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A modified stochastic ratio-dependent Leslie-Gower predator-prey model is formulated and
analyzed. For the deterministic model, we focus on the existence of equilibria, local, and global
stability; for the stochastic model, by applying Itô formula and constructing Lyapunov functions,
some qualitative properties are given, such as the existence of global positive solutions, stochastic
boundedness, and the global asymptotic stability. Based on these results, we perform a series of
numerical simulations andmake a comparative analysis of the stability of the model systemwithin
deterministic and stochastic environments.

1. Introduction

The dynamic relationship between predators and their prey has long been and will continue
to be one of the dominant themes in both ecology and mathematical ecology due to its
universal existence and importance [1]. In recent years, one of important predator-prey
models is Leslie-Gower model [2, 3], which has been extensively studied [4, 5]. And, more
and more obvious evidences of biology and physiology show that in many conditions,
especially when the predators have to search for food (consequently, have to share or compete
for food), a more realistic and general predator-prey system should rely on the theory of
ratio-dependence, this is confirmed by lots of experimental results [4, 6]. A ratio-dependent
Leslie-Gower predator-prey model [7], takes the form

dx

dt
= ax(1 − bx) − p

(
x

y

)
y,

dy

dt
= ey

(
1 − fy

x

)
,

(1.1)
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where x = x(t), y = y(t) stand for the population (the density) of the prey and the predator at
time t, respectively, and p(x/y) is the predator functional response to prey. And we assumed
that the prey grows logistically with growth rate a and carrying capacity 1/b in the absence of
predation. The predator consumes the prey according to the functional response p(x/y) and
grow logistically with growth rate e and carrying capacity x/f proportional to the population
size of prey (or prey abundance). The parameter f is a measure of the food quality that the
prey provides for conversion into predator birth. The term fy/x of this equation is called the
Leslie-Gower term.

On the other hand, the predator y can switch over to other population when the prey
population is severely scarce, but its growth will be limited, because we cannot forget the
fact that its most favorite food, the prey x, is not in abundance. In this situation, a positive
constantm can be added to the denominator,mmeasures the extent towhich the environment
provides protection to the predator [8, 9], and the second equation of model (1.1) becomes

dy

dt
= ey

(
1 − fy

m + x

)
. (1.2)

Based on the above discussions, in the paper, we will focus on the following ratio-
dependent Leslie-Gower model:

dx

dt
= ax

(
1 − bx − cy

x + ny

)
� f

(
x, y

)
,

dy

dt
= ey

(
1 − fy

m + x

)
� g

(
x, y

)
.

(1.3)

The rest of the paper is organized as follows. In Section 2, we give some theorems
about the stability property of the equilibria of model (1.3). In Section 3, we establish a
stochastic model based on model (1.3) and focus on the existence of global positive solutions,
stochastic boundedness, and the global asymptotic stability of the stochastic model. In
Section 4, we give some numerical examples and make a comparative analysis of the stability
of the model system within deterministic and stochastic environments.

2. The Dynamics of Model (1.3)

2.1. Dissipativeness

By standard simple arguments, one can show that the solution of model (1.3) always exists
and stays positive. In fact, from the first equation of model (1.3), we can get

lim sup
t→∞

x(t) ≤ 1
b
. (2.1)

Hence, there exists a T > 0 such that, for t > T , x ≤ 1/b.
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From the second equation of model (1.3), we see that, for t > T , we have dy/dt ≤
ey(1 − bfy/(mb + 1)). A standard comparison argument shows that

lim sup
t→∞

y(t) ≤ (1 + bm)
bf

. (2.2)

Thus, we have the following conclusion.

Lemma 2.1. Model (1.3) is dissipative.

Lemma 2.2. If c < n, then model (1.3) is permanent.

Proof. If c < n, from the first equation of model (1.3), we have dx/dt ≥ ax(1 − bx − c/n).
Therefore, by standard comparison argument, we have

lim inf
t→∞

x(t) ≥ n − c

bn
. (2.3)

Hence, for any ε > 0 and large t, x(t) > (n − c)/bn − ε, and

dy

dt
≥ ey

(
bmn + nc − bnε − bfny

bmn + nc − bnε

)
. (2.4)

From the arbitrariness of ε > 0, we can get that

lim inf
t→∞

y(t) ≥ bmn + n − c

bfn
. (2.5)

2.2. Stability Analysis of the Equilibria

In this section, we will focus on the existence of equilibria and their stabilities of model (1.3).
It is easy to find that model (1.3) always has three boundary equilibria E0 = (0, 0),

E1 = (1/b, 0), E2 = (0, m/f). And the positive equilibria (x, y) satisfies the equations

ax

(
1 − bx − cy

x + ny

)
= 0, ey

(
1 − fy

m + x

)
= 0, (2.6)

which yields

b
(
f + n

)
x2 − (

f − c − bmn + n
)
x + (c − n)m = 0. (2.7)
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For simplicity, we define

A1 =
f − c − bmn + n

b
(
f + n

) ,

B1 =
(c − n)m
b
(
f + n

) ,

C1 =

√√√√
(
f − c − bmn + n

)2
b2

(
f + n

)2 − 4(c − n)m
b
(
f + n

) =
√
A2

1 − 4B1,

(2.8)

then (2.7) can be rewritten as

x2 −A1x + B1 = 0. (2.9)

Lemma 2.3 (existence of equilibria). (a) Suppose A1 > 0 and B1 > 0, in (2.9), then one has

(a1) If C2
1 > 0, then it has two positive roots given by

xe1 =
A1 + C1

2
, xe2 =

A1 − C1

2
. (2.10)

Therefore, model (1.3) has two positive equilibria E3 = (xe1, ye1) = ((A1 + C1)/2, (2m +
A1 + C1)/2f) and E4 = (xe2, ye2) = ((A1 − C1)/2, (2m +A1 − C1)/2f).

(a2) If C2
1 = 0, (2.9) has a unique positive root of multiplicity-2 given by xe =√

m(c − n)/b(f + n). Thus, model (1.3) has a unique positive equilibrium

Ee =

⎛
⎜⎝

√
m(c − n)
b
(
f + n

) , bm
(
f + n

)
+
√
bm

(
f + n

)
(c − n)

bf
(
f + n

)
⎞
⎟⎠. (2.11)

(a3) If C2
1 < 0, there are no positive roots that exist and then, model (1.3) has no positive

equilibrium.

(b)B1 = 0, A1 > 0, (2.9) has a unique positive root x = (f − bmn)/b(f + n), model (1.3) has
a unique positive equilibrium E = (x, y) = ((f − bmn)/b(f + n), (bm + 1)/b(f + n)).

(c)B1 < 0, (2.9) has a unique positive root x∗ = (A1+C1)/2, model (1.3) has a unique positive
equilibrium E∗ = (x∗, y∗) = ((A1 + C1)/2, (2m +A1 + C1)/2f).

Next, we discuss the local stabilities of these equilibria. Easy to obtain the following
results:

Lemma 2.4. (i) E1 = (1/b, 0) is a saddle point;

(ii) if c > n, E2 = (0, m/f) is a stable node point. If c ≤ n, E2 = (0, m/f) is a saddle point.
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Following, let E = (x, y) be an arbitrary positive equilibrium. The Jacobian matrix for
E = (x, y) is given by

J(E) =

⎛
⎜⎜⎜⎜⎝

ax

(
−b + cy(

x + ny
)2

)
ax

(
− c

x + ny
+

cny(
x + ny

)2
)

e

f
−e

⎞
⎟⎟⎟⎟⎠. (2.12)

Then we can get the following:

tr(J(E)) = ax

(
−b + cy(

x + ny
)2

)
− e,

det(J(E)) =
aex

[
b
(
f + n

)2
x2 + 2bmn

(
f + n

)
x − cfm + bm2n2

]
(
fx +mn + nx

)2 .

(2.13)

So the sign of det(J(E)) is determined by

F(x) � b
(
f + n

)2
x2 + 2bmn

(
f + n

)
x − cfm + bm2n2. (2.14)

Theorem 2.5. For model (1.3), the stabilities of E3 and E4 are as follows.

(a) The positive equilibrium E3 = (xe1, (m+xe1)/f) = ((A1 +C1)/2, (2m+A1 +C1)/2f) is

(a1) stable if and only if

e > axe1

(
−b + cf(m + xe1)(

fxe1 + n(m + xe1)
)2

)
; (2.15)

(a2) unstable if and only if

e < axe1

(
−b + cf(m + xe1)(

fxe1 + n(m + xe1)
)2

)
. (2.16)

(b) The positive equilibrium E4 = (xe2, (m+xe2)/f) = ((A1 −C1)/2, (2m+A1 −C1)/2f) is
a saddle point.

Proof. (a) At the point E3, we have the following:

F(xe1) =
b
(
f + n

)2(A1 + C1)2

4
+ bmn

(
f + n

)
(A1 + C1) + bm2n2 − cfm

=
b
(
f + n

)2
C2

1

2
+ C1

(
bmn

(
f + n

)
+
b
(
f + n

)2
A1

2

)
> 0,

(2.17)
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thus, det(J(E3)) > 0, and the nature of singularity E3 depends on the trace given by

tr(J(E3)) = axe1

(
−b + cf(m + xe1)(

fxe1 + n(m + xe1)
)2

)
− e. (2.18)

Clearly,

(a1) If e > axe1(−b + cf(m + xe1)/(fxe1 + n(m + xe1))
2), then tr(J(E3)) < 0, and

E3 = (xe1, (m + xe1)/f) is stable.

(a2) If e < axe1(−b + cf(m + xe1)/(fxe1 + n(m + xe1))
2), then tr(J(E3)) > 0, and

E3 = (xe1, (m + xe1)/f) is unstable.

(b) At the point E4, we have the following:

F(xe2) =
b
(
f + n

)2(A1 − C1)2

4
+ bmn

(
f + n

)
(A1 − C1) + bm2n2 − cfm

=
b
(
f + n

)2
2

C1(A1 − C1) − bmn
(
f + n

)
C1 − 2fm

(
f + n

)
B1 < 0,

(2.19)

then det(J(E4)) < 0, and E4 is a saddle point.

Figure 1 shows the dynamics of model (1.3). In this case, E0 = (0, 0) is a nodal source,
E1 = (4, 0) is a saddle point, E2 = (0, 071429) is a nodal sink, E4 = (0.31772, 1.5846) is a saddle
point, and E3 = (0.96454, 2.3932) is locally asymptotically stable. There exists a separatrix
curve determined by the stable manifold of E4, which divides the behavior of trajectories,
that is, the stable manifold of saddle E4 split the feasible region into two parts such that
orbits initiating inside tend to the positive equilibrium E3, while orbits initiating outside tend
to E3 except for the stable manifolds of E4.

Theorem 2.6. The singularity E = (x, (m + x)/f) = ((f − bmn)/b(f + n), (bm + 1)/b(f + n)) is

(a) stable if and only if

e > ax

(
−b + cf(m + x)(

fx + n(m + x)
)2

)
; (2.20)

(b) unstable if and only if

e < ax

(
−b + cf(m + x)(

fx + n(m + x)
)2

)
. (2.21)
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Figure 1: The phase portraits of model (1.3). The parameters are taken as a = 2, b = 0.25, c = 0.875, e =
1, m = 0.95, and n = 0.75, f = 0.8. In this case, E0 = (0, 0) is a source, E1 = (4, 0) and E4 = (0.31772, 1.5846)
are saddle points, and E2 = (0, 071429) is a nodal sink, which is stable. The positive equilibrium E3 =
(0.96454, 2.3932) is locally asymptotically stable. The dashed curve is the x-nullcline f(x, y) = 0, and the
dotted curve is the y-nullcline g(x, y) = 0.

Proof. At the point E = (x, (m + x)/f), we have

F(x) = b
(
f + n

)2
A2

1 + 2bmn
(
f + n

)
A1 + bm2n2 − cfm = b

(
f + n

)2
A2

1 + bmn
(
n + f

)
A1 > 0,

(2.22)

as F(x) > 0, then det(J(E)) > 0, and the nature of singularity E = (x, (m + x)/f) depends on
the trace given by

tr
(
J
(
E
))

= ax

(
−b + cf(m + x)(

fx + n(m + x)
)2

)
− e. (2.23)

Clearly,

(a) If e > ax(−b+cf(m+x)/(fx + n(m + x))2), then tr(J(E)) < 0, and E = (x, (m+x)/f)
is stable.

(b) If e < ax(−b+cf(m+x)/(fx + n(m + x))2), then tr(J(E)) > 0, and E = (x, (m+x)/f)
is unstable.

Theorem 2.7. Singularity E∗ = (x∗, (m + x∗)/f) is
(a) stable if and only if

e > ax∗
(
−b + cf(m + x∗)(

fx∗ + n(m + x∗)
)2

)
; (2.24)
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(b) unstable if and only if

e < ax∗
(
−b + cf(m + x∗)(

fx∗ + n(m + x∗)
)2

)
. (2.25)

Proof. At the point E∗ = (x∗, (m + x∗)/f), as B1 < 0, C2
1 = A2

1 − 4B, so

F(x∗) =
b
(
f + n

)2(A1 + C1)2

4
+ bmn

(
f + n

)
(A1 + C1) + bm2n2 − cfm

=
b
(
f + n

)2(A1 + C1)2

4
+ bmn

(
f + n

)
C1 +m

(
n + f

)
(n − c) > 0,

(2.26)

as F(x∗) > 0, then det(J(E∗)) > 0, and the nature of singularity E∗ = (x∗, (m+x∗)/f) depends
on the trace given by

tr(J(E∗)) = ax∗
(
−b + cf(m + x∗)(

fx∗ + n(m + x∗)
)2

)
− e. (2.27)

Clearly,

(a) if e > ax∗(−b + cf(m + x∗)/(fx∗ + n(m + x∗))2), then tr(J(E∗)) < 0, E∗ = (x∗, (m +
x∗)/f) is stable;

(b) if e < ax∗(−b + cf(m + x∗)/(fx∗ + n(m + x∗))2), then tr(J(E∗)) > 0, E∗ = (x∗,
(m + x∗)/f) is unstable.

Theorem 2.8. Singularity Ee = (xe, (m + xe)/f) is

(a) a non-hyperbolic attractor node if and only if

e > axe

(
−b + cf(m + xe)(

fxe + n(m + xe)
)2

)
; (2.28)

(b) a non-hyperbolic repellor node if and only if

e < axe

(
−b + cf(m + xe)(

fxe + n(m + xe)
)2

)
. (2.29)

Proof. At the point (xe, (m + xe)/f), we have

F(xe) =
b
(
f + n

)2
A2

1

4
+ bmn

(
f + n

)
A1 + bm2n2 − cfm = 0, (2.30)

then, det(J(Ee)) = 0, and tr(J(Ee)) = axe(−b + cf(m + xe)/(fxe + n(m + xe))
2) − e.

Hence we can conclude (2.28) and (2.29).
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Theorem 2.9. If n < c < n(bm + 1) and fn + (n − c)(bmn + n − c) < 0 hold the boundary equilibria
E2 = (0, m/f) of model (1.3) is globally asymptotically stable.

Proof. Since lim supt→∞x(t) ≤ 1/b and lim inft→∞y(t) ≥ (bmn + n − c)/bfn, from the first
equation of model (1.3), for any μ > 0, there exists a T1 > 0, for all t ≥ T1, we have

dx

dt
= ax

(
1 − bx − c

x/y + n

)

< ax

(
1 − bx − c

(
bmn + n − c − bfμ

)
fn

(
1 + bμ

)
+ n

(
bmn + n − c − bfμ

)
)
.

(2.31)

From the arbitrariness of μ > 0, we can get that

dx

dt
< ax

(
1 − bx − c(bmn + n − c)

n
(
bmn + f + n − c

)
)
. (2.32)

As 1 − c(bmn + n − c)/n(bmn + f + n − c) < 0, by standard comparison arguments, it
follows that

lim sup
t→∞

x(t) ≤ 0, (2.33)

thus,

lim
t→∞

x(t) = 0. (2.34)

As a result, using the second equation of model (1.3), one can easily know that
limt→∞y(t) = m/f . The proof is complete.

Figure 2 shows the dynamics of model (1.3). In this case, E0 = (0, 0) is a nodal source,
E1 = (4, 0) is a saddle point, and E2 = (0, 1.1875) is globally asymptotically stable, that is, all
orbits tend to the equilibrium E2 for any initial values.

Theorem 2.10. Assume B1 < 0, E∗ = (x∗, y∗) is globally asymptotically stable, if the following
conditions hold

(i) 1 − bx∗ < b(ζ + nδ);

(ii) (e(η + nς) − (x∗/y∗)(1 − bx∗)(ζ +m))2 < 4aef(b(ζ + nδ) − (1 − bx∗))(η +m)(η + nς),
where η = 1/b, ς = (1 + bm)/bf, ζ = (n − c)/bn, δ = (bmn + n − c)/bnf .

Proof. Define a Lyapunov function:

V
(
x, y

)
=

∫x

x∗

ξ − x∗

ξ
dξ +

∫y

y∗

η − y∗

η
dη, (2.35)
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Figure 2: The phase portraits of model (1.3). The parameters are taken as a = 2, b = 0.25, c = 0.875, e =
1, m = 0.95, and n = 0.7, f = 0.8. In this case, E0 = (0, 0) is a nodal source, E1 = (4, 0) is a saddle point. The
boundary equilibria E2 = (0, 1.1875) is globally asymptotically stable. The dashed curve is the x-nullcline
f(x, y) = 0, and the dotted curve is the y-nullcline g(x, y) = 0.

so,

dV

dt
=

x − x∗

x

dx

dt
+

(
y − y∗)

y

dy

dt

= a(x − x∗)
(
1 − bx − cy

x + ny

)
+ e

(
y − y∗)(1 − fy

x +m

)

= a

(
−b + cy∗(

x∗ + ny∗)(x + ny
)
)
(x − x∗)2

+

(
− acx∗(

x∗ + ny∗)(x + ny
) +

efy∗

(x∗ +m)(x +m)

)
(x − x∗)

(
y − y∗) − ef

(
y − y∗)2
x +m

= −A2(x − x∗)2 + B2(x − x∗)
(
y − y∗) − C2

(
y − y∗)2,

(2.36)

let

A2 = a

(
b − cy∗(

x∗ + ny∗)(x + ny
)
)

= a

(
b − 1 − bx∗

x + ny

)
,

B2 = − acx∗(
x∗ + ny∗)(x + ny

) +
efy∗

(x∗ +m)(x +m)
= −ax

∗(1 − bx∗)
y∗(x + ny

) +
e

x +m
,

C2 =
ef

x +m
.

(2.37)
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If

A2 > 0, that is, 1 − bx∗ < b
(
x + ny

)
< b(ζ + nδ),

B2
2 < 4A2C2, that is,

(
−ax

∗(1 − bx∗)
y∗(x + ny)

+
e

x +m

)2

<
4aef
x +m

(
b− 1 − bx∗

x + ny

)
hold, the dV/dt < 0.

(2.38)

Hence,

(
e(x + ny) − ax∗

y∗ (1 − bx∗)(x +m)
)2

< 4aef
(
b
(
x + ny

) − (1 − bx∗)
)
(x +m)

(
x + ny

)
, (2.39)

according to Lemma 2.2, we can obtain that

(
e(x + ny) − ax∗

y∗ (1 − bx∗)(x +m)
)2

<

(
e(η + nς) − ax∗

y∗ (1 − bx∗)(ζ +m)
)2

,

4aef(b(ζ + nδ) − (1 − bx∗))
(
η +m

)(
η + nς

)
< 4aef

(
b
(
x + ny

) − (1 − bx∗)
)
(x +m)

(
x + ny

)
,

(2.40)

so,

(
e(η + nς) − x∗

y∗ (1 − bx∗)(ζ +m)
)2

< 4aef(b(ζ + nδ) − (1 − bx∗))
(
η +m

)(
η + nς

)
. (2.41)

Considering A2 > 0, B2
2 < 4A2C2, we obtain dV/dt < 0. This ends the proof.

Figure 3 shows the dynamics of model (1.3) for the case of B1 < 0. In this case, E0 =
(0, 0) is a nodal source, E1 = (4, 0) is a saddle point, E2 = (0, 1.1875) is a saddle point, and
E∗ = (1.4761, 3.0326) is globally asymptotically stable, that is, all orbits tend to the equilibrium
E∗ for any initial values.

3. The Stochastic Model

Those important and useful works on deterministic models provide a great insight into the
effect of the pollution. In the real world, population dynamics is inevitably subjected to
environmental noise (see e.g., [10, 11]), which is an important component in an ecosystem.
May [12] pointed out the fact that due to environmental noise, the birth rates, carrying
capacity, competition coefficients, and other parameters involved in the system exhibit
random fluctuation to a greater or lesser extent.

In this part, we focus on the stochastic stability analysis of model (1.3).
Taking into account the effect of randomly fluctuating environment, we incorporate

white noise in each equations of model (1.3). We assume that fluctuations in the environment
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Figure 3: The phase portraits of model (1.3). The parameters are taken as a = 2, b = 0.25, c = 0.875, e = 1,
m = 0.95, n = 0.9, and f = 0.8. In this case, E1 = (4, 0) and E2 = (0, 1.1875) are saddle points, the positive
interior equilibrium point E∗ = (1.4761, 3.0326) is globally asymptotically stable. The dashed curve is the
x-nullcline f(x, y) = 0, and the dotted curve is the y-nullcline g(x, y) = 0.

will manifest themselves mainly as fluctuations in the growth rates of the prey population
and the predator population, set

a −→ a + αḂ1(t), e −→ e + βḂ2(t), (3.1)

then the stochastic version of model (1.3) is given by the following Itô type

dx = x

(
1 − bx − cy

x + ny

)
(adt + αdB1(t)),

dy = y

(
1 − fy

x +m

)(
edt + βdB2(t)

)
,

(3.2)

where Bi(t), i = (1, 2) are the 1-dimensional standard Brownianmotion defined on a complete
probability space (Ω,F,P) with a filtration {Ft}t∈R+

satisfying the usual conditions (i.e., it
is right continuous and increasing while F0 contains all P-null sets) and Ḃ1(t), Ḃ2(t) are,
respectively, white noises with possible intensity α2, β2.

3.1. Existence of Global Positive Solutions

Lemma 3.1. There is a unique local positive solution (x(t), y(t)) for t ∈ [0, τe) to model (3.2) almost
surely (a.s.) for the initial value x0 > 0, y0 > 0, where τe is the explosion time.
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Proof. Consider the equations

du =

{
a

[
1 − beu − cev

nev + eu

]
− 1
2
α2

[
1 − beu − cev

nev + eu

]2}
dt

+ α

[
1 − beu − cev

nev + eu

]
dB1(t),

dv =

{
e

[
1 − fev

m + eu

]
− 1
2
β2

[
1 − fev

m + eu

]2}
dt

+ β

[
1 − fev

m + eu

]
dB2(t),

(3.3)

on t ≥ 0 with initial value u(0) = lnx0, v(0) = lny0.
It is easy to see that the coefficients of model (3.3) satisfy the local Lipschitz condition,

then there is a unique local solution u(t), v(t) on [0, τe) [13]. Therefore, by Itô formula, x(t) =
eu(t), y(t) = ev(t) are the unique positive local solutions to model (3.3) with initial value
x0 > 0, y0 > 0.

Lemma 3.1 only tells us that there has a unique local positive solution to model (3.2).
Next, we show this solution is global, that is, τe = ∞.

Theorem 3.2. Consider model (3.2), for any given initial value (x0, y0) ∈ R2
+, there is a unique

solution (x(t), y(t)) on t ≥ 0 and the solution will remain in R2
+ with probability 1, where R2

+ = {x ∈
R2 | xi > 0, i = 1, 2}.

Proof. For convenience of statement, we introduce some notations. Define

F
(
x, y

)
=

cy

ny + x
, G

(
x, y

)
=

fy

m + x
. (3.4)

Let n0 > 0 be sufficiently large for x0 and y0 lying within the interval [1/n0, n0]. For each
integer n > n0, define the stopping times

τn = inf
{
t ∈ [0, τe] : x(t) /∈

(
1
n
, n

)
or y(t) /∈

(
1
n
, n

)}
. (3.5)

Assume inf ∅ = ∞ (as usual ∅ = the empty set). Clearly, τn is increasing as n → ∞.
Let τ∞ = limn→∞τn, then τ∞ ≤ τe a.s. If we can show that τ∞ = ∞ a.s., then τe = ∞ a.s., and
N(t) ∈ R+ a.s., for all t ≥ 0. In other words, to complete the proof all we need to prove that
τ∞ = ∞ a.s. If this statement is false, then there is a pair of constants T > 0 and ε ∈ (0, 1) such
that P{τ∞ ≤ T} > ε. There is an integer n1 ≥ n0, such that

P{τn ≤ T} ≥ ε, n ≥ n1. (3.6)
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Define a C2 function V : R2
+ → R+ by

V
(
x, y

)
=

(√
x − 1 − lnx

2

)
+
(√

y − 1 − lny
2

)
. (3.7)

Obviously, V (x, y) is nonnegative. And

dV =
a
(√

x − 1
)

2
(
1 − bx − F

(
x, y

))
dt +

α2(2 − √
x
)

8
[
1 − bx − F

(
x, y

)]2
dt

+
α
(√

x − 1
)

2
[
1 − bx − F

(
x, y

)]
dB1t +

e
(√

y − 1
)

2
[
1 −G

(
x, y

)]
dt

+
β2

(
2 − √

y
)

8
[
1 −G

(
x, y

)]2
dt +

β
(√

y − 1
)

2
[
1 −G

(
x, y

)]
dB2t

≤ a

2
[√

x + bx + F
(
x, y

)]
dt +

e

2
[√

y +G
(
x, y

)]
dt

+
α2

8

[
2bx3/2 − b2x5/2 + 2

√
xF

(
x, y

)
+ 2 + 2b2x2 + 4bxF

(
x, y

)
+ 2F2(x, y)]dt

+
β2

8

[
2
√
yG

(
x, y

)
+ 2 + 2G

(
x, y

)2]
dt +

α

2
(√

x − 1
)[
1 − bx

a
− F

(
x, y

)]
dB1(t)

+
β

2
(√

y − 1
)[
1 −G

(
x, y

)]
dB2(t)

≤ k1 + k2 +
α

2
(√

x − 1
)[
1 − bx − F

(
x, y

)]
dB1(t) +

β

2
(√

y − 1
)[
1 −G

(
x, y

)]
dB2(t),

(3.8)

where k1, k2 are positive numbers. Integrating both sides of the above inequality from 0 to
τn ∧ T and then taking expectations, yields

EV
(
x(τn ∧ T), y(τn ∧ T)

) ≤ V
(
x0, y0

)
+ (K1 +K2)T. (3.9)

Set Ωn = {τn ≤ T} for n ≥ n1 and by (3.6), we have P(Ωn) ≥ ε. Note that for every ω ∈ Ωn,
there is some i such that xi(τn, ω) equals either n or 1/n for i = 1, 2, hence V (x(τn, ω), y(τn, ω))
is no less than min{(√n − 1 − lnn/2), (

√
1/n − 1 − ln(1/n)/2)}. It then follows from (3.9) that

V
(
x0, y0

)
+ (K1 +K2)T ≥ E

[
IΩn(ω)V

(
x(τn), y(τn)

)]

≥ ε min

⎧⎨
⎩

(√
n − 1 − lnn

2

)
,

⎛
⎝

√
1
n
− 1 − lnn

2

⎞
⎠

⎫⎬
⎭,

(3.10)

where IΩn is the indicator function of Ωn. Let n → ∞, then

∞ > V
(
x0, y0

)
+ (K1 +K2)T = ∞ a.s. (3.11)

This completes the proof.



Abstract and Applied Analysis 15

3.2. Stochastic Boundedness

Let us now recall the definition of stochastically ultimate boundedness [14–16].

Definition 3.3. The solution of model (3.2) is said to be stochastically ultimately bounded if for
any ε ∈ (0, 1), there is a positive constant χ = χ(ω), such that for any initial data (x0, y0) ∈ R2

+,
the solution of model (3.2) has the property that

lim sup
t→∞

P
{∣∣x(t), y(t)∣∣ > χ

} ≤ ε. (3.12)

Lemma 3.4. For any θ ∈ (0, 1), there is a positive constant H = H(θ) > 0, which is independent of
the initial data (x0, y0) ∈ R2

+, such that the solution of model (3.2) has the property that

lim sup
t→∞

(
E
∣∣(x(t), y(t))∣∣θ) ≤ H. (3.13)

Proof. Define

V
(
x, y

)
= xθ + yθ,

(
x, y

) ∈ R2
+. (3.14)

For the sake of discussion, we rewrite the above as

V
(
x, y

)
= V1 + V2, V1 = xθ, V2 = yθ. (3.15)

By using the Itô formula, we have

dV
(
x, y

)
= LV

(
x, y

)
dt + θαxθ[1 − bx − F

(
x, y

)]
dB1(t)

+ θβyθ[1 −G
(
x, y

)]
dB2(t),

LV
(
x, y

)
= aθxθ[1 − bx − F

(
x, y

)]
+
θ(θ − 1)α2xθ

2
[
1 − bx − F(x, y)

]2

+ eθyθ[1 −G
(
x, y

)]
+
θ(θ − 1)β2yθ

2
[
1 −G(x, y)

]2
,

(3.16)
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as 0 < θ < 1, we have

LV
(
x, y

) ≤ aθxθ − θ(1 − θ)α2xθ

2
[
1 − bx − F(x, y)

]2

+ eθyθ[1 −G
(
x, y

)] − θ(1 − θ)β2yθ

2
[
1 −G(x, y)

]2

≤ aθxθ − θ(1 − θ)α2xθ

2

[
b2x2 − 2bx − 2c

n

]

+ eθyθ − θ(1 − θ)β2yθ

2

[−2fy
m

]

= aθxθ − θ(1 − θ)α2xθ

2

[
b2x2 − 2bx − 2c

n

]
+ xθ

+ eθyθ − θ(1 − θ)β2yθ

2

[−2fy
m

]
+ yθ − V

(
x, y

)

≤ H1 − V
(
x, y

)
,

(3.17)

here H1 is an integer. So

dV
(
x, y

) ≤ (
H1 − V

(
x, y

))
dt + θαxθ[1 − bx − F

(
x, y

)]
dB1(t). (3.18)

Now, by using the Itô formula again, we have

d
(
etV

(
x, y

))
= et

[
V
(
x, y

)
dt + dV

(
x, y

)]

≤ etH1dt + etθαxθ[1 − bx − F
(
x, y

)]
dB1(t)

+ etθβ yθ[1 −G
(
x, y

)]
dB2(t).

(3.19)

According to the above, we can easily get

etE
(
V
(
x, y

)) ≤ V
(
x0, y0

)
+H1

(
et − 1

)
,

lim sup
t→∞

EV
(
x(t), y(t)

) ≤ H.
(3.20)

On the other hand,

∣∣(x, y)∣∣θ ≤ 2θ/2 max
{
xθ, yθ

}

≤ 2θ/2V
(
x, y

)
,

(3.21)
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so, we can obtain

lim sup
t→∞

E
∣∣(x(t), y(t))∣∣θ ≤ 2θ/2,

lim sup
t→∞

EV
(
x(t), y(t)

) ≤ 2θ/2H.
(3.22)

Set K(θ) = 2θ/2H, this completes the proof.

Theorem 3.5. The solutions of model (3.2) is stochastically ultimately bounded.

Proof. By Lemma 3.4, let θ = 1/2, there is a K1 > 0 such that

lim sup
t→∞

E
∣∣(x(t), y(t))∣∣1/2 ≤ K1. (3.23)

Now, for any ε > 0, let χ = K2
1/ε

2. Then by Chebyshevs inequality

P
{∣∣x(t), y(t)∣∣ > χ

} ≤ E
∣∣(x(t), y(t))∣∣1/2

√
χ

. (3.24)

Hence,

lim sup
t→∞

P
{∣∣x(t), y(t)∣∣ > χ

} ≤ ε. (3.25)

This ends the proof.

Next, we study the asymptotic properties of the moment solutions of model (3.2).

Theorem 3.6. For any given θ ∈ (0, 1), there is a K = K(θ) > 0, let (x(t), y(t)) be the solution of
model (3.2) with any initial value (x0, y0), then

lim sup
t→∞

1
t

∫ t

0
E
[
x2+θ(s) + y2+θ(s)

]
ds ≤ K. (3.26)

Proof. Set V (x, y) : R2
+ → R+, from Lemma 3.4, we have

LV
(
x, y

) ≤ aθxθ − θ(1 − θ)α2xθ

2

[
b2x2 − 2bx − 2c

n

]

+ eθyθ − θ(1 − θ)β2yθ

2

(−2fy
m

)
,

(3.27)
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so, we get

LV +
θ(1 − θ)α2b2xθ+2

4
+
θ(1 − θ)β2fyθ+2

4m

≤ aθxθ − θ(1 − θ)α2b2xθ+2

4
+ θ(1 − θ)α2xθ

(
bx +

c

n

)

+ eθyθ +
θ(1 − θ)β2fyθ+1

m
+
θ(1 − θ)β2fyθ+2

4m

≤ M,

(3.28)

here M is a positive number, so

LV +
θ(1 − θ)γ2σ2[xθ+2 + yθ+2]

4

≤ θ(1 − θ)α2b2xθ+2

4
+
θ(1 − θ)β2fyθ+2

4m

≤ M.

(3.29)

Let γ2σ2 = min{α2b2, β2f/m}, we can get

EV
(
x, y

)
+
θ(1 − θ)γ2σ2

4

∫ t

0
E
[
x2+θ(s) + y2+θ(s)

]
ds

≤ V
(
x0 + y0

)
+Mt.

(3.30)

That is,

∫ t

0
E
[
x2+θ(s) + y2+θ(s)

]
ds ≤ 4

[
V
(
x0 + y0

)
+Mt

]
θ(1 − θ)γ2σ2

. (3.31)

Set K = 4M/θ(1 − θ)γ2σ2, so

lim sup
t→∞

1
t

∫ t

0
E
[
x2+θ(s) + y2+θ(s)

]
ds ≤ K. (3.32)

3.3. Stochastic Asymptotic Stability

Note that a solution of model (1.3) is also a solution of model (3.2), so, in the following, we
will focus on stochastic asymptotic stability of the positive equilibria of model (3.2). As an
example, we only give the proof of the unique positive equilibrium E∗ = (x∗, y∗) of model
(3.2).
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Theorem 3.7. Let

A3 = −ab + acy∗(
ny∗ + x∗) +

α2b2x∗

2
+

α2c2x∗(y∗)2
2
(
ny∗ + x∗)2 +

β2f2(y∗)3
2(m + x∗)2

,

B3 =
α2c2(x∗)3

2
(
ny∗ + x∗)2 +

β2
(
fm + x∗)2y∗

2(m + x∗)2
,

C3 =
α2bc(x∗)2(
ny∗ + x∗) +

α2c2y∗(x∗)2(
ny∗ + x∗)2 +

fy∗

(m + x∗)
+
β2

(
fm + x∗)f(y∗)2
(m + x∗)2

,

(3.33)

if

(bm + 1)n2 +
[
(1 − b)f − c

]
n − cf ≥ 0, [(m − 1)b + 1]n − c ≥ 0,

A3 < 0, C2
3 − 4A3B3 < 0,

(3.34)

when B1 < 0, then the equilibrium position E∗ = (x∗, y∗) of model (3.2) is stochastically asymptot-
ically stable in the large, that is, for any initial data (x(0), y(0)), the solution of model (3.2) has the
property that

lim
t→∞

(x(t)) = x∗, lim
t→∞

(
y(t)

)
= y∗, a.s. (3.35)

Proof. From the theory of stability of stochastic differential equations [13], we only need to
establish a Lyapunov function V (z) satisfying LV (z) ≤ 0 and the identity holds if and only if
z = z∗, where z = z(t) is the solution of the stochastic differential equation

dz = f(z(t), t)dt + g(z(t), t)dB(t), (3.36)

z∗ is the equilibrium position of model (3.36), and

LV (z, t) = Vz(z, t)f(z, t) +
1
2
tr
[
gT (z, t)Vzz(z, t)g(z, t)

]
. (3.37)

Define Lyapunov functions

V1(x) =
∫x

x∗

ξ − x∗

ξ
dξ, V2(x) =

∫y

y∗

η − y∗

η
dη, (3.38)
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the nonnegativity of this function can be observed from u − 1 − lnu ≥ 0 on u > 0. Applying
Itô formula leads to

LV1(x) = a(x − x∗)
[
1 − bx − F

(
x, y

)]
+
α2x∗

2
[
1 − bx − F(x, y)

]2

= a(x − x∗)
[
bx∗ − bx + F

(
x∗, y∗) − F

(
x, y

)]
+
α2x∗

2
[
bx∗ − bx + F

(
x∗, y∗) − F

(
x, y

)]2

=

{
−ab + acy∗(

ny∗ + x∗)(ny + x
) +

α2b2x∗

2
− bcα2x∗y∗(

ny∗ + x∗)(ny + x
)

+
c2α2x∗(y∗)2

2
(
ny∗ + x∗)2(ny + x

)2
}
(x − x∗)2 +

c2α2(x∗)3

2
(
ny∗ + x∗)2(ny + x

)2
(
y − y∗)2

− acx∗(
ny∗ + x∗)(ny + x

) (x − x∗)
(
y − y∗)

+
bcα2(x∗)2(

ny∗ + x∗)(ny + x
) (x − x∗)

(
y − y∗) − c2α2y∗(x∗)2(

ny∗ + x∗)2(ny + x
)2 (x − x∗)

(
y − y∗),

(3.39)

when ny + x ≥ 1, according to Lemma 2.2, we have (bm + 1)n2 + [(1 − b)f − c]n − cf ≥ 0, so,

LV1(x) ≤
{
−ab + acy∗(

ny∗ + x∗) +
α2b2x∗

2
+

c2α2x∗(y∗)2
2
(
ny∗ + x∗)2

}
(x − x∗)2

+
c2α2(x∗)3

2
(
ny∗ + x∗)2

(
y − y∗)2

+

{
bcα2(x∗)2(
ny∗ + x∗) +

c2α2y∗(x∗)2(
ny∗ + x∗)2

}
|(x − x∗)|∣∣(y − y∗)∣∣.

(3.40)

Similarly, by using the Itô formula, we can obtain

LV2
(
y
)
= e

(
y − y∗)[1 −G

(
x, y

)]
+
β2y∗

2
[
1 −G

(
x, y

)]2
, (3.41)

whenm + x ≥ 1, according to Lemma 2.2, we have [(m − 1)b + 1]n − c ≥ 0, so

LV2
(
y
) ≤ β2

(
fm + x∗)2y∗

2(m + x∗)2
(
y − y∗)2 + β2f2(y∗)3

2(m + x∗)2
(x − x∗)2

+

{
fy∗

(m + x∗)
+
β2

(
fm + x∗)f(y∗)2
(m + x∗)2

}
|(x − x∗)|∣∣(y − y∗)∣∣,

(3.42)
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hence,

LV
(
x, y

)
= LV1(x) + LV2

(
y
)

≤
{
−ab + acy∗(

ny∗ + x∗) +
α2b2x∗

2
+

c2α2x∗(y∗)2
2
(
ny∗ + x∗)2 +

β2f2(y∗)3
2(m + x∗)2

}
(x − x∗)2

+

{
c2α2(x∗)3

2
(
ny∗ + x∗)2 +

β2
(
fm + x∗)2y∗

2(m + x∗)2

}(
y − y∗)2

+

{
bcα2(x∗)2

a2
(
ny∗ + x∗) +

c2α2y∗(x∗)2(
ny∗ + x∗)2 +

fy∗

(m + x∗)
+
β2

(
fm + x∗)f(y∗)2
(m + x∗)2

}

|(x − x∗)|∣∣(y − y∗)∣∣.

(3.43)

So,

LV
(
x, y

) ≤ A3(x − x∗)2 + B3
(
y − y∗)2 + C3|(x − x∗)| ∣∣(y − y∗)∣∣. (3.44)

Let

|z − z∗| = (|(x − x∗)|, ∣∣(y − y∗)∣∣)T , (3.45)

then we get

LV
(
x, y

) ≤ 1
2
(|z − z∗|)T

(
2A3 C3

C3 2B3

)
|z − z∗|

= A3|(x − x∗)|2 + C3|(x − x∗)|∣∣(y − y∗)∣∣ + B3
∣∣(y − y∗)∣∣2.

(3.46)

Clearly, if (3.34) hold, then the above inequality implies LV (x, y) < 0 along all
trajectories in the first quadrant except (x∗, y∗). Then the desired assertion (3.35) follows
immediately. This completes the proof.

4. Conclusions and Remarks

In this paper, we consider amodified stochastic Leslie-Gower predator-preymodel. The value
of this study lies in two aspects. First, it presents the analysis of stability for the equilibria
of model (1.3). Second, it verifies some relevant properties of the stochastic model (3.2)
with white noise, which shows that the existence of global positive solutions, stochastic
boundedness, and stochastic asymptotic stability.

Next, we give some numerical examples to illustrate the dynamical behaviors of model
(3.2) by using the method mentioned in [17].

In Figure 4(a), we choose α = β = 0, that is, without noise, we observe that the positive
equilibrium E∗ = (1.4761, 3.0326) is globally stable. In Figure 4(b), with noise densities
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Figure 4: The solution of the stochastic model (3.2). The parameters are taken as a = 2, b = 0.25, c =
0.875, e = 1, m = 0.95, n = 0.9, and f = 0.8. (a) α = β = 0; (b) α = 0.8 and β = 0.4.
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Figure 5: The solution of the stochastic model (3.2). The parameters are taken as α = 2, β = 4, a = 2, b =
0.25, c = 0.875, e = 1, m = 0.95, n = 0.9, and f = 0.8.

α = 0.8, β = 0.4, starting with a homogeneous state E∗ = (1.4761, 3.0326), the random white
noise leads to a slight oscillations, and the later random noise makes the oscillations decay,
ending with the time-independent stability. Comparing Figure 4(a)with Figure 4(b), one can
realize that, if the white noise is not strong, the stochastic perturbation does not cause sharp
changes of the dynamics of the system. However, in Figure 5, we choose that α = 2 and β = 4,
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which violates condition (3.34), we find that the stochastic model (3.2) is not permanent. This
shows that strong white noise might make a permanent system be nonpersistent.

We note that, when the noise is not large, the stochastic model preserves the property
of the global stability, that is to say, when the noise is not sufficiently large, the populations
may be stochastic permanence and stochastic persistent in mean. In this case, we can ignore
the noise and use the deterministic model to describe the population dynamics. But, when
the noise is sufficiently large, the noise can force the population to become extinct. In this
case, we cannot ignore the effect of the noise. That’s to say, in the case of sufficiently large
noise, we cannot use deterministic model but stochastic model to describe the population
dynamics. Our complete analysis of the model will give new suggestions to the studies of the
population dynamics.
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