
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 398049, 10 pages
doi:10.1155/2012/398049

Research Article
Boundedness of Global Solutions for a Heat
Equation with Exponential Gradient Source

Zhengce Zhang and Yanyan Li

School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China

Correspondence should be addressed to Zhengce Zhang, zhangzc@mail.xjtu.edu.cn

Received 21 September 2011; Accepted 4 November 2011

Academic Editor: Muhammad Aslam Noor

Copyright q 2012 Z. Zhang and Y. Li. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We consider a one-dimensional semilinear parabolic equation with exponential gradient source
and provide a complete classification of large time behavior of the classical solutions: either the
space derivative of the solution blows up in finite time with the solution itself remaining bounded
or the solution is global and converges in C1 norm to the unique steady state. The main difficulty
is to prove C1 boundedness of all global solutions. To do so, we explicitly compute a nontrivial
Lyapunov’s functional by carrying out the method of Zelenyak.

1. Introduction and Main Results

We consider the problem:

ut = uxx + eux , 0 < x < 1, t > 0,

u(0, t) = 0, u(1, t) = A, t > 0,

u(x, 0) = u0(x), 0 < x < 1.

(1.1)

Here A > 0 is a constant, and the initial data u0 belongs to the space X = {v ∈
C1([0, 1]); v(0) = 0, v(1) = A} with the C1 norm. The problem (1.1) admits a unique
maximum classical solution u = u(u0; ·, t), whose existence time will be denoted by T =
T ∗(u0) ∈ (0,∞]. Note that we make no restriction on the signs of u or ux.

The differential equation in (1.1) possesses both mathematical and physical interest. It
can serve as a typical model case in the theory of parabolic PDEs. Indeed, it is the one of the
simplest examples (along with Burger’s equation) of a parabolic equation with a nonlinearity
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depending on the first-order spatial derivatives of u. On the other hand, this equation (and
itsN-dimensional version) arises in the viscosity approximation of the Hamilton-Jacobi-type
equations from stochastic control theory [1] and in some physical models of surface growth
[2].

The aim of this paper is to provide a complete classification of large time behavior
of the solutions of (1.1). A basic fact about (1.1) is that the solutions satisfy a maximum
principle:

min
[0,1]

u0 ≤ u(x, t) ≤ max
[0,1]

u0, 0 ≤ x ≤ 1, 0 ≤ t < T ∗. (1.2)

Since problem (1.1) is well posed inC1, therefore, only three possibilities can occur as follows.

(1) u exists globally and is bounded in C1:

T ∗ = ∞ sup
t≥0

‖ux(·, t)‖∞ <∞. (1.3)

Moreover, due to the results in [3] (see the last part of this Introduction section for
more details), u has to converge in C1 to a steady state (which is actually unique
when it exists).

(2) u blows up in finite time in C1 norm (finite time gradient blowup):

T ∗ <∞ lim
t→ T∗

‖ux(·, t)‖∞ = ∞. (1.4)

(3) u exists globally but is unbounded in C1 (infinite time gradient blowup):

T ∗ = ∞ lim sup
t→∞

‖ux(·, t)‖∞ = ∞. (1.5)

In [4], the first author and Hu studied the case (2) and got estimates on the gradient
blowup rate under the assumptions on the initial data so that the solution is monotone in x
and in t. In the present paper, our primary goal is to exclude (3), that is, infinite time gradient
blowup. For the boundedness of global solutions of other problems, for example, the equation
ut = uxx + |ux|p with p > 2, we refer to [5] and the references therein.

For A > 0, the situation is slightly more involved. There exists a critical value

Ac = 1 (1.6)

such that (1.1) has a unique steady-state VA if A < Ac and no steady state if A > Ac (the
explicit formula for VA is recalled at the beginning of Section 2). In the critical case A = Ac,
there still exists a steady-state VAc , but it is singular, satisfying VAc ∈ C([0, 1])∩C2((0, 1])with
VAc,x(0) = ∞.

Theorem 1.1. Assume 0 < A < Ac. Then all global solutions of (1.1) are bounded in C1. In other
words, (3) cannot occur. Moreover, they converge in C1 norm to VA.
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For the case A > Ac, we improve the result by removing the restrictions u0 ≥ 0 and
(u0)x ≥ 0 on the initial data. Then all solutions of (1.1) blow up in finite time in C1 norm.

Remark 1.2. In the critical case A = Ac, all solutions have to blow up in C1 in either finite
or infinite time. Moreover, if (3) occurs, then the solution will converge in C([0, 1]) to the
singular steady-state VAc , as t → ∞. This follows from Proposition 3.2 below. However, the
possibility of (3) remains an open problem in this case. We conjecture that this could occur.

As a consequence of our results, we exhibit the following interesting situation:
although C1 boundedness of global solutions is true, the global solutions of (1.1) do not
satisfy a uniform a priori estimate, that is, the supremum in (1) cannot be estimated in
terms of the norm of the initial data. In other words, there exists a bounded, even compact,
subset S ⊂ X, such that the trajectories starting from S describe an unbounded subset of X,
although each of them is individually bounded and converges to the same limit. As a further
consequence, the existence time T ∗, defined as a function from X into (0,∞], is not (upper
semi) continuous.

Proposition 1.3. Assume 0 < A < Ac. There exists u0 ∈ X and a sequence {u0,n} in X with the
following properties:

(a) u0,n → u0 in C1,

(b) T ∗(u0,n) = ∞ for each n, and T ∗(u0) <∞,

(c) supt≥0‖(un)x(·, t)‖∞ =: Kn → ∞.

To explain the ideas of our proof, let us first recall that, in a classical paper [3], Zelenyak
showed that any one-dimensional quasilinear uniformly parabolic equation possesses a
(strict) Lyapunov’s functional, of the form:

L(u(t)) =
∫1

0
φ(u(x, t), ux(x, t))dx. (1.7)

The construction of φ is in principle explicit, although too complicated to be completely
computed in most situations. As a consequence, for any solution u of (1.1) which is global
and bounded in C1, the (nonempty) w-limit set of u consists of equilibria. Since (1.1) admits
at most one equilibrium V , such u has to converge to V . (In fact, it was also proved in [3] that
whether or not equilibria are unique, any bounded solution of a one-dimensional uniformly
parabolic equation converges to an equilibrium, but this need not concern us here.) ForA > 0,
our proof proceeds by contradiction and makes essential use of the Zelenyak construction. It
consists of three steps as follows.

Assuming that a C1 unbounded global solution would exist, we analyze its possible
final singularities (along a sequence tn → ∞). We shall show that ux remains bounded away
from the left boundary and describe the shape of ux near the boundary (cf. Section 2).

We shall carry out the Zelenyak construction in a sufficiently precise way to determine
the density φ(u, v) of the Lyapunov functional. It will turn out that, whenever u remains in
a bounded set of R (as it does here in view of the estimate (1.2)), φ(u, v) remains bounded
from below uniformly with respect to v (see Proposition 3.1).

Using this property of φ in the classical Lyapunov’s argument, together with the fact
that singularities may occur only near the boundary, it will be possible to prove the following
convergence result: any global solution, even unbounded in C1, has to converge in C([0, 1])
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to a stationary solution W of (1.1) with W(0) = 0, W(1) = A (see Proposition 3.2). On the
other hand, if u were bounded, then our estimates would implyWx(0) = ∞. But such aW is
not available if A/=Ac, leading to a contradiction.

2. Preliminary Estimates

We start with some preliminary estimates. They are collected in Lemmas 2.1–2.6.

Lemma 2.1. Let u be a maximal solution of (1.1). For all t0 ∈ (0, T ∗), there exists C1 > 0 such that

|ut| ≤ C1, 0 ≤ x ≤ 1, t0 ≤ t < T ∗. (2.1)

Proof. The function h = ut satisfies

ht = hxx + euxhx, 0 < x < 1, t0 < t < T ∗,

h(0, t) = h(1, t) = 0, t0 < t < T
∗,

h(x, t0) = uxx(x, t0) + eux(t0,x), 0 < x < 1.

(2.2)

It follows from the maximum principle that |h| ≤ ‖h(t0)‖∞ in [0, 1] × [t0, T ∗).

Remark 2.2. Although the second-order compatibility condition is not assumed, the
maximum principle is still valid for ut. In fact, the system can be approximated by boundary
data satisfying the second-order compatibility condition and taking the limit, or another
simpler argument (without approximation procedure) is this: since u0 ∈ H2 ∩H1

0 , standard
regularity results imply ut ∈ C([t0, T);L2), which is enough to apply the (weak) Stampacchia
maximum principle to the function h = ut (which satisfies ht = hxx + a(x, t)hx with a(x, t)
bounded near t = t0).

The following two lemmas give upper and lower bounds on ux which show, in
particular, that ux remains bounded away from the boundary.

Lemma 2.3. Let u be a maximal solution of (1.1). For all t0 ∈ (0, T ∗), there exists C1 > 0 such that,
for all 0 ≤ x ≤ 1 and t0 ≤ t < T ∗,

ux(x, t) ≤ C1x + ln
1

x + e−ux(0,t)
, (2.3)

ux(1 − x, t) ≥ −C1x − ln
1

x + e−ux(0,t)
. (2.4)

Proof. Fix t ∈ [t0, T ∗) and let y(x) = (ux(x, t) − C1x)+, where C1 is given by Lemma 2.1. The
function y satisfies

y′ + ey = (uxx − C1)|{ux>C1x} + e
(ux−C1x)+ . (2.5)



Abstract and Applied Analysis 5

For each x such that ux(x, t) > C1x, we have y′ + ey ≤ uxx − C1 + eux ≤ 0 by Lemma 2.1.
Therefore, we have y′+ey ≤ 0 on (0, 1). By integration, it follows that y(x) ≤ ln 1/[x+e−ux(0,t)],
hence, (2.3).

As for (2.4), it follows similarly by considering y(x) = (−ux(1 − x, t) − C1x)+.

Lemma 2.4. Let u be a maximal solution of (1.1). There exists C2 > 0 such that, for all T ∈ (0, T ∗),

max
QT

ux(x, t) ≤ max
(
C2,max

0≤t≤T
ux(0.t)

)
, (2.6)

where QT = [0, 1] × [0, T] and

min
QT

ux(x, t) ≥ min
(
−C2,min

0≤t≤T
ux(1.t)

)
. (2.7)

Proof. The functionw = ux satisfieswt = wxx +a(x, t)wx in (0, 1)× (0, T ∗), where a(x, t) = eux .
Therefore, w attains its extrema in QT on the parabolic boundary of QT .

Since, by Lemma 2.3, we have ux(1, t) ≤ C and ux(0, t) ≥ −C for all t ∈ [0, T ∗), the
conclusion follows.

The following lemma will provide a useful lower bound on the blowup profile of ux
in case that ux(1, t) or ux(0, t) becomes unbounded.

Lemma 2.5. Let u be a maximal solution of (1.1). For all t0 ∈ (0, T ∗), there exists C3 > 0 such that,
for all 0 ≤ x ≤ 1 and t0 ≤ t < T ∗,

e−[u
+
x(x,t)+C3] ≤ e−[u+x(0,t)+C3] + x, (2.8)

e−[(−ux)
+(1−x,t)+C3] ≤ e−[(−ux)+(1,t)+C3] + x. (2.9)

Proof. Fix t ∈ [t0, T ∗), and let z(x) = u+x(x, t)+ ln(1+C1), where C1 is given by Lemma 2.1. The
function z satisfies

z′ + ez = uxx|{ux>0} + eu
+
x(x,t)+ln(1+C1)

≥ (uxx + eux + C1e
ux)|{ux>0}

≥ (uxx + eux + C1)|{ux>0} ≥ 0,

(2.10)

on [0, 1] by Lemma 2.1. By integration, it follows that e−z(x) ≤ e−z(0) + x, that is, (2.8) with
C3 = ln(1 + C1).

The estimate (2.9) follows similarly by considering Z(x) = (−ux)+(1 − x, t) + ln(1 +
C1).

Lemma 2.6. Let u be a global solution of (1.1). Then it holds

inf
[0,1]×[0,∞)

ux > −∞. (2.11)



6 Abstract and Applied Analysis

Proof. Assume that the lemma is false. Then, by Lemma 2.4, there exists a sequence tn → ∞
such that ux(1, tn) → −∞.

Fix ε > 0. By (2.9) in Lemma 2.5, for n > n0(ε) large enough, we have

e−[(−ux)
+(1−x,tn)+ln(1+C1)] ≤ e−[(−ux)+(1,tn)+ln(1+C1)] + x ≤ ε, 0 ≤ x ≤ ε. (2.12)

Hence,

(−ux)+(1 − x, tn) ≥ − ln ε − ln(1 + C1), 0 ≤ x ≤ ε. (2.13)

By choosing ε = ε(C1) small, we deduce that ux(1 − x, tn) ≤ −1 on [0, ε]; hence,

u(1 − x, tn) ≥ A + x, 0 ≤ x ≤ ε, (2.14)

for all n ≥ n0(ε). But this contradicts the strong maximum principle which implies that
limt→∞{maxx∈[0,1]u(x, t)} ≤ A.

3. Lyapunov’s Functional and Proof of Theorem 1.1

As a main step, we now carry out the argument of Zelenyak to construct a Lyapunov’s
functional. The key point here is that the Lyapunov functional enjoys nice properties on any
global trajectory of (1.1), even if it were unbounded in C1.

Proposition 3.1. Fix any K > 0 and let DK = [−K,K] × R. There exist functions φ ∈ C1(DK;R)
and ψ ∈ C(DK; (0,∞))with the following property: for any solution u of (1.1)with |u| ≤ K, defining

L(u(t)) :=
∫1

0
φ(u(x, t), ux(x, t))dx, (3.1)

it holds

d

dt
L(u(t)) = −

∫1

0
ψ(u(x, t), ux(x, t))u2t (x, t)dx, 0 < t < T

∗. (3.2)

Furthermore, we have

φ ≥ 0. (3.3)

Proof. For a given function ϕ(u, v), let us denote

H = ϕu + evϕvv − vϕuv. (3.4)
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Here we assume that ϕ, ϕu, ϕv, and ϕvu are continuous and C1 in v in DK and that ϕvv is
continuous inDK. We observe thatH is continuous and differentiable in v inDK and satisfies

Hv = evϕvvv + evϕvv − vϕuvv. (3.5)

Now suppose that ψ := ϕvv satisfies

vψu − evψv − evψ = 0, |u| ≤ K. (3.6)

It follows thatHv = 0; hence,

H = H(u) = ϕu(u, 0). (3.7)

Let then

φ(u, v) = ϕ(u, v) −
∫u

0
H(s)ds = ϕ(u, v) − ϕ(u, 0) + ϕ(0, 0). (3.8)

We compute, using integration by parts and ut(1, t) = 0 and ut(0, t) = 0,

d

dt
L(u(t)) =

∫1

0

{(
ϕu(u, ux) −H(u)

)
ut + ϕv(u,ux)uxt

}
(x, t)dx

=
∫1

0

{(
ϕu(u, ux) −H(u) − ϕvu(u, ux)ux − ϕvv(u, ux)uxx

)}
ut(x, t)dx.

(3.9)

Using the definition ofH and uxx = ut − eux , we deduce that

d

dt
L(u(t)) = −

∫1

0
ψ(u(x, t), ux(x, t))u2t (x, t)dx. (3.10)

We have, thus, obtained (3.2), provided (3.6) is true.
Now, (3.6) can be solved by the method of characteristics. For each K > 0, one finds

that the function ψ defined by

ψ(u, v) = ev > 0 (3.11)

is a solution of (3.6) on [−K,K] × R.
Define ϕ by

ϕ(u, v) =
∫v

0

∫z

0
ψ(u, s)dsdz ≥ 0. (3.12)

It is easy to check that ϕ enjoys the regularity properties assumed at the beginning of the
proof and φ = ϕ; hence, φ ≥ 0.
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As a consequence of Proposition 3.1 and of Section 2, we shall obtain the following
convergence result. Of course, the main point here is that we do not assume u to be bounded,
but only global.

Proposition 3.2. Let u be a global solution of (1.1). Then, as t → ∞, u(t) converges in C([0, 1]) to
a stationary solution of (1.1), that is, a functionW ∈ C([0, 1]) ∩ C2(0, 1] of

Wxx + eWx = 0, 0 < x < 1,

W(0) = 0, W(1) = A.
(3.13)

Moreover, the convergence also holds in C1([ε, 1]) for all ε > 0.

Proof. Fix any sequence tn → ∞, and let un = u(·, tn + ·). Denote Q := [0, 1] × [0,∞) and
Qε := (ε, 1] × [0,∞ ), for all ε > 0.

From (1.2) and Lemma 2.1, we know that

|u| + |ut| ≤ C in [0, 1] × [1,∞). (3.14)

Also, using (2.3) and Lemma 2.6, we obtain

‖∂xun‖L∞(1,∞;L∞(0,1)) ≤ C. (3.15)

It follows from (3.14) and (3.15) that the sequence {(un)} is relatively compact in C([0, 1] ×
[0, T]) for each T > 0.

On the other hand, using (2.3), (2.4), and (3.14), we have |ux| ≤ C(ε), and; hence,
|uxx| ≤ C(ε) in (ε, 1] × [1,∞). Since w := ux satisfies wt − wxx = euxwx, parabolic regularity
estimates then imply that

‖wt(·, tn + ·)‖L∞((ε,1]×(0,T)) ≤ C(ε, T), T > 0. (3.16)

It follows that the sequence {∂xun} is relatively compact in C([ε, 1]×[0, T]) for each ε, T > 0.
Then some subsequence {unk} converges to a function W ∈ C(Q), with wx ∈ C(Q), which
satisfies

Wt −Wxx = eWx in Q,

W(0, t) = 0, W(1, t) = A, t ≥ 0.
(3.17)

The convergence of {unk} is uniform in each set [0, 1]× [0, T], and the convergence of {∂xunk}
is uniform in each set [ε, 1] × [0, T].

Now, by (1.2), we may find K > 0 such that

|u| ≤ K on [0, 1] × [0,∞). (3.18)
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Since ψ, given by Proposition 3.1, is positive and continuous, we have

η(K,R) := inf
{
ψ(u, v); |u| ≤ K, |v| ≤ R} > 0, ∀R > 0. (3.19)

Fix any ε ∈ (0, 1). We get, for all T > 1,

η(K,C(ε))
∫T

1

∫1

ε

u2t (x, t)dx dt ≤
∫T

1

∫1

0
ψ(u, ux)u2t (x, t)dx dt

= L(u(1)) − L(u(T)) ≤ L(u(1)).

(3.20)

This implies that
∫∞
1

∫1
ε u

2
t (x, t)dx dt <∞; hence,

∫∞

0

∫1

ε

(
∂tu

2
nk

)
(x, t)dx dt =

∫∞

tnk

∫1

ε

u2t (x, t)dx dt → 0, k → ∞. (3.21)

Since ∂tunk → Wt in D′((0, 1) × (0,∞)) and since ε ∈ (0, 1) is arbitrary, it follows thatWt ≡ 0.
Therefore,W =W(x) ∈ C([0, 1]) ∩ C2(0, 1] satisfies (3.13).

But we know (cf. the beginning of Section 2) that the solution of (3.13) is unique
whenever it exists. Since the sequence tn → ∞ was arbitrary, this readily implies that the
whole solution u(t) actually converges toW . The proposition is proved.

Proof of Theorem 1.1. For 0 < A < Ac, assume that u is a global solution of (1.1) which is
unbounded in C1. By Proposition 3.2, as t → ∞, u(t) converges toW = VA, with convergence
in C([0, 1]) and in C1([ε, 1]) for all ε > 0.

Since u is unbounded, by Lemmas 2.4 and 2.6, there exists a sequence tn → ∞ such
that

ux(0, tn) → ∞. (3.22)

Using Lemma 2.6, (2.8), and (3.22), we deduce thatWx(x) ≥ −C and

e−[W
+
x (x)]+C3 ≤ x in (0, 1]. (3.23)

This easily implies that

Wx(x) ≥ − lnx − C′ in (0, 1]. (3.24)

But this is a contradiction, since W = VA ∈ C([0, 1]). We have, thus, proved that all global
solutions are bounded in C1.

Finally, once boundedness is known, the convergence of global solutions to VA in C1

is a standard consequence of the existence of a Lyapunov’s functional, the uniqueness of the
steady-state, and compactness properties of the semi-flow associated with (1.1). The proof of
Theorem 1.1 is completed.
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Proof of Proposition 1.3. Let

D =
{
u0 ∈ X;u(u0; ·, t) converges to VA in C1 as t → ∞

}
(3.25)

and fix A ∈ (A,Ac). We claim that,

∀ u0 ∈ X, u0 ≤ min
(
A,VA

)
implies u0 ∈ D. (3.26)

Indeed, by the comparison principle, as long as u := u(u0; ·, t) exists, we have u ≤ VA; hence,
ux(0, t) ≤ VA,x(0), and u ≤ A; hence, ux(1, t) ≥ 0. By Lemma 2.4, we deduce that u is global
and bounded in C1. It then follows from [3] that u converges in C1 to the unique steady-state
VA as t → ∞, which proves the claim.

Let us first consider the case A ∈ (0, Ac). By [4], there exists u0 ∈ X with u0,x ≥ 0,
such that T ∗(u0) < ∞. For each λ ∈ [0, 1], denote u0,λ := VA + λ(u0 − VA) ∈ X and uλ :=
u(u0,λ; ·, t). For λ > 0 small, we have u0,λ ≤ min(A,VA); hence, u0,λ ∈ D. Therefore, λ∗ :=
inf{λ ∈ [0, 1]; u0,λ /∈ D} ∈ (0, 1]. By (3.26) and a standard continuous dependence argument,
we have u0,λ∗ /∈ D. This implies that uλ∗ cannot be global and bounded in C1 (since otherwise
it would converge to VA due to [3]). In view of Theorem 1.1, the only remaining possibility
is that T ∗(u0,λ∗) < ∞. Considering u0,λn for a sequence λn ↑ λ∗, we obtain the conclusions (a)
and (b) of Proposition 1.3. We also get (c), since otherwise uλ∗ would be global by continuous
dependence.
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