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We suggest and analyze a residual iterative method for solving absolute value equations Ax−|x| =
b where A ∈ Rn×n, b ∈ Rn are given and x ∈ Rn is unknown, using the projection technique.
We also discuss the convergence of the proposed method. Several examples are given to illustrate
the implementation and efficiency of the method. Comparison with other methods is also given.
Results proved in this paper may stimulate further research in this fascinating field.

1. Introduction

The residual methods were proposed for solving large sparse systems of linear equations

Ax = b, (1.1)

where A ∈ Rn×n is a positive definite matrix and x, b ∈ Rn. Paige and Saunders [1] minimized
the residual norm over the Krylov subspace and proposed an algorithm for solving indefinite
systems. Saad and Schultz [2] used Arnoldi process and suggested generalized minimal
residual method which minimize norm of the residual at each step. The residual methods
have been studied extensively [3–5].

We show that the Petrov-Galerkin process can be extended for solving absolute value
equations of the form:

Ax − |x| = b, (1.2)
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where A ∈ Rn×n, b ∈ Rn. Here |x| is the vector in Rn with absolute values of the components of
x and x ∈ Rn, is unknown. The absolute value equations (1.1) were investigated extensively
in [6]. It was Managasarian [7, 8], who proved that the absolute value equations (1.2) are
equivalent to the linear complementarity problems. This equivalent formulation was used
by Managasarian [7, 8] to solve the absolute value equations. We would like to remark that
the complementarity problems are also equivalent to the variational inequalities. Thus, we
conclude that the absolute value equations are equivalent to the variational inequalities.
There are several methods for solving the variational inequalities; see Noor [9–11], Noor et
al. [12, 13] and the references therein. To the best our knowledge, this alternative equivalent
formulation has not exploited up to now. This is another direction for future direction.
We hope that this interlink among these fields may lead to discover novel and innovative
techniques for solving the absolute value equations and related optimization problems. Noor
et al. [14, 15] have suggested some iterative methods for solving absolute value equation (1.2)
using minimization technique with symmetric positive definite matrix. For more details, see
[3, 4, 6–12, 14–19].

In this paper, we suggest and analyse residual iterative method for solving absolute
value equations (1.2) using projection technique. Our method is easy to implement. We
discuss the convergence of the residual method for nonsymmetric positive definite matrices.

We denote by K and L the search subspace and the constraints subspace, respectively,
and let m be their dimension and x0 ∈ Rn an initial guess. A projection method onto the
subspace K and orthogonal to L is a process to find an approximate solution x ∈ Rn to (1.2)
by imposing the Petrov-Galerkin conditions that x belong to affine space x0 +K such that the
new residual vector orthogonal to L, that is,

find x ∈ x0 +K such that b − (A −D(x)) x ⊥ L, (1.3)

where D(x) is diagonal matrix corresponding to sign(x). For different choices of the subspace
L, we have different iterative methods. Here we use the constraint space L = (A−D(x))K. The
residual method approximates the solution of (1.2) by the vector x ∈ x0 +K that minimizes
the norm of residual.

The inner product is denoted by 〈·, ·〉 in the n-dimensional Euclidean space Rn. For
x ∈ Rn, sign(x) will denote a vector with components equal to 1, 0,−1 depending on whether
the corresponding component of x is positive, zero, or negative. The diagonal matrix D(x)
corresponding to sign(x) is defined as

D(x) = ∂|x| = diag
(
sign(x)

)
, (1.4)

where ∂|x| represent the generalized Jacobean of |x| based on a subgradient [20, 21].
We denote the following by

a = 〈Cv1, Cv1〉,
c = 〈Cv1, Cv2〉,
d = 〈Cv2, Cv2〉,

p1 = 〈b −Axk + |xk|, Cv1〉 = 〈b − Cxk, Cv1〉,
p2 = 〈b −Axk + |xk|, Cv2〉 = 〈b − Cxk, Cv2〉,

(1.5)
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where 0/=v1, v2 ∈ Rn, and C = A − D(xk). We consider A such that C is a positive definite
matrix. We remark that D(xk)xk = |xk|.

2. Residual Iterative Method

Consider the iterative scheme of the type:

xk+1 = xk + αv1 + βv2, 0/=v1, v2 ∈ Rn, k = 0, 1, 2, . . . . (2.1)

These vectors can be chosen by different ways. To derive residual method for solving absolute
value equations in the first step, we choose the subspace

K1 = span{v1}, L1 = span{Cv1}, x0 = xk. (2.2)

For D(x̃k+1) = D(xk), we write the residual in the following form:

b −Ax̃k+1 + |x̃k+1| = b − (A −D(x̃k+1))x̃k+1

= b − (A −D(xk))x̃k+1

= b − Cx̃k+1.

(2.3)

From (1.3) and (2.3), we calculate

x̃k+1 ∈ xk +K1 such that b − C x̃k+1 ⊥ L1; (2.4)

that is, we find the approximate solution by the iterative scheme

x̃k+1 = xk + αv1. (2.5)

Now, we rewrite (2.4) in the inner product as

〈b − Cx̃k+1, Cv1〉 = 0; (2.6)

from the above discussion, we have

〈b − Cxk − αCv1, Cv1〉 = 〈b − Cxk, Cv1〉 − α〈Cv1, Cv1〉

= p1 − aα = 0,
(2.7)

from which we have

α =
p1

a
. (2.8)
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The next step is to choose the subspace

K2 = span{v2}, L2 = span{Cv2}, x0 = x̃k+1, (2.9)

and to find the approximate solution xk+1 such that

xk+1 ∈ x̃k+1 +K2 such that b − Cxk+1 ⊥ L2, (2.10)

where

xk+1 = x̃k+1 + βv2,

b −Axk+1 + |xk+1| = b − Cxk+1, D(xk+1) = D(xk).
(2.11)

Rewriting (2.10) in terms of the inner product, we have

〈b − Cxk+1, Cv2〉 = 0. (2.12)

Thus, we have

〈b − Cxk+1, Cv2〉 =
〈
b − Cxk − αCv1 − βCv2, Cv2

〉

= 〈b − Cxk, Cv2〉 − α〈Cv1, Cv2〉 − β〈Cv2, Cv2〉

= p2 − cα − dβ = 0.

(2.13)

From (2.8) and (2.13), we obtain

β =
ap2 − cp1

ad
. (2.14)

We remark that one can choose v1 = rk and v2 in different ways. However, we consider
the case v2 = sk (sk is given in Algorithm 2.1).

Based upon the above discussion, we suggest and analyze the following iterative
method for solving the absolute value equations (1.2) and this is the main motivation of
this paper.

Algorithm 2.1. Choose an initial guess x0 ∈ Rn,

For k = 0, 1, 2, . . . until convergence do

rk = b −Axk + |xk|
gk = (A −D(xk))

T (Axk − |xk| − b)

Hk = ((A −D(xk))
−1(A −D(xk)))

T

sk = −Hkgk

If ‖rk‖ = 0, then stop; else
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αk = p1/a, βk = (ap2 − cp1)/ad

Set xk+1 = xk + αkrk + βksk

If ‖xk+1 − xk‖ < 10−6

then stop

End if

End for k.

If β = 0, then Algorithm 2.1 reduces to minimal residual method; see [2, 5, 21, 22]. For
the convergence analysis of Algorithm 2.1, we need the following result.

Theorem 2.2. Let {xk} and {rk} be generated by Algorithm 2.1; if D(xk+1) = D(xk), then

‖rk‖2 − ‖rk+1‖2 =
p2

1

a
+

(
ap2 − cp1

)2

a2d
, (2.15)

where rk+1 = b −Axk+1 + |xk+1| and D(xk+1) = diag(sign(xk+1)).

Proof. Using (2.1), we obtain

rk+1 = b −Axk+1 + |xk+1|
= b − (A −D(xk+1))xk+1

= b − (A −D(xk))xk+1

= b − (A −D(xk))xk − α(A −D(xk))v1 − β(A −D(xk))v2

= b −Axk + |xk| − αCv1 − βCv2

= rk − αCv1 − βCv2.

(2.16)

Now consider

‖rk+1‖2 = 〈rk+1, rk+1〉
=
〈
rk − αCv1 − βCv2, rk − αCv1 − βCv2

〉

= 〈rk, rk〉 − 2α〈rk, Cv1〉 − 2αβ〈Cv1, Cv2〉 − 2β〈rk, Cv2〉 + α2〈Cv1, Cv1〉 + β2〈Cv2, Cv2〉

= ‖rk‖2 − 2αp1 + 2cαβ − 2βp2 + aα2 + β2d.

(2.17)

From (2.8), (2.14), and (2.17), we have

‖rk‖2 − ‖rk+1‖2 =
p2

1

a
+

(
ap2 − cp1

)2

a2d
, (2.18)

the required result (2.15).
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Since p2
1/a + (ap2 − cp1)

2/a2d ≥ 0, so from (2.18) we have

‖rk‖2 − ‖rk+1‖2 =
p2

1

a
+

(
ap2 − cp1

)2

a2d
≥ 0. (2.19)

From (2.19) we have ‖rk+1‖2 ≤ ‖rk‖2. For any arbitrary vectors 0/=v1, v2 ∈ Rn, α, β are defined
by (2.8), and (2.14) minimizes norm of the residual.

We now consider the convergence criteria of Algorithm 2.1, and it is the motivation of
our next result.

Theorem 2.3. If C is a positive definite matrix, then the approximate solution obtained from
Algorithm 2.1 converges to the exact solution of the absolute value equations (1.2).

Proof. From (2.15), we have

‖rk‖2 − ‖rk+1‖2 ≥ p2
1

a
=

〈rk, Crk〉2

〈Crk, Crk〉 ≥ λ2
min‖rk‖4

λ2
max‖rk‖2

=
λ2

min

λ2
max

‖rk‖2. (2.20)

This means that the sequence ‖rk‖2 is decreasing and bounded. Thus the above sequence is
convergent which implies that the left-hand side tends to zero. Hence ‖rk‖2 tends to zero, and
the proof is complete.

3. Numerical Results

To illustrate the implementation and efficiency of the proposed method, we consider the
following examples. All the experiments are performed with Intel(R) Core(TM) 2 × 2.1 GHz,
1 GB RAM, and the codes are written in Mat lab 7.

Example 3.1. Consider the ordinary differential equation:

d2x

dt2
− |x| =

(
1 − t2

)
, 0 ≤ t ≤ 1, x(0) = −1 x(1) = 0. (3.1)

We discredited the above equation using finite difference method to obtain the system of
absolute value equations of the type:

Ax − |x| = b, (3.2)

where the system matrix A of size n = 10 is given by

ai,j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−242, for j = i,

121, for

⎧
⎨

⎩

j = i + 1, i = 1, 2, . . . , n − 1,

j = i − 1, i = 2, 3, . . . , n,
0, otherwise.

(3.3)
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Figure 1

Table 1

Problems with sad (A) > 1 GNM RIM
Problem size 1000
Number of problem solved 100
Total number of iterations 297 268
Accuracy 10−6 10−6

Total time in seconds 870.30 977.45

The exact solution is

x =

⎧
⎨

⎩

.1915802528 sin t − 4 cos t + 3 − t2, x < 0,

−1.462117157e−t − 0.5378828428et + 1 + t2, x > 0.
(3.4)

In Figure 1, we compare residual method with Noor et al. [14, 15]. The residual iterative
method, minimization method [14], and the iterative method [10] solve (3.1) in 51, 142, and
431 iterations, respectively. For the next two examples, we interchange v1, v2 with each other
as Algorithm 2.1 converges for nonzero vectors v1, v2 ∈ Rn.

Example 3.2 (see [17]). We first chose a random A from a uniform distribution on [−10, 10],
then we chose a random x from a uniform distribution on [−1, 1]. Finally we computed b =
Ax − |x|. We ensured that the singular values of each A exceeded 1 by actually computing
the minimum singular value and rescaling A by dividing it by the minimum singular value
multiplied by a random number in the interval [0, 1]. The computational results are given in
Table 1.

In Table 1, GNM and RIM denote generalized Newton method [17] and residual
iterative method. From Table 1 we conclude that residual method for solving absolute value
equations (1.2) is more effective.
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Table 2

Order Residual iterative method Yong method [23]
No. of iterations TOC No. of iterations TOC

4 2 0.006 2 2.230
8 2 0.022 2 3.340
16 2 0.025 3 3.790
32 2 0.053 2 4.120
64 2 0.075 3 6.690
128 2 0.142 3 12.450
256 2 0.201 3 34.670
512 3 1.436 5 76.570
1024 2 6.604 5 157.12

Example 3.3 (see [23]). Consider random matrix A and b in Mat lab code as

n = input(“dimension of matrix A = ”);

rand (“state”, 0);

R = rand (n, n);

b = rand (n, 1);

A = R′∗Run∗eye(n),

(3.5)

with random initial guess. The comparison between the residual iterative method and the
Yong method [23] is presented in Table 2.

In Table 2 TOC denotes time taken by CPU. Note that for large problem sizes the
residual iterative method converges faster than the Yong method [23].

4. Conclusions

In this paper, we have used the projection technique to suggest an iterative method for
solving the absolute value equations. The convergence analysis of the proposed method is
also discussed. Some examples are given to illustrate the efficiency and implementation of the
new iterative method. The extension of the proposed iterative method for solving the general
absolute value equation of the form Ax + B|x| = b for suitable matrices is an open problem.
We have remarked that the variational inequalities are also equivalent to the absolute value
equations. This equivalent formulation can be used to suggest and analyze some iterative
methods for solving the absolute value equations. It is an interesting and challenging problem
to consider the variational inequalities for solving the absolute value equations.
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