+
|z|2∣∣ΔKj

∣∣2
2

∣∣〈ΔKj, fj
〉∣∣2.

(3.8)

As a result

|SΦ(zf)| ≤ e−(1/4)
∑d

j=1 λ
2
j |ΔKj |22e|z|

2∑d
j=1(1/|ΔKj |22)|〈ΔKj ,fj〉|2 , (3.9)

where, as a function of λ, the first exponential is integrable on R
d and the second exponential

is constant.
An application of the result mentioned above completes the proof. In particular, it

yields (3.2) by integrating (3.5) over λ.

For the sequence of processes �HT,ε given by (1.4) and (3.5), combining

(2π)−d
∫

Rd

dλe−ε(|λ|
2/2)S
(
eiλ(S

H(t)−SH(s))
)
(f)

= (2π)−d
∫

Rd

dλ
d∏
j=1

e−(λ
2
j /2)(|ΔKj |22+ε)eiλj〈ΔKj ,fj〉

(3.10)

and the elementary equality

∫

R

e−α(x
2/2)+iβxdx =

√
2π
α

e−(β
2/2α), (3.11)

then we have the following.

Corollary 3.2. For each t and s strictly positive real numbers,

�HT,ε =
∫T
0

∫ t
0
dsdt

1

(2π)d

∫

Rd

dλeiλ·(S
H(t)−SH(s))−(ελ2/2), (3.12)



10 Abstract and Applied Analysis

is a Hida distribution with S-transform given by

S�HT, ε(f) = (2π)−(d/2)
∫T
0

∫ t
0
dsdt

d∏
j=1

1
(
δHj (t, s) + ε

)1/2 exp
{
−
〈
fj ,ΔKj

〉2

2
(
δHj (t, s) + ε

)
}

(3.13)

for all f = (f1, . . . , fd) ∈ Sd(R) and δHj (t, s) = |ΔKj |22.

Theorem 3.3. For H ∈ (0, 1), every positive integer d ≥ 1, and ε > 0, the self-intersection local time
�HT,ε has the following chaos expansion:

�HT,ε =
1

(2π)d/2

∞∑
m=0

1
m!

(
−1
2

)m〈
: ω⊗2m :,Gm,ε

〉
, (3.14)

where

Gm,ε =
∫T
0

∫ t
0
dsdt

d∏
j=1

1
(
δHj (t, s) + ε

)mj+(1/2)
ΔK⊗2m. (3.15)

Proof. For every f ∈ S(R), we calculate the S-transform of �T,ε as follows:

S�T,ε(f) = (2π)−(d/2)
∫T
0

∫ t
0
dsdt

d∏
j=1

1
(
δHj (t, s) + ε

)1/2 exp
{
−
〈
fj ,ΔKj

〉2

2
(
δHj (t, s) + ε

)
}

= (2π)−(d/2)
∫T
0

∫ t
0
dsdt

d∏
j=1

∞∑
mj=0

1
mj !

(
−1
2

)mj 1
(
δHj (t, s) + ε

)mj+(1/2)

〈
fj ,ΔKj

〉2mj

= (2π)−(d/2)
∫T
0

∫ t
0
dsdt

∞∑
m=0

1
m!

(
−1
2

)m d∏
j=1

1
(
δHj (t, s) + ε

)mj+(1/2)

〈
f⊗2m
j ,ΔK⊗2m

j

〉
.

(3.16)

Comparing with the general form of the chaos expansion, we find that the kernel functions
are equal to

Gm,ε =
∫T
0

∫ t
0
dsdt

d∏
j=1

1
(
δHj (t, s) + ε

)mj+(1/2)
ΔK⊗2m. (3.17)

For simplicity, we assume that the notation F � G means that there are positive
constants C1 and C2 such that

C1G(x) ≤ F(x) ≤ C2G(x), (3.18)

in the common domain of definition for F and G.
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Let us now compute the expectation of the self-intersection local time of the subfrac-
tional Brownian motion, E(�HT,ε), it is just the first chaos. So in view of Theorem 3.3

E

(
�HT,ε

)
= (2π)−(d/2)

∫T
0

∫ t
0
dsdt

d∏
j=1

1
(
δHj (t, s) + ε

)1/2 . (3.19)

Moreover, for all s ≤ t, the second moment of increments δHj (t, s) = E(SHj (t) − SHj (s))2

satisfying the following estimate:

[
βHj ∧ 1

]
(t − s)2Hj ≤ δHj (t, s) ≤

[
βHj ∨ 1

]
(t − s)2Hj , (3.20)

with βHj = 2 − 22Hj−1. As the integrand in E(�HT,ε) is always positive, we have

E

(
�HT,ε

)
≤ (2π)−(d/2)

∫T
0

∫ t
0
dsdt

d∏
j=1

1
([

βHj ∧ 1
]
(t − s)2Hj + ε

)1/2

= (2π)−(d/2)
∫T
0
ds

T − s
∏d

j=1

([
βHj ∧ 1

]
s2Hj + ε

)1/2 .
(3.21)

We use the change of variables s = εd/2H
∗
z := α(ε)zwithH∗ =

∑d
j=1 Hj ,

E

(
�HT,ε

)
≤ α(ε)

(2π)d/2

∫T/α(ε)
0

dz
T − α(ε)z

∏d
j=1

([
βHj ∧ 1

]
εdHj/H∗

z2Hj + ε
)1/2

=
α(ε)

(2πε)d/2

∫T/α(ε)
0

dz
T − α(ε)z

∏d
j=1

([
βHj ∧ 1

]
ε(dHj/H∗)−1z2Hj + 1

)1/2 .
(3.22)

We divide the integral in two parts

E

(
�HT,ε

)
≤ α(ε)

(2πε)d/2

⎧
⎪⎨
⎪⎩

∫1
0
dz

T − α(ε)z
∏d

j=1

([
βHj ∧ 1

]
ε(dHj/H∗)−1z2Hj + 1

)1/2

+
∫T/α(ε)
1

dz
T − α(ε)z

∏d
j=1

([
βHj ∧ 1

]
ε(dHj/H∗)−1z2Hj + 1

)1/2

⎫
⎪⎬
⎪⎭
.

(3.23)
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The first integral in braces is bounded. Set I the second integral in braces, so

I ≤ T
∏d

j=1

[
βHj ∧ 1

]1/2
∫T/α(ε)
1

dz
1

zH∗ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

T2−H∗
ε(d/2)−(d/2H

∗) − 1

(1 −H∗)
∏d

j=1

[
βHj ∧ 1

]1/2 , H∗ /= 1

T
[
log T − (d/2H∗) log ε

]
∏d

j=1

[
βHj ∧ 1

]1/2 , H∗ = 1.

(3.24)

Proposition 3.4. Denote byH∗ =
∑d

j=1 Hj . Let T > 0 and d ≥ 1, then ifH∗ ≥ 1,

lim
ε→ 0

E

(
�HT,ε

)
= ∞. (3.25)

Moreover if H∗ = 1,

E

(
�HT,ε

)
≤ CT,Hj ,d

∣∣log ε∣∣. (3.26)

IfH∗ > 1

E

(
�HT,ε

)
≤ CT,Hj ,dε

(d/2)−(d/2H∗). (3.27)

IfH∗ < 1, there is no blow up, that is,

lim
ε→ 0

E

(
�HT,ε

)
∈

⎡
⎢⎣ 1

(2π)d/2
∏d

j=1

([
βHj ∨ 1

])1/2
∫T
0
ds

T−s
sH∗ ,

1

(2π)d/2
∏d

j=1

([
βHj ∧ 1

])1/2
∫T
0
ds

T−s
sH∗

⎤
⎥⎦.

(3.28)

In particular, we have

Proposition 3.5. Suppose that allHj = H, let T > 0 and d ≥ 1.

(1) IfH = 1/d, then E�HT,ε = C ln(1/ε) + o(ε).

(2) If 1/d < H < 3/(2d), then E�HT,ε = Cε(1/2H)−(d/2) + o(ε).

From the above results, if H∗ < 1, the self-intersection local time �HT is well defined in
(S)∗. This is same as the case of fractional Brownian motion mainly because the covariance
structure and the property (1.2) of the increments of the subfractional Brownian motion.
Suppose now that H∗ ≥ 1. The idea is that if we subtract some of the first term in the
expansion of the exponential function in the expression of the S-transform of δ(SH(t)−SH(s)),
we could obtain an integrable function in factor of the remaining part, then the second
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condition of Corollary 2.4 will be satisfied. And so we could define a renormalization of the
self-intersection local time in (S)∗.

Let us denote the truncated exponential series by

expN(x) =
∞∑

n=N

xn

n!
. (3.29)

It follows from (3.2) that the S-transform of δ(N) is given by

Sδ(N)
(
SH(t) − SH(s)

)
(f) = (2π)−(d/2)

∑
n,n≥N

(
−1
2

)n d∏
j=1

〈
fj ,ΔKj

〉2nj

δHj (t, s)nj+(1/2)
· 1(

nj

)
!
, (3.30)

so

∣∣∣Sδ(N)
(
SH(t) − SH(s)

)
(f)
∣∣∣

≤ (2π)−(d/2)
∑

n,n≥N

(
1
2

)n d∏
j=1

∣∣fj
∣∣2nj

∞ ·
∣∣ΔKj

∣∣2nj

1(
βHj ∧ 1

)nj+(1/2)
|t − s|(2nj+1)Hj

· 1(
nj

)
!
.

(3.31)

We need to estimate the L1-norm of ΔKj , |ΔKj |1 for fixed j.
We will treat the case when all Hj > 1/2. For the case all Hj < 1/2, we do not have a

good estimation of |Kj |1 and so we do not have a result. Let Hj > 1/2, in view of (2.8)

ΔKj = KHj (t, u) −KHj (s, u)

= CHju
3/2−Hj

{∫ t
u

(
x2 − u2

)Hj−3/2
dx1[0,t](u) −

∫s
u

(
x2 − u2

)Hj−3/2
dx1[0,s](u)

}

= CHju
3/2−Hj

{∫ t
u

(
x2 − u2

)Hj−3/2
dx1[s,t](u)

+
∫ t
u

(
x2 − u2

)Hj−3/2
dx1[0,s](u) −

∫ s
u

(
x2 − u2

)Hj−3/2
dx1[0,s](u)

}

= CHju
3/2−Hj

{∫ t
u

(
x2 − u2

)Hj−3/2
dx1[s,t](u) +

∫ t
s

(
x2 − u2

)Hj−3/2
dx1[0,s](u)

}
.

(3.32)
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We obtain

∣∣ΔKj

∣∣
1 =
∫T
0
ΔKj(u)du

= Chj

{∫T
0
u3/2−Hjdu

∫ t
s

(
x2 − u2

)Hj−3/2
dx1[0,s](u)

+
∫T
0
u3/2−Hjdu

∫ t
u

(
x2 − u2

)Hj−3/2
dx1[s,t](u)

}

: = CHj (I1 + I2).

(3.33)

For I1, we obtain

I1 =
∫T
0
u3/2−Hjdu

∫ t
s

(
x2 − u2

)Hj−3/2
dx1[0,s](u)

≤
∫T
0
u3/2−Hjdu

∫ t
s

(x − u)Hj−3/2xHj−3/2dx1[0,s](u)

≤
∫ t
s

xHj−3/2dx

∫x
0
(x − u)Hj−3/2u3/2−Hj1[0,s](u)du

≤
B
(
5/2 −Hj,Hj − 1/2

)

Hj + 1/2
|t − s|Hj+1/2.

(3.34)

For I2, we obtain

I2 =
∫T
0
u3/2−Hjdu

∫ t
u

(
x2 − u2

)Hj−3/2
dx1[s,t](u)

≤
∫T
0
u3/2−Hjdu

∫ t
u

(x − u)Hj−3/2xHj−3/2dx1[s,t](u)

≤
∫ t
s

xHj−3/2dx

∫x
0
(x − u)Hj−3/2u3/2−Hjdu

≤
B
(
5/2 −Hj,Hj − 1/2

)

Hj + 1/2
|t − s|Hj+1/2.

(3.35)

So

∣∣ΔKj

∣∣
1 ≤ CHj |t − s|Hj+1/2. (3.36)
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Suppose |t − s| is small enough, we get

∣∣∣Sδ(N)
(
SH(t) − SH(s)

)
(f)
∣∣∣

≤ (2π)−(d/2)
∑

n,n≥N

(
1
2

)n d∏
j=1

CHj

∣∣fj
∣∣2nj

∞(
βHj ∧ 1

)nj+(1/2)
|t − s|nj (Hj−1/2)+Hj

· 1(
nj

)
!

≤ CH

∑
n,n≥N

d∏
j=1

1

|t − s|nj (Hj−1/2)+Hj

1
2n

d∏
j=1

∣∣fj
∣∣2nj

∞ · 1(
nj

)
!

≤ CH
1

|t − s|N(Hmax−1/2)+H∗ exp

⎧
⎨
⎩

1
2

d∑
j=1

∣∣fj
∣∣2
∞

⎫
⎬
⎭,

(3.37)

withH∗ =
∑d

j=1 Hj . Then we have.

Theorem 3.6. Let T > 0 and n ∈ N, suppose that

H∗ +N

(
Hmax −

1
2

)
< 1, (3.38)

then

�
H,(N)
T =

∫T
0

∫ t
0
δ(N)
(
SH(t) − SH(s)

)
dsdt, (3.39)

is well defined as an element of (S)∗ and

lim
ε→ 0

�
H,(N)
T,ε = �

H,(N)
T , in (S)∗. (3.40)

Theorem 3.7. For H ∈ (0, 1), every positive integer d ≥ 1, and ε > 0, suppose that (3.38) holds,
then the truncated self-intersection local time �H,(N)

T has the following chaos expansion:

�
H,(N)
T =

1

(2π)d/2

∞∑
m=0

1
m!

(
−1
2

)m〈
: ω⊗2m :,Gm

〉
, (3.41)

where

Gm =
∫T
0

∫ t
0
dsdt

d∏
j=1

1
(
δHj (t, s)

)mj+(1/2)
ΔK⊗2m, (3.42)

for eachm ∈ N
d and m ≥ N. All other kernel functionsGm are identically equal to zero.
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Proof. By Corollary 2.4, the S-transform of the truncated self-intersection local time is given
as an integral over (3.30). Then given f = (f1, . . . , fd) ∈ Sd(R), we have

(
S�

H,(N)
T

)
(f) = (2π)−(d/2)

∫T
0

∫ t
0
dsdt

∑
n,n≥N

(
−1
2

)n d∏
j=1

〈
fj ,ΔKj

〉2nj

δHj (t, s)nj+(1/2)
· 1(

nj

)
!
. (3.43)

Comparing with the general form of chaos expansion, the result is proved.

Next we will estimate the L2-norm of the chaos of the self-intersection local time of
subfractional Brownian motion. Now we state the result.

Theorem 3.8. Suppose all Hj = H, let T > 0, n/= 0 and d ≥ 2.

(1) IfHd = 1, then

lim
ε→ 0

1√∣∣log ε∣∣
|G2n,ε|2,2n (3.44)

exists.

(2) If 1 < dH < 3/2, then

lim
ε→ 0

|G2n,ε|2,2n (3.45)

exists.

(3) IfH > 3/2, then limε→ 0ε
d/2−(3/4H)|G2n,ε|2,2n exists.

Proof. For n ∈ N
d, the 2nth chaos is given by

�T,2n,ε = (2π)−d/2
1
n!

1
2n
〈
: ω⊗2n :, G2n,ε

〉
, (3.46)

where

G2n,ε =
∫T
0
dt

∫ t
0
ds

d∏
j=1

ΔK⊗2n
j

(
δHj (t, s) + ε

)nj+1/2
. (3.47)

So

E(�T,2n,ε)
2 =

(2n)!

(2π)d(n!)222n
|G2n,ε|2L2(Rn). (3.48)
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In view of (3.48), we need to estimate |G2n,ε|2L2(Rn) = |G2n,ε|22,2n, where

|G2n,ε|22,2n

=
∫

R2n
d2nu

∫T
0

∫ t
0

∫T
0

∫ t′

0
dtdsdt′ds′

d∏
j=1

ΔKj(t, s)⊗2njΔKj(t′, s′)
⊗2nj

((
δHj (t, s) + ε

)(
δHj (t′, s′) + ε

))nj+1/2
.

(3.49)

By using Fubini theorem, we first get

∫

R2n
d2nu

d∏
j=1

ΔKj(t, s)⊗2njΔKj

(
t′, s′
)⊗2nj

=
d∏
j=1

2nj∏
i=1

∫

R

du
j

iΔKj(t, s)(t, s)ΔKj(t, s)
(
t′, s′
)

=
d∏
j=1

2nj∏
i=1

E

(
SHj (t) − SHj (s)

)(
SHj
(
t′
)
− SHj

(
s′
))

=
d∏
j=1

(
C

Hj

t,s,t′s′

)2nj

,

(3.50)

with C
Hj

t,s,t′s′ = E(SHj (t) − SHj (s))(SHj (t′) − SHj (s′)). Moreover denote by R
Hj

t,s,t′s′ = E(BHj (t) −
BHj (s))(BHj (t′)−BHj (s′))with BH a fractional Brownian motion with Hurst indexH ∈ (0, 1).
Then, from Bojdecki et al. [1], we know that

0 < C
Hj

t,s,t′s′ < R
Hj

t,s,t′s′ , H >
1
2
,

R
Hj

t,s,t′s′ < C
Hj

t,s,t′s′ < 0, H <
1
2
.

(3.51)

So

|G2n,ε|22,2n ≤
∫T
0

∫ t
0

∫T
0

∫ t′

0
dtdsdt′ds′

d∏
j=1

(
R

Hj

t,s,t′s′

)2nj

((
δHj (t, s) + ε

)(
δHj (t′, s′) + ε

))nj+1/2
. (3.52)

In view of the symmetry of the domain and integrand function, it suffices to integrate only
on

T = T1 ∪ T2 ∪ T3, (3.53)

where T1 = {0 < s′ < t′ < s < t}, T2 = {0 < s′ < s < t′ < t}, T3 = {0 < s < s′ < t′ < t}. Let us
first integrate over T1. We make the following change of variables x = t− s, t = t′ − s′, z = s− t′

and x + y + z = t − s′ < t, where t is considered as a parameter. Set |G(i)
2n,ε|

2
2,2n the integral over

Ti, i = 1, 2, 3.
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Step 1. For |G(1)
2n,ε|

2
2,2n, we obtain

∣∣∣G(1)
2n,ε

∣∣∣
2

2,2n
≤ CH

∫T
0
dt

∫

0≤x+y+z≤t
dxdydz

·
d∏
j=1

[
(x + z)2Hj +

(
y + z

)2Hj −
(
x + y + z

)2Hj − z2Hj

]2nj

[(
x2Hj + ε

)(
y2Hj + ε

)]nj+(1/2)
.

(3.54)

It is almost possible to compute the integral when all Hj are different, so let us suppose that
all Hj are equal to some H.

Denote by θt(ε) = ε−(1/2H)t and make the following change of variables (x, y, z) =
ε−(1/2H)(x′, y′, z′), we get

∣∣∣G(1)
2n,ε

∣∣∣
2

2,2n

≤ CHε(3/2H)−d
∫T
0
dt

∫

0≤x+y+z≤θt(ε)
dxdydz

·

[
(x + z)2H +

(
y + z

)2H −
(
x + y + z

)2H − z2H
]2n

[(
x2H + 1

)(
y2H + 1

)]n+(d/2)

= 2CHε(3/2H)−d
∫T
0
dt

∫

0≤x+y+z≤θt(ε),0≤x≤y≤θt(ε)
dxdydz

·

[
(x + z)2H +

(
y + z

)2H −
(
x + y + z

)2H − z2H
]2n

[(
x2H + 1

)(
y2H + 1

)]n+(d/2) .

(3.55)

Denote by

fH
(
x, y, z

)
= (x + z)2H +

(
y + z

)2H −
(
x + y + z

)2H − z2H, (3.56)

and by

f(t,H, d, n, ε) =
∫

0≤x+y+z≤θt(ε),0≤x≤y≤θt(ε)
dxdydz

[
fH
(
x, y, z

)]2n
[(
x2H + 1

)(
y2H + 1

)]n+(d/2) . (3.57)

First note that |fH(x, y, z)| ≤ x2H and for dH > 1,

∫

0≤x≤y
dxdy

x4Hn

[(
x2H + 1

)(
y2H + 1

)]n+(d/2) < ∞. (3.58)
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This implies that for every x ∈ R+,

∫

0≤x≤y
dxdy

fH
(
x, y, z

)2n
[(
x2H + 1

)(
y2H + 1

)]n+(d/2) , (3.59)

is finite. On the other hand, for α ∈ (1, 2−2H), zαfH(x, y, z)2n decreases to zero when z tends
to zero, then

f(H,d, n) =
∫

R+

dz

∫

0≤x≤y
dxdy

fH
(
x, y, z

)2n
[(
x2H + 1

)(
y2H + 1

)]n+(d/2) < ∞, (3.60)

and so that

lim
ε→ 0

f(t,H, d, n, ε) = f(H,d, n). (3.61)

Therefore, we obtain, if Hd ∈ (1, 3/2),

lim
ε→ 0

∣∣∣G(1)
2n,ε

∣∣∣
2

2,2n
= 0, (3.62)

and ifHd ≥ 3/2,

lim
ε→ 0

εd−(3/2H)
∣∣∣G(1)

2n,ε

∣∣∣
2

2,2n
= 2Tf(d,H, n). (3.63)

Suppose now Hd = 1,

∣∣∣G(1)
2n,ε

∣∣∣
2

2,2n
= 2ε1/2H

∫T
0
f(t,H, d, n, ε)dt, (3.64)

with

f(t,H, d, n, ε) = θt(ε)
∫

0≤x≤y≤θt(ε)
dxdy

x4Hn

[(
x2H + 1

)(
y2H + 1

)]n+(d/2) , (3.65)

and then

f(t,H, d, n, ε)∣∣log ε∣∣ ≤ θt(ε)

{
a(H,d, n)∣∣log ε∣∣ + b(H,d, n)

}
, (3.66)
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where

a(H,d, n) =
∫

0≤x≤y,x≤1
dxdy

x4Hn

[(
x2H + 1

)(
y2H + 1

)]n+(d/2) ,

b(H,d, n) = sup
0≤t≤T

sup
ε>0

1∣∣log ε∣∣
∫

1≤x≤y≤θt(ε)
dxdy

x4Hn

[(
x2H + 1

)(
y2H + 1

)]n+(d/2) .
(3.67)

So we obtain

1∣∣log ε∣∣
∣∣∣G(1)

T,2n,ε

∣∣∣
2

2,2n
≤ T2

{
a(H,d, n)∣∣log ε∣∣ + b(H,d, n)

}
. (3.68)

Step 2. Let us now treat |G(2)
2n,ε|

2
2,2n.

∣∣∣G(2)
2n,ε

∣∣∣
2

2,2n
= 2ε(3/2H)−d

∫T
0
dtg(t,H, d, n, ε), (3.69)

where

g(t,H, d, n, ε) ≤ CH

∫

0≤x+y−z≤θt(ε),0≤z≤x≤y≤θt(ε)
dxdydz

[
gH
(
x, y, z

)]2n
[(
x2H + 1

)(
y2H + 1

)]n+(d/2) , (3.70)

where

gH
(
x, y, z

)
= (x − z)2H +

(
y + z

)2H −
(
x + y − z

)2H − z2H. (3.71)

We have that |gH(x, y, z)| ≤ 2x2H and so

z −→
∫

0≤z≤x≤y
dxdy

[
gH
(
x, y, z

)]2n
[(
x2H + 1

)(
y2H + 1

)]n+(d/2)

= z4Hn+2
∫

1≤x≤y
dxdy

[
gH
(
x, y, z

)]2n
[
(z2Hx2H + 1)(z2Hy2H + 1)

]n+(d/2) ,
(3.72)

is well defined on R+ and for Hd ≥ 3/2, one can choose α ∈ (1, 2 − 2H) such that when
z → +∞

zα
∫

0≤z≤x≤y
dxdy

[
gH
(
x, y, z

)]2n
[(
x2H + 1

)(
y2H + 1

)]n+(d/2) −→ 0. (3.73)
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And then

∫

R+

∫

0≤z≤x≤y
dxdy

[
gH
(
x, y, z

)]2n
[(
x2H + 1

)(
y2H + 1

)]n+(d/2) = g(H,d, n) < ∞. (3.74)

So that

lim
ε→ 0

g(t,H, d, n, ε) = g(H,d, n). (3.75)

Suppose Hd = 1, the same computations as in the case of |G(1)
2n,ε|

2
2,2n leads to

1∣∣log ε∣∣
∣∣∣G(2)

2n,ε

∣∣∣
2

2,2n
≤ 22nT2

{
a(H,d, n)∣∣log ε∣∣ + b(H,d, n)

}
. (3.76)

Suppose now Hd ∈ (1, 3/2), we have

g(t,H, d, n, ε) ≤ 22n
∫θt(ε)
0

dzz2−2Hd

∫

1≤x≤y
dxdy

x4Hn

(
xy
)H(2n+d)

:= 22nC(H,d, n). (3.77)

Then

∣∣∣G(2)
2n,ε

∣∣∣
2

2,2n
≤ CH

22nC(H,d,n)

(3 − 2Hd)(2 −Hd)
T4−2Hd. (3.78)

We know that limε→ 0|G(1)
2n,ε|

2
2,2n = 0, then limε→ 0|G(2)

2n,ε|
2
2,2n exists. Let us suppose that Hd =

3/2,

∣∣∣G(2)
2n,ε

∣∣∣
2

2,2n
= 2
∫T
0
dth(t,H, d, n, ε) (3.79)

with

h(t,H, d, n, ε) ≤
∫1
0
dz

∫

z≤x≤y≤θt(ε)
dxdy

[
gH
(
x, y, z

)]2n
[(
x2H + 1

)(
y2H + 1

)]n+(d/2)

+
∫θt(ε)
1

dz

∫

z≤x≤y≤θt(ε)
dxdy

[
gH(x, y, z)

]2n
[(
x2H + 1

)(
y2H + 1

)]n+(d/2) .
(3.80)

The first term is bounded by

22n
∫

0≤x≤y
dxdy

x4Hn

[(
x2H + 1

)(
y2H + 1

)]n+(d/2) = 22ne(H,d, n). (3.81)
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The second term is bounded by

∫θt(ε)
1

dz
1
z
22n
∫

1≤x≤y
dxdy

x4Hn

(
xy
)H(2n+(d/2))

= 22nC(H,d, n) log|θt(ε)|. (3.82)

So

1∣∣log ε∣∣
∣∣∣G(2)

2n,ε

∣∣∣
2

2,2n
≤ 22n+1∣∣log ε∣∣e(H,d, n)T

+
22n

H
C(H,d, n)T +

22n+1∣∣log ε∣∣
∫T
0
log tdt.

(3.83)

Therefore

1∣∣log ε∣∣
∣∣∣G(2)

2n,ε

∣∣∣
2

2,2n
(3.84)

has a finite nontrivial limit and

1∣∣log ε∣∣
∣∣∣G(2)

2n,ε

∣∣∣
2

2,2n
≤ 22n

H
C(H,d, n)T. (3.85)

Step 3. Finally, let us treat |G(3)
2n,ε|

2
2,2n. Let x = t − t′, y = t′ − s′, z = s′ − s. We know

∣∣∣G(3)
2n,ε

∣∣∣
2

2,2n
≤ 2ε(3/2H)−d

∫T
0
dtj(t,H, d, n, ε), (3.86)

where

j(t,H, d, n, ε) =
∫

0≤x+y+z≤θt(ε)
dxdydz

kH
(
x, y, z

)2n
[(
x2H + 1

)(
y2H + 1

)]n+(d/2) , (3.87)

with

kH
(
x, y, z

)
=
(
x + y

)2H − x2H +
(
y + z

)2H − z2H. (3.88)

It is obvious that |kH(x, y, z)| ≤ 2y2H . So

j(t,H, d, n, ε) ≤ 2
∫

0≤x+y+z≤θt(ε),0≤x≤y≤θt(ε)
dxdydz

(
2y2H)2n

[(
x2H + 1

)(
y2H + 1

)]n+(d/2) . (3.89)
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For Hd > 1,

∫

0≤x≤y

(
2y2H)2n

[(
x2H + 1

)(
y2H + 1

)]n+(d/2)dxdy < ∞, (3.90)

this implies that for every z ∈ R+,

∫

0≤x≤y

kH
(
x, y, z

)2n
[(
x2H + 1

)(
y2H + 1

)]n+(d/2)dxdy < ∞. (3.91)

On the other hand, for α ∈ (1, 2 − 2H), zαkH(x, y, z)2n decreases to zero when z tends to
infinity, then

g(H,d, n) =
∫

R+

dz

∫

0≤x≤y
dxdy

kH
(
x, y, z

)2n
[(
x2H + 1

)(
y2H + 1

)]n+(d/2) < ∞, (3.92)

and so that

lim
ε→ 0

g(t,H, d, n, ε) = g(H,d, n). (3.93)

Therefore, if Hd ∈ (1.3/2), we obtain

lim
ε→ 0

∣∣∣G(3)
2n,ε

∣∣∣
2

2,2n
= 0. (3.94)

IfHd ≥ 3/2,

lim
ε→ 0

εd−(3/2H)
∣∣∣G(3)

2n,ε

∣∣∣
2

2,2n
= 2Tg(H,d, n). (3.95)

Suppose now Hd = 1,

∣∣∣G(3)
2n,ε

∣∣∣
2

2,2n
= 2ε1/2H

∫T
0
dtg(t,H, d, n, ε), (3.96)

where

g(t,H, d, n, ε) ≤ θt(ε)
∫

0≤x≤y≤θt(ε)
dxdy

(
2y2H)2n

[(
x2H + 1

)(
y2H + 1

)]n+(d/2) , (3.97)

and then

g(t,H, d, n, ε)∣∣log ε∣∣ ≤ θt(ε)

{
a(H,d, n)∣∣log ε∣∣ + b(H,d, n)

}
, (3.98)
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where

a(H,d, n) =
∫

0≤x≤y,x≤1
dxdy

(
2y2H)2n

[(
x2H + 1

)(
y2H + 1

)]n+(d/2) ,

b(H,d, n) = sup
0≤t≤T

sup
ε>0

1∣∣log ε∣∣
∫

1≤x≤y≤θt(ε)
dxdy

(
2y2H)2n

[(
x2H + 1

)(
y2H + 1

)]n+(d/2) .
(3.99)

So we obtain

1∣∣log ε∣∣
∣∣∣G(3)

2n,ε

∣∣∣
2

2,2n
≤ T2

{
a(H,d, n)∣∣log ε∣∣ + b(H,d, n)

}
. (3.100)

Theorem 3.9. Assume that Hi = H, i = 1, . . . , d, then forH ∈ (0, 1) and d ≥ 1 satisfyingHd < 1,

�HT,ε −→ �HT , in
(
L2
)
, (3.101)

as ε tends to zero.

Proof. By Theorems 3.3 and 3.7, we only need to consider chaos expansion of �HT,ε and �HT .
Similar techniques in Oliveira et al. [12] allow us to write

I = E

(
�HT,2n

)2
=

(2n)!

(2π)d(n!)222n
|G2n,ε|2L2(Rn). (3.102)

In view of (3.102), we need to estimate |G2n|2L2(Rn) = |G2n|22,2n, where

|G2n|22,2n =
∑
m
m!
(

1
2π

)d(1
2

)2m 1

(m!)2

·
∫

R2n
d2nu

∫

T
dtdsdt′ds′

d∏
j=1

ΔKj(t, s)⊗2njΔKj(t′, s′)
⊗2nj

((
δHj (t, s)

)(
δHj (t′, s′)

))nj+1/2

=
(

1
2π

)d ∫

T

[
λt,sλt′,s′ − μ2

]−(d/2)
dtdsdt′ds′,

(3.103)



Abstract and Applied Analysis 25

where

λt,s = |t + s|2H + |t − s|2H − 22H−1
(
t2H + s2H

)
,

λt′,s′ =
∣∣t′ + s′

∣∣2H +
∣∣t′ − s′

∣∣2H − 22H−1
((

t′
)2H +

(
s′
)2H)

,

μ =
1
2

(∣∣s − t′
∣∣2H +

∣∣s′ − t
∣∣2H −

∣∣t − t′
∣∣2H −

∣∣s − s′
∣∣2H

+
∣∣s − t′

∣∣2H +
∣∣s′ + t

∣∣2H −
∣∣t + t′

∣∣2H −
∣∣s + s′

∣∣2H).

(3.104)

In order to show |I| < ∞, we need some preliminaries. Recall

T =
{(

s, t, s′, t′
)
: 0 < s < t < T, 0 < s′ < t′ < T

}
. (3.105)

Without loss of generality, one can assume t < t′. For any (s, t, s′, t′) ∈ T, we denote T1 = {0 ≤
s < s′ < t < t′ ≤ T}, T2 = {0 ≤ s′ < s < t < t′ ≤ T}, T3 = {0 ≤ s < t < s′ < t′ ≤ T}. From Lemma
2.1 in Yan and Shen [13], we know that there exists a constant κ > 0 such that the following
three statements hold:

(1) for (s, t, s′, t′) ∈ T1,

λt,sλt′,s′ − μ2 ≥ κ
[
(t − s)2H

(
t′ − t
)2H +

(
t′ − s′

)2H(
s′ − s

)2H]; (3.106)

(2) for (s, t, s′, t′) ∈ T2,

λt,sλt′,s′ − μ2 ≥ κ
[
(t − s)2H

(
t′ − s′

)2H]; (3.107)

(3) for (s, t, s′, t′) ∈ T3,

λt,sλt′,s′ − μ2 ≥ κ
[
(t − s)2H

(
t′ − s′

)2H]
. (3.108)

Then we can easily check that, if Hd < 1, |I| < ∞. Moreover, �T,ε converges to �HT in (L2) as ε
tends to zero.

Remark 3.10. In this work, we only study the existence of self-intersection of subfractional
Brownian motion in L2 under mild conditions. The asymptotic behavior and the central limit
theorem of the difference �HT,ε −E�HT,ε in L2 as ε tends to zero will be discussed in future works.
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