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Employing a recent three critical points theorem due to Bonanno and Marano (2010), the existence
of at least three solutions for the following multipoint boundary value system −(|u′

i|pi−2u′
i)
′ =

λFui(x, u1, . . . , un) in (0, 1), ui(0) =
∑m

j=1 ajui(xj), ui(1) =
∑m

j=1 bjui(xj) for 1 ≤ i ≤ n, is established.

1. Introduction

In this work, we consider the following multipoint boundary value system

−
(∣
∣u′

i

∣
∣pi−2u′

i

)′
= λFui(x, u1, . . . , un) in (0, 1),

ui(0) =
m∑

j=1

ajui

(
xj

)
, ui(1) =

m∑

j=1

bjui

(
xj

)
,

(1.1)

for 1 ≤ i ≤ n, where pi > 1 for 1 ≤ i ≤ n, λ > 0, m, n ≥ 1, F : [0, 1] × R
n → R is a function

such that F(·, t1, . . . , tn) is continuous in [0, 1] for all (t1, . . . , tn) ∈ R
n, F(x, ·, . . . , ·) is C1 in R

n

for every x ∈ [0, 1] and F(x, 0, . . . , 0) = 0 for all x ∈ [0, 1], aj , bj ∈ R for j = 1, . . . , m and
0 < x1 < x2 < x3 < · · · < xm < 1, and Fui denotes the partial derivative of F with respect to ui

for 1 ≤ i ≤ n.
The study of multiplicity of solutions is an important mathematical subject which is

also interesting from the practical point of view because the physical processes described
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by boundary value problems for differential equations exhibit, generally, more than one
solution. In [1–3], Ricceri proposed and developed an innovative minimal method for the
study of nonlinear eigenvalue problems. Following that, Bonanno [4] gave an application of
the method to the two-point problem

u
′′
+ λf(u) = 0 in (0, 1),

u(0) = u(1) = 0.
(1.2)

Bonanno also gave more precise versions of the three critical points of Ricceri in [5, 6]. In
particular, in [5], an upper bound of the interval of parameters λ for which the functional
has three critical points is established. Candito [7] extended the main result of [4] to the
nonautonomous case

u
′′
+ λf(x, u) = 0 in (a, b),

u(a) = u(b) = 0.
(1.3)

In [8], He and Ge extended the main results of [4, 7] to the quasilinear differential equation

(
ϕp

(
u′))′ + λf(x, u) = 0 in (a, b),

u(a) = u(b) = 0.
(1.4)

In [9], the authors extended themain results of [4, 7, 9] to the quasilinear differential equation
with Sturm-Liouville boundary conditions

(∣
∣u′∣∣p−2u′

)′
+ λf(x, u) = 0 in (a, b),

α1u(a) − α2u
′(a) = 0, β1u(b) − β2u

′(b) = 0,
(1.5)

where p > 1 is a constant, λ is a positive parameter, a, b ∈ R; a < b. In particular, in [10], the
authors motivated by these works, established some criteria for the existence of three classical
solutions of the system (1.1), while in [11], based on Ricceri’s three critical points theorem [3],
the existence of at least three classical solutions to doubly eigenvalue multipoint boundary
value systems was established.

In the present paper, based on a three critical points theorem due to Bonanno and
Marano [12], we ensure the existence of least three classical solutions for the system (1.1).

Several results are known concerning the existence of multiple solutions for multipoint
boundary value problems, and we refer the reader to the papers [13–16] and the references
cited therein.
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Here and in the sequel, X will denote the Cartesian product of n space

Xi =

⎧
⎨

⎩
ξ ∈ W1,pi([0, 1]); ξ(0) =

m∑

j=1

ajξ
(
xj

)
, ξ(1) =

m∑

j=1

bjξ
(
xj

)

⎫
⎬

⎭
, (1.6)

for i = 1, . . . , n, that is, X = X1 × · · · ×Xn equipped with the norm

‖(u1, . . . , un)‖ =
n∑

i=1

∥
∥u′

i

∥
∥
pi
, (1.7)

where

∥
∥u′

i

∥
∥
pi
=

(∫1

0

∣
∣u′

i(x)
∣
∣pidx

)1/pi

(1.8)

for 1 ≤ i ≤ n.
We say that u = (u1, . . . , un) is a weak solution to (1.1) if u = (u1, . . . , un) ∈ X and

∫1

0

n∑

i=1

∣
∣u′

i(x)
∣
∣pi−2u′

i(x)v
′
i(x)dx − λ

∫1

0

n∑

i=1

Fui(x, u1(x), . . . , un(x))vi(x)dx = 0, (1.9)

for every (v1, . . . , vn) ∈ X.
A special case of our main result is the following theorem.

Theorem 1.1. Let f, g : R
2 → R be two positive continuous functions such that the differential

1-form w := f(ξ, η)dξ + g(ξ, η)dη is integrable, and let F be a primitive of w such that F(0, 0) = 0.
Fix p, q > 2, 0 < x1 < x2 < 1, and assume that

lim inf
(ξ,η)→ (0,0)

F
(
ξ, η
)

|ξ|p/p +
∣
∣η
∣
∣q/q

= lim sup
|ξ|→+∞, |η|→+∞

F
(
ξ, η
)

|ξ|p/p +
∣
∣η
∣
∣q/q

= 0, (1.10)

then there is λ∗ > 0 such that for each λ > λ∗, the problem

−
(∣
∣u′

1

∣
∣p−2u′

1

)′
= λf(u1, u2) in (0, 1),

−
(∣
∣u′

2

∣
∣q−2u′

2

)′
= λg(u1, u2) in (0, 1),

ui(0) = a1ui(x1) + a2ui(x2), ui(1) = b1ui(x1) + b2ui(x2)

(1.11)

admits at least two positive classical solutions.

Themain aim of the present paper is to obtain further applications of [12, Theorem 2.6]
(see Theorem 2.1 in the next section) to the system (1.1), and the obtained results are strictly



4 Abstract and Applied Analysis

comparable with those of [9–11], and here we wil give the exact collocation of the interval of
positive parameters.

For other basic notations and definitions, we refer the reader to [17–26]. We note that
some of the ideas used here were motivated by corresponding ones in [10].

2. Main Results

Ourmain tool is a three critical points theorem obtained in [12] (see also [1, 2, 5, 27] for related
results), which is a more precise version of Theorem 3.2 of [28], to transfer the existence of
three solutions of the system (1.1) into the existence of critical points of the Euler functional.
We recall it here in a convenient form (see [23]).

Theorem 2.1 (see [12, Theorem 2.6]). Let X be a reflexive real Banach space, Φ : X → R be a
coercive continuously Gâteaux differentiable and sequentially weakly lower semicontinuous functional
whose Gâteaux derivative admits a continuous inverse on X∗,Ψ : X → R be a continuously Gâteaux
differentiable functional whose Gâteaux derivative is compact such that Φ(0) = Ψ(0) = 0. Assume
that there exist r > 0 and x ∈ X, with r < Φ(x) such that

(κ1) supΦ(x)≤rΨ(x)/r < Ψ(x)/Φ(x),

(κ2) for each λ ∈ Λr :=]Φ(x)/Ψ(x), r/supΦ(x)≤rΨ(x)[, the functional Φ − λΨ is coercive.

then, for each λ ∈ Λr , the functional Φ − λΨ has at least three distinct critical points in X.

Put

k = max

{

sup
ui∈Xi\{0}

maxx∈[0,1]|ui(x)|pi
‖ui‖pipi

; for 1 ≤ i ≤ n

}

. (2.1)

Since pi > 1 for 1 ≤ i ≤ n, and the embedding X = X1 × · · · × Xn ↪→ (C0([0, 1]))n is compact,
one has k < +∞. Moreover, from [10, Lemma 3.1], one has

sup
u∈Xi\{0}

maxx∈[0,1]|u(x)|
‖u′‖pi

≤ 1
2

⎛

⎝1 +

∑m
j=1

∣
∣aj

∣
∣

∣
∣
∣1 −∑m

j=1 aj

∣
∣
∣
+

∑m
j=1

∣
∣bj
∣
∣

∣
∣
∣1 −∑m

j=1 bj
∣
∣
∣

⎞

⎠. (2.2)

Put φpi(s) = |s|pi−1s for 1 ≤ i ≤ n. Let φ−1
pi denotes the inverse of φpi for 1 ≤ i ≤ n. then,

φ−1
pi (t) = φqi(t)where 1/pi + 1/qi = 1. It is clear that φpi is increasing on R,

lim
t→−∞

φpi(t) = −∞, lim
t→+∞

φpi(t) = +∞. (2.3)

Lemma 2.2 (see [10, Lemma 3.3]). For fixed λ ∈ R and u = (u1, . . . , un) ∈ (C([0, 1]))n, define
αi(t;u) : R → R by

αi(t;u) =
∫1

0
φ−1
pi

(

t − λ

∫δ

0
Fui(ξ, u1(ξ), . . . , un(ξ))dξ

)

dδ +
m∑

j=1

ajui

(
xj

) −
m∑

j=1

bjui

(
xj

)
. (2.4)
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then the equation

αi(t;u) = 0 (2.5)

has a unique solution tu,i.

Direct computations show the following.

Lemma 2.3 (see [10, Lemma 3.4]). The function u = (u1, . . . , un) is a solution of the system (1.1)
if and only if ui(x) is a solution of the equation

ui(x) =
m∑

j=1

ajui

(
xj

)
+
∫x

0
φ−1
pi

(

tu,i − λ

∫δ

0
Fui(ξ, u1(ξ), . . . , un(ξ))dξ

)

dδ, (2.6)

for 1 ≤ i ≤ n, where tu,i is the unique solution of (2.5).

Lemma 2.4. A weak solution to the systems (1.1) coincides with classical solution one.

Proof. Suppose that u = (u1, . . . , un) ∈ X is a weak solution to (1.1), so

∫1

0

n∑

i=1

φpi

(
u′
i(x)

)
v′
i(x)dx − λ

∫1

0

n∑

i=1

Fui(x, u1(x), . . . , un(x))vi(x)dx, (2.7)

for every (v1, . . . , vn) ∈ X. Note that, in one dimension, any weakly differentiable function is
absolutely continuous, so that its classical derivative exists almost everywhere, and that the
classical derivative coincides with the weak derivative. Now, using integration by part, from
(2.7), we obtain

n∑

i=1

∫1

0

[(
φpi

(
u′
i(x)

))′ + λFui(x, u1(x), . . . , un(x))
]
vi(x)dx = 0, (2.8)

and so for 1 ≤ i ≤ n,

(
φpi

(
u′
i(x)

))′ + λFui(x, u1(x), . . . , un(x)) = 0, (2.9)

for almost every x ∈ (0, 1). Then, by Lemmas 2.2 and 2.3, we observe

ui(x) =
m∑

j=1

ajui

(
xj

)
+
∫x

0
φ−1
pi

(

tu,i − λ

∫δ

0
Fui(s, u1(s), . . . , un(s))ds

)

dδ, (2.10)

for 1 ≤ i ≤ n, where tu,i is the unique solution of (2.5). Hence, ui ∈ C1([0, 1]) and φpi(u
′
i(x)) ∈

C1([0, 1]) for 1 ≤ i ≤ n, namely u = (u1, . . . , un) is a classical solution to the system (1.1).
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For all γ > 0, we denote by K(γ) the set

{

(t1, . . . , tn) ∈ Rn :
n∑

i=1

|ti|pi
pi

≤ γ

}

. (2.11)

Now, we formulate our main result as follows.

Theorem 2.5. Assume that there exist 2m constants aj , bj for 1 ≤ j ≤ m with
∑m

j=1 aj /= 1 and
∑m

j=1 bj /= 1, a positive constant r and a function w = (w1, . . . , wn) ∈ X such that

(A1)
∑n

i=1(‖w′
i‖pipi/pi) > r,

(A2)
∫1
0 sup(t1,...,tn)∈K(kr)F(x, t1, . . . , tn)dx < (r

∏n
i=1pi)

∫1
0 F(x,w1(x), . . . , wn(x))dx/

∑n
i=1
∏n

j=1,j /= i
pj‖w′

i‖pipi where K(kr) = {(t1, . . . , tn)|
∑n

i=1(|ti|pi/pi) ≤ kr}(see (2.11)),

(A3) lim sup|t1|→+∞,..., |tn|→+∞F(x, t1, . . . , tn)/
∑n

i=1(|ti|pi/pi) <
∫1
0 sup(t1,...,tn)∈K(kr)× F(x, t1,

. . . , tn)dx/kr uniformly with respect to x ∈ [0, 1].

Then, for each λ ∈ Λr :=]
∑n

i=1(‖w′
i
pi
pi
‖/pi)/

∫1
0 F(x,w1(x), . . . , wn(x))dx, r/

∫1
1 sup(t1,...,tn)∈K(kr)

F(x, t1, . . . , tn)dx[, the system (1.1) admits at least three distinct classical solutions in X.

Proof. In order to apply Theorem 2.1 to our problem, we introduce the functionals Φ, Ψ :
X → R for each u = (u1, . . . , un) ∈ X, as follows:

Φ(u) =
n∑

i=1

∥
∥u′

i

∥
∥pi
pi

pi
,

Ψ(u) =
∫1

0
F(x, u1(x), . . . , un(x))dx.

(2.12)

Since pi > 1 for 1 ≤ i ≤ n, X is compactly embedded in (C0([0, 1]))n and it is well known that
Φ and Ψ are well defined and continuously differentiable functionals whose derivatives at
the point u = (u1, . . . , un) ∈ X are the functionals Φ′(u), Ψ′(u) ∈ X∗, given by

Φ′(u)(v) =
∫1

0

n∑

i=1

∣
∣u′

i(x)
∣
∣pi−2u′

i(x)v
′
i(x)dx,

Ψ′(u)(v) =
∫1

0

n∑

i=1

Fui(x, u1(x), . . . , un(x))vi(x)dx

(2.13)

for every v = (v1, . . . , vn) ∈ X, respectively, as well as Ψ is sequentially weakly upper
semicontinuous. Furthermore, Lemma 2.6 of [11] gives thatΦ′ admits a continuous inverse on
X∗, and sinceΦ′ is monotone, we obtain thatΦ is sequentially weakly lower semiacontinuous
(see [29, Proposition 25.20]). Moreover,Ψ′ : X → X∗ is a compact operator. From assumption
(A1), we get 0 < r < Φ(w). Since from (2.1) for each ui ∈ Xi,

sup
x∈[0,1]

|ui(x)|pi ≤ k
∥
∥u′

i

∥
∥pi (2.14)
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for i = 1, . . . , n, we have

sup
x∈[0,1]

n∑

i=1

|ui(x)|pi
pi

≤ k
n∑

i=1

∥
∥u′

i

∥
∥pi
pi

pi
, (2.15)

for each u = (u1, . . . , un) ∈ X, and so using (2.15), we observe

Φ−1(]−∞, r]) = {(u1, . . . , un) ∈ X;Φ(u1, . . . , un) ≤ r}

=

⎧
⎨

⎩
(u1, . . . , un) ∈ X;

n∑

i=1

∥
∥u′

i

∥
∥pi
pi

pi
≤ r

⎫
⎬

⎭

⊆
{

(u1, . . . , un) ∈ X;
n∑

i=1

|ui(x)|pi
pi

≤ kr ∀x ∈ [0, 1]

}

,

(2.16)

and it follows that

sup
(u1,...,un)∈Φ−1(]−∞,r])

Ψ(u1, . . . , un) = sup
(u1,...,un)∈Φ−1(]−∞,r])

∫1

0
F(x, u1(x), . . . , un(x))dx

≤
∫1

0
sup

(t1,...,tn)∈K(kr)
F(x, t1, . . . , tn)dx.

(2.17)

Therefore, owing to assumption (A2), we have

sup
u∈Φ−1(]−∞,r])

Ψ(u1, . . . , un) = sup
(u1,...,un)∈Φ−1(]−∞,r])

∫1

0
F(x, u1(x), . . . , un(x))dx

≤
∫1

0
sup

(t1,...,tn)∈K(kr)
F(x, t1, . . . , tn)dx

<

(

r
n∏

i=1

pi

)∫1
0 F(x,w1(x), . . . , wn(x))dx
∑n

i=1
∏n

j=1,j /= i
pj
∥
∥w′

i

∥
∥pi
pi

< r

∫1
0 F(x,w1(x), . . . , wn(x))dx

∑n
i=1
(∥
∥w′

i

∥
∥pi/pi

)

= r
Ψ(w)
Φ(w)

.

(2.18)

Furthermore, from (A3), there exist two constants γ, υ ∈ R with

0 < γ <

∫1
0 sup(t1,...,tn)∈K(kr)F(x, t1, . . . , tn)dx

r
, (2.19)
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such that

kF(x, t1, . . . , tn) ≤ γ
n∑

i=1

|ti|pi
pi

+ υ, ∀x ∈ [0, 1], ∀(t1, . . . , tn) ∈ R
n. (2.20)

Fix (u1, . . . , un) ∈ X, Then

F(x, u1(x), . . . , un(x)) ≤ 1
k

(

γ
n∑

i=1

|ui(x)|pi
pi

+ υ

)

∀x ∈ [0, 1]. (2.21)

So, for any fixed λ ∈ Λr , from (2.15) and (2.21), we have

Φ(u) − λΨ(u) =
n∑

i=1

∥
∥u′

i

∥
∥pi
pi

pi
− λ

∫1

0
F(x, u1(x), . . . , un(x))dx

≥
n∑

i=1

∥
∥u′

i

∥
∥pi
pi

pi
− λγ

k

(
n∑

i=1

1
pi

∫1

0
|ui(x)|pidx

)

− λυ

k

≥
n∑

i=1

∥
∥u′

i

∥
∥pi
pi

pi
− λγ

k

⎛

⎝k
n∑

i=1

∥
∥u′

i

∥
∥pi
pi

pi

⎞

⎠ − λυ

k

=
n∑

i=1

∥
∥u′

i

∥
∥pi
pi

pi
− λγ

n∑

i=1

∥
∥u′

i

∥
∥pi
pi

pi
− λυ

k

≥
⎛

⎝1 − γ
r

∫1
0 sup(t1,...,tn)∈K(kr)F(x, t1, . . . , tn)dx

⎞

⎠
n∑

i=1

∥
∥u′

i

∥
∥pi
pi

pi
− λυ

k
,

(2.22)

and thus,

lim
‖(u1,...,un)‖→+∞

(Φ(u1, . . . , un) − λΨ(u1, . . . , un)) = +∞, (2.23)

which means that the functional Φ − λΨ is coercive. So, all assumptions of Theorem 2.1 are
satisfied. Hence, from Theorem 2.1 with x = w, taking into account that the weak solutions of
the system (1.1) are exactly the solutions of the equation Φ′(u1, . . . , un) − λΨ′(u1, . . . , un) = 0
and using Lemma 2.4, we have the conclusion.

Now we want to present a verifiable consequence of the main result where the test
function w is specified.

Put

σi =

⎡

⎣2pi−1
⎛

⎝x
1−pi
1

∣
∣
∣
∣
∣
∣
1 −

m∑

j=1

aj

∣
∣
∣
∣
∣
∣

pi

+ (1 − xm)1−pi

∣
∣
∣
∣
∣
∣
1 −

m∑

j=1

bj

∣
∣
∣
∣
∣
∣

pi⎞

⎠

⎤

⎦

1/pi

for 1 ≤ i ≤ n. (2.24)
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Define

B1,n(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎣x
m∑

j=1

aj , x

⎤

⎦

n

if
m∑

j=1

aj < 1,

⎡

⎣x, x
m∑

j=1

aj

⎤

⎦

n

if
m∑

j=1

aj > 1,

B2,n(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎣x
m∑

j=1

bj , x

⎤

⎦

n

if
m∑

j=1

bj < 1,

⎡

⎣x, x
m∑

j=1

bj

⎤

⎦

n

if
m∑

j=1

bj > 1,

(2.25)

where [·, ·]n = [·, ·] × · · · × [·, ·], then we have the following consequence of Theorem 2.5.

Corollary 2.6. Assume that there exist 2m constants aj , bj for 1 ≤ j ≤ m with
∑m

j=1 aj /= 1 and
∑m

j=1 bj /= 1 and two positive constants θ and τ with
∑n

i=1((σiτ)
pi/pi) > θ/k

∏n
i=1pi such that

(B1) F(x, t1, . . . , tn) ≥ 0 for each x ∈ [0, x1/2] ∪ [(1 + xm)/2, 1] and (t1, . . . , tn) ∈ B1,n(τ) ∪
B2,n(τ),

(B2)
∑n

i=1((σiτ)
pi/pi)

∫1
0 sup(t1,...,tn)∈K(θ/

∏n
i=1pi)

F(x, t1, . . . , tn)dx < (θ/k
∏n

i=1pi)
∫ (1+xm)/2
x1/2

F(x, τ, . . . , τ)dx, where σi is given by (2.24) and K(θ/
∏n

i=1pi) = {(t1, . . . , tn) |
∑n

i=1(|ti|pi/pi) ≤ c/
∏n

i=1pi} (see (2.11));

(B3) lim sup|t1|→+∞,...,|tn|→+∞(F(x, t1, . . . , tn)/
∑n

i=1(|ti|pi/pi)) <
∏n

i=1pi/θ ×
∫1
0 sup(t1,...,tn)∈K(θ/

∏n
i=1pi)

F(x, t1, . . . , tn)dx uniformly with respect to x ∈ [0, 1].

then, for each λ∈]∑n
i=1((σiτ)

pi/pi)/
∫ (1+xm)/2
x1/2

F(x, τ, . . . , τ)dx,(θ/k
∏n

i=1pi)/
∫1
0sup(t1,...,tn)∈K(θ/

∏n
i=1pi)

F(x, t1, . . . , tn)dx[ the systems (1.1) admits at least three distinct classical solutions.

Proof. Set w(x) = (w1(x), . . . , wn(x)) such that for 1 ≤ i ≤ n,

wi(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ

⎛

⎜
⎝

m∑

j=1

aj +
2
(
1 −∑m

j=1 aj

)

x1
x

⎞

⎟
⎠ if x ∈

[
0,

x1

2

]
,

τ if x ∈
[
x1

2
,
1 + xm

2

]

,

τ

⎛

⎜
⎝

2 −∑m
j=1 bj − xm

∑m
j=1 bj

1 − xm
−
2
(
1 −∑m

j=1 bj
)

1 − xm
x

⎞

⎟
⎠ if x ∈

[
1 + xm

2
, 1
]

,

(2.26)

and r = θ/k
∏n

i=1pi. It is easy to see that w = (w1, . . . , wn) ∈ X, and, in particular, one has

∥
∥w′

i

∥
∥pi
pi
= (σiτ)pi , (2.27)
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for 1 ≤ i ≤ n, which, employing the condition
∑n

i=1((σiτ)
pi/pi) > θ/k

∏n
i=1pi, gives

n∑

i=1

∥
∥w′

i

∥
∥pi
pi

pi
> r. (2.28)

Since for 1 ≤ i ≤ n,

τ
m∑

j=1

aj ≤ wi(x) ≤ τ for each x ∈
[
0,

x1

2

]
if

m∑

j=1

aj < 1,

τ ≤ wi(x) ≤ τ
m∑

j=1

aj for each x ∈
[
0,

x1

2

]
if

m∑

j=1

aj > 1,

τ
m∑

j=1

bj ≤ wi(x) ≤ τ for each x ∈
[
1 + xm

2
, 1
]

if
m∑

j=1

bj < 1,

τ ≤ wi(x) ≤ τ
m∑

j=1

bj for each x ∈
[
1 + xm

2
, 1
]

if
m∑

j=1

bj > 1,

(2.29)

the condition (B1) ensures that

∫x1/2

0
F(x,w1(x), . . . , wn(x))dx +

∫1

(1+xm)/2
F(x,w1(x), . . . , wn(x))dx ≥ 0. (2.30)

Therefore, owing to assumption (B2), we have

∫1

0
sup

(t1,...,tn)∈K(kr)
F(x, t1, . . . , tn)dx <

θ
(∑n

i=1
(
(σiτ)pi/pi

))(
k
∏n

i=1pi
)

∫ (1+xm)/2

x1/2
F(x, τ, . . . , τ)dx

≤ θ

k

∫1
0 F(x,w1(x), . . . , wn(x))dx
∑n

i=1
∏n

j=1,j /= i
pj
∥
∥w′

i

∥
∥pi
pi

=

(

r
n∏

i=1

pi

)∫1
0 F(x,w1(x), . . . , wn(x))dx
∑n

i=1
∏n

j=1,j /= i
pj
∥
∥w′

i

∥
∥pi
pi

,

(2.31)

where K(θ/
∏n

i=1pi) = {(t1, . . . , tn) | ∑n
i=1(|ti|pi/pi) ≤ θ/

∏n
i=1pi}. Moreover, from assumption

(B3) it follows that assumption (A3) is fulfilled. Hence, taking into account that

⎤

⎦

∑n
i=1
(
(σiτ)pi/pi

)

∫ (1+xm)/2
x1/2

F(x, τ, . . . , τ)dx
,

θ/k
∏n

i=1pi
∫1
0 sup(t1,...,tn)∈K(θ/

∏n
i=1pi)

F(x, t1, . . . , tn)dx

⎡

⎣ ⊆ Λr , (2.32)

using Theorem 2.5, we have the desired conclusion.
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Let us present an application of Corollary 2.6.

Example 2.7. Let F : [0, 1] × R
3 → R be the function defined as

F(x, t1, t2, t3) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ∀ti < 0, i = 1, 2,

x2t1001 e−t1 for t1 ≥ 0, t2 < 0, t3 < 0,

x2t1002 e−t2 for t1 < 0, t2 ≥ 0, t3 < 0,

x2t1003 e−t3 for t1 < 0, t2 < 0, t3 ≥ 0.

x2
3∑

i=1

t100i e−ti for ti ≥ 0, i = 1, 2, 3,

(2.33)

for each (x, t1, t2, t3) ∈ [0, 1] × R
3. In fact, by choosing p1 = p2 = p3 = 3 and a1 = b1 = x1 = 1/2,

by a simple calculation, we obtain that k = 27/8 and σ1 = σ2 = σ3 = 41/3, and so with θ = 9
and τ = 100, we observe that the assumptions (B1) and (B3) in Corollary 2.6 are satisfied. For
(B2),

3∑

i=1

(σiτ)pi

pi

∫1

0
sup

(t1,t2,t3)∈K(θ/
∏3

i=1pi)
F(x, t1, t2, t3)dx

= 4(100)3
∫1

0
sup

(t1,t2,t3)∈K(1/3)
F(x, t1, t2, t3)dx

≤ 4(100)3
∫1

0
sup

(t1,t2,t3)∈K(1/3)
x2

3∑

i=1

t100i e−tidx

= 4(100)3 max
(t1,t2,t3)∈K(1/3)

3∑

i=1

t100i e−ti
∫1

0
x2dx

≤ 4
3
(100)3

(

3max
|t|≤1

t100e−t
)

= 4(100)3e

<
13

4 × 34
(100)100e−100

=
θ

k
∏3

i=1pi

∫ (1+x1)/2

x1/2
F(x, τ, τ, τ)dx.

(2.34)

So, for every

λ ∈
]

44(100)3

26(100)100e−100
,

8

35(100)3e

[

, (2.35)
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Corollary 2.6 is applicable to the system

−(∣∣u′
1

∣
∣u′

1

)′ = λx2(u+
1

)99
e−u

+
1
(
100 − u+

1

)
in (0, 1),

−(∣∣u′
2

∣
∣u′

2
)′ = λx2(u+

2
)99

e−u
+
2
(
100 − u+

2
)

in (0, 1),

−(∣∣u′
3

∣
∣u′

3
)′ = λx2(u+

3
)99

e−u
+
3
(
100 − u+

3
)

in (0, 1),

ui(0) = ui(1) =
1
2
ui

(
1
2

)

for i = 1, 2, 3,

(2.36)

where t+ = max{t, 0}.

Here is a remarkable consequence of Corollary 2.6.

Corollary 2.8. Let F : R
n → R be a C1 function in Rn such that F(0, . . . , 0) = 0. Assume that there

exist 2m constants aj , bj for 1 ≤ j ≤ m with
∑m

j=1 aj /= 1 and
∑m

j=1 bj /= 1 and two positive constants
θ and τ with

∑n
i=1((σiτ)

pi/pi) > θ/k
∏n

i=1pi such that

(C1) F(t1, . . . , tn) ≥ 0 for each (t1, . . . , tn) ∈ B1,n(τ) ∪ B2,n(τ),

(C2)
∑n

i=1((σiτ)
pi/pi)max(t1,...,tn)∈K(θ/

∏n
i=1pi)F(t1, . . . , tn) < (θ(1+xm−x1)/2k

∏n
i=1pi)F(τ, . . . ,

τ) where σi is given by (2.24),

(C3) lim sup|t1|→+∞,..., |tn|→+∞(F(t1, . . . , tn)/
∑n

i=1(|ti|pi/pi)) < (
∏n

i=1pi/θ)
max(t1,...,tn)∈K(θ/

∏n
i=1pi)F(t1, . . . , tn),

Then, for each λ ∈]∑n
i=1((σiτ)

pi/pi)/((1 + xm − x1)/2)F(τ, . . . , τ), (θ/k
∏n

i=1 pi)/
max(t1,...,tn)∈K(θ/

∏n
i=1pi)F(t1, . . . , tn)[, the systems

−
(∣
∣u′

i

∣
∣pi−2u′

i

)′
= λFui(u1, . . . , un) in (0, 1),

ui(0) =
m∑

j=1

ajui

(
xj

)
, ui(1) =

m∑

j=1

bjui

(
xj

)
,

(2.37)

for 1 ≤ i ≤ n, admits at least three distinct classical solutions.

Proof. Set F(x, t1, . . . , tn) = F(t1, . . . , tn) for all x ∈ [0, 1] and ti ∈ R for 1 ≤ i ≤ n. From
the hypotheses, we see that all assumptions of Corollary 2.6 are satisfied. So, we have the
conclusion by using Corollary 2.6.

Example 2.9. Let p1 = p2 = 3, m = 2, x1 = 1/3, x2 = 2/3 and ai = bi = 1/3, i = 1, 2. Consider
the system

−(∣∣u′
1

∣
∣u′

1

)′ = λ
(
e−u1u11

1 (12 − u1)
)
, in (0, 1),

−(∣∣u′
2

∣
∣u′

2
)′ = λ

(
e−u2u9

2(10 − u2)
)
, in (0, 1),

u1(0) = u1(1) =
1
3
u1

(
1
3

)

+
1
3
u1

(
2
3

)

, u2(0) = u2(1) =
1
3
u2

(
1
3

)

+
1
3
u2

(
2
3

)

.

(2.38)
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Clearly, (H1) and (H2) hold. A simple calculation shows that k = 125/8 and σ1 = σ2 =
(8/3)1/3. So, by choosing θ = 3 and τ = 10, we observe that the assumptions (C1) and (C3) in
Corollary 2.8 hold. For (C3), since F(t1, t2) = t121 e−t1 + t102 e−t2 for every (t1, t2) ∈ R

2, we have

max
(t1,t2)∈K(θ/

∏2
i=1pi)

F(t1, t2) = max
(t1,t2)∈K(1/3)

F(t1, t2)

= max
(t1,t2)∈K(1/3)

(
t121 e−t1 + t102 e−t2

)

≤
[

max
|t1|≤1

t121 e−t1 +max
|t2|≤1

t102 e−t2
]

= 2e

<
1

125 · 103
(
1012e−10 + 1010e−10

)

=
θ(1 + x2 − x1)

(∑2
i=1
(
(τσi )pi/pi

))(
2k
∏2

i=1pi
)F(τ, τ).

(2.39)

Note that lim|t1|→∞,|t2|→∞(F(t1, t2)/
∑2

i=1(|ti|pi/pi)) = 0. We see that for every

λ ∈
]

8
3
(
109e−10 + 107e−10

) ,
4

375e

[

, (2.40)

Corollary 2.8 is applicable to the system (2.38).

Finally, we prove the theorem in the introduction.

Proof of Theorem 1.1. Since f and g are positive, then F is nonnegative in R
2. Fix λ >

λ∗ := ((σ1τ)
p/p + (σ2τ)

q/q)/((1 + x2 − x1)/2)F(τ, τ) for some τ > 0. Note that
lim inf(ξ,η)→ (0,0)(F(ξ, η)/(|ξ|p/p + |η|q/q)) = 0, and there is {θn}n∈N ⊆]0,+∞[such that
limn→+∞θn = 0 and

lim
n→+∞

max(ξ,η)∈K(θn/pq)F
(
ξ, η
)

θn
= 0. (2.41)

In fact, one has limn→+∞(max(ξ,η)∈K(θn/pq)F(ξ, η)/θn) = limn→+∞(F(ξθn , ηθn)/(|ξθn |p/p +
|ηθn |q/q)) · (|ξθn |p/p+ |ηθn |q/q)/θn = 0, where F(ξθn , ηθn) = sup(ξ,η)∈K(θn/pq)F(ξ, η). Hence, there

is θ > 0 such that

max(ξ,η)∈K(θ/pq)F
(
ξ, η
)

θ
< min

{
(1 + x2 − x1)

2
(
q(σ1τ)p + p(σ2τ)q

)
k
F(τ, τ);

1
λpqk

}

, (2.42)

and θ < k(q(σ1τ)
p + p(σ2τ)

q).
from Corollary 2.8, with n = 2 follows the conclusion.
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