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We present some results to the existence and uniqueness of the periodic solutions for the
hematopoiesis models which are described by the functional differential equations with multiple
delays. Our methods are based on the equivalent norm techniques and a new fixed point theorem
in the continuous function space.

1. Introduction

In this paper, we aim to establish the existence and uniqueness result for the periodic
solutions to the following functional differential equations with multiple delays:

x′(t) = −a(t)x(t) + f(t, x(t − τ1(t)), . . . , x(t − τm(t))), (1.1)

where a, τi ∈ C(R,R+), f ∈ C(Rm+1, R) are T -periodic functions on variable t for T > 0 and m
is a positive integer.

Recently, many authors investigate the dynamics for the various hematopoiesis
models, which includ the attractivity and uniqueness of the periodic solutions. For examples,
Mackey and Glass in [1] have built the following delay differential equation:

x′(t) = −ax(t) + βθn

θn + xn(t − τ)
, (1.2)

where a, n, β, θ, τ are positive constants, x(t) denotes the density of mature cells in blood
circulation, and τ is the time between the production of immature cells in the bone marrow
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and their maturation for release in the circulating bloodstream; Liu et al. [2],Yang [3], Saker
[4], Zaghrout et al. [5], and references therein, also investigate the attractivity and uniqueness
of the periodic solutions for some hematopoiesis models.

This paper is organized as follows. In Section 2, we present two new fixed point
theorems in continuous function spaces and establish the existence and uniqueness results
for the periodic solutions of (1.1). An illustrative example to the hematopoiesis models is
exhibited in the Section 3.

2. Fixed Point Theorems and Existence Results

2.1. Fixed Point Theorems

In this subsection, we will present two new fixed point theorems in continuous function
spaces. More details about the fixed point theorems in continuous function spaces can be
found in the literature [6–8] and references therein.

Let E be a Banach space equipped with the norm ‖ · ‖E. BC(R,E) which denotes
the Banach space consisting of all bounded continuous mappings from R into E with norm
‖u‖C = max{‖u(t)‖E : t ∈ R} for u ∈ BC(R,E).

Theorem 2.1. Let F be a nonempty closed subset of BC(R,E) and A : F → F an operator. Suppose
the following:

(H1) there exist β ∈ [0, 1) and G : R × R → R such that for any u, v ∈ F,

‖Au(t) −Av(t)‖E ≤ β‖u(t) − v(t)‖E +
∫ t

t−T
G(t, s)‖u(s) − v(s)‖Eds for t ∈ R, (2.1)

(H2) there exist an α ∈ [0, 1 − β) and a positive bounded function y ∈ C(R,R) such that

∫ t

t−T
G(t, s)y(s)ds ≤ αy(t) ∀t ∈ R. (2.2)

Then A has a unique fixed point in F.

Proof. For any given x0 ∈ F, let xn = Axn−1, (n = 1, 2, . . .). By (H1), we have

‖Axn+1(t) −Axn(t)‖E ≤ β‖xn+1(t) − xn(t)‖E +
∫ t

t−T
G(t, s)‖xn+1(s) − xn(s)‖Eds. (2.3)

Set an(t) = ‖xn+1(t) − xn(t)‖E, then we get

an+1(t) ≤ βan(t) +
∫ t

t−T
G(t, s)an(s)ds. (2.4)



Abstract and Applied Analysis 3

In order to prove that the sequence {xn} is a Cauchy sequence with respect to norm
‖·‖C, we introduce an equivalent norm and show that {xn} is a Cauchy sequence with respect
to the new one. Basing on the condition (H2), we see that there are two positive constantsM
and m such that m ≤ y(t) ≤ M for all t ∈ R. Define the new norm ‖ · ‖1 by

‖u‖1 = sup
{

1
y(t)

‖u(t)‖E : t ∈ R

}
, u ∈ BC(R,E). (2.5)

Then,

1
M

‖u‖C ≤ ‖u‖1 ≤
1
m
‖u‖C. (2.6)

Thus, the two norms ‖ · ‖1 and ‖ · ‖C are equivalent.
Set an = ‖xn+1 − xn‖1, then we have an(t) ≤ y(t)an for t ∈ R. By (2.13), we have

1
y(t)

an+1(t) ≤ βan +
1

y(t)

∫ t

t−T
G(t, s)an(s)ds

≤ βan +
an

y(t)

∫ t

t−T
G(t, s)y(s)ds ≤ (

β + α
)
an.

(2.7)

Thus,

an+1 ≤
(
β + α

)
an ≤ (

β + α
)2
an−1 ≤ · · · ≤ (

β + α
)n+1

a0. (2.8)

This means {xn} is a Cauchy sequence with respect to norm ‖ · ‖1. Therefore, also, {xn} is a
Cauchy sequence with respect to norm ‖ · ‖C. Thus, we see that {xn} has a limit point in F,
say u. It is known that u is the fixed point of A in F.

Suppose both u and v (u/=v) are the fixed points ofA, thenAu = u,Av = v. Following
the similar arguments, we prove that

‖u − v‖1 = ‖Au −Av‖1 ≤
(
β + α

)‖u − v‖1. (2.9)

It is impossible. Thus the fixed point ofA is unique. This completes the proof of Theorem 2.1.

Let PC(R,E) be a Banach space consisting of all T -periodic functions in BC(R,E)with
the norm ‖u‖P = max{‖u(t)‖E : t ∈ [0, T]} for u ∈ PC(R,E). Then, following the similar
arguments in Theorem 2.1, we deduce Theorem 2.2 which is a useful result for achieving the
existence of periodic solutions of functional differential equations.
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Theorem 2.2. Let A : PC(R,E) → PC(R,E) be an operator. Suppose the following:

(H̃1) there exist β ∈ [0, 1) and G : R × R → R such that for any u, v ∈ PC(R,E),

‖Au(t) −Av(t)‖E ≤ β‖u(t) − v(t)‖E +
∫ t

t−T
G(t, s)

n∑
i=1

∥∥u(ηi(s)) − v
(
ηi(s)

)∥∥
Eds, (2.10)

where ηi ∈ C([0, T], R+) with ηi(s) ≤ s and n is a positive integer;

(H̃2) there exist two constants α,K and a positive function y ∈ C(R,R) such that nKα ∈
[0, 1 − β), y(ηi(s)) ≤ Ky(s), and

∫ t

t−T
G(t, s)y(s)ds ≤ αy(t) ∀t ∈ [0, T]. (2.11)

Then A has a unique fixed point in PC(R,E).

Proof. For any given x0 ∈ F, let xk = Axk−1, (k = 1, 2, . . .). By (H̃1), we have

‖Axk+1(t) −Axk(t)‖E ≤ β‖xk+1(t) − xk(t)‖E +
∫ t

t−T
G(t, s)

n∑
i=1

∥∥xk+1
(
ηi(s)

) − xk

(
ηi(s)

)∥∥
Eds.

(2.12)

Set ak(t) = ‖xk+1(t) − xk(t)‖E, then we get

ak+1(t) ≤ βak(t) +
∫ t

t−T
G(t, s)

n∑
i=1

ak

(
ηi(s)

)
ds. (2.13)

Basing on the condition (H̃2), we see that there are two positive constants M and m
such that m ≤ y(t) ≤ M for all t ∈ [0, T]. Define the new norm ‖ · ‖2 by

‖u‖2 = sup
{

1
y(t)

‖u(t)‖E : t ∈ [0, T]
}
, u ∈ PC(R,E). (2.14)

Then,

1
M

‖u‖p ≤ ‖u‖2 ≤
1
m
‖u‖p. (2.15)

Thus, the two norms ‖ · ‖2 and ‖ · ‖p are equivalent.
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Set ak = ‖xk+1 − xk‖2, then we have ak(t) ≤ y(t)ak for t ∈ [0, T]. By (2.13), we have

1
y(t)

ak+1(t) ≤ βak +
1

y(t)

∫ t

t−T
G(t, s)

n∑
i=1

ak

(
ηi(s)

)
ds

≤ βak +
ak

y(t)

∫ t

t−T
G(t, s)

n∑
i=1

y
(
ηi(s)

)
ds ≤ (

β + nKα
)
ak.

(2.16)

Thus,

ak+1 ≤
(
β + nKα

)
ak ≤ (

β + nKα
)2
ak−1 ≤ · · · ≤ (

β + nKα
)k+1

a0. (2.17)

This means {xk} is a Cauchy sequence with respect to norm ‖ · ‖2. Therefore, {xk} is a Cauchy
sequence with respect to norm ‖ · ‖p. Therefore, we see that {xk} has a limit point in PC(R,E),
say u. It is easy to prove that u is the fixed point ofA in PC(R,E). The uniqueness of the fixed
point is obvious. This completes the proof of Theorem 2.2.

2.2. Existence and Uniqueness of the Periodic Solution

In order to show the existence of periodic solutions of (1.1), we assume that the function f is
fulfilling the following conditions:

(Hf) there exist Li > 0 (i = 1, 2, . . . , m) such that for any xi, yi ∈ R,

∣∣f(t, x1, . . . , xm) − f
(
t, y1, . . . , ym

)∣∣ ≤ m∑
i=1

Li

∣∣xi − yi

∣∣, (2.18)

(Hfτ) for all t ∈ [0, T], t ≥ τi(t) ≥ 0 (i = 1, 2, . . . , m).

Theorem 2.3. Suppose (Hf) and (Hfτ) hold. Then the equation (1.1) has a unique T -periodic
solution in C[0, T].

Proof. By direction computations, we see that ϕ(t) is the T -periodic solution if and only if ϕ(t)
is solution of the following integral equation:

x(t) =
eλT

eλT − 1

∫ t

t−T
e−λ(t−s)

[
(λ − a(s))x(s) + f(s, x(s − τ1(s)), . . . , x(s − τm(s)))

]
ds, (2.19)

where λ = max{|a(t)| : t ∈ [0, T]}.
Thus, we would transform the existence of periodic solution of (1.1) into a fixed point

problem. Considering the map A : PC(R,R) → PC(R,R) defined by, for t ∈ [0, T],

(Ax)(t) =
eλT

eλT − 1

∫ t

t−T
e−λ(t−s)

[
(λ − a(s))x(s) + f(s, x(s − τ1(s)), . . . , x(s − τm(s)))

]
ds.

(2.20)

Then, u is a T -periodic solution of (1.1) if and only if u is a fixed point of the operator A in
PC(R,R).
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At this stage, we should check that A fulfill all conditions of Theorem 2.2. In fact, for
x, y ∈ PC(R,R), by assumption (Hf), we have

∣∣(Ax)(t) − (
Ay

)
(t)

∣∣

≤ eλT

eλT − 1

∫ t

t−T
e−λ(t−s)

[
2λ

∣∣x(s) − y(s)
∣∣ + m∑

i=1

Li

∣∣x(s − τi(s)) − y(s − τi(s))
∣∣
]
ds

≤ LeλT

eλT − 1

∫ t

t−T
e−λ(t−s)

[
m+1∑
i=1

∣∣x(ηi(s)) − y
(
ηi(s)

)∣∣
]
ds,

(2.21)

where ηi(s) = s − τi(s) (i = 1, 2, . . . , m), ηm+1(s) = s and L = max{2λ, L1, . . . , Lm}.
Thus, the condition (H̃1) in Theorem 2.2 holds for β = 0, n = m + 1, and G(t, s) =

(LeλT/(eλT − 1))e−λ(t−s).
On the other hand, we choose a constant c > 0 such that 0 < (m + 1)(LeλT/(eλT −

1))(1/(c + λ)) < 1. Take α = (LeλT/(eλT − 1))(1/(c + λ)) and y(t) = ect for t ∈ [0, T], then
y(ηi(t)) ≤ y(t), and we have

∫ t

t−T
G(t, s)y(s)ds =

∫ t

t−T

LeλT

eλT − 1
e−λ(t−s)ecsds ≤ αy(t). (2.22)

This implies the condition (H̃2) in Theorem 2.2 holds for K = 1.
Following Theorem 2.2, we conclude that the operator A has a unique fixed point, say

ϕ, in PC(R,R). Thus, (1.1) has a unique T -periodic solution in PC(R,R). This completes the
proof of Theorem 2.3.

3. Application to the Hematopoiesis Model

In this section, we consider the periodic solution of following hematopoiesis model with
delays:

x′(t) = −a(t)x(t) +
m∑
i=1

bi(t)
1 + xn(t − τi(t))

, (3.1)

where a, bi, τi ∈ C(R,R+) are T -periodic functions, τi satisfies conditions (Hfτ), and n ≥ 1 is a
real number (i = 1, . . . , m).

Theorem 3.1. The delayed hematopoiesis model (3.1) has a unique positive T -periodic solution.

Proof. Let C+
T = {y : y ∈ CT and y(t) ≥ 0 for t ≥ 0}, define the operator F : C+

T → C+
T by

(Ax)(t) =
eλT

eλT − 1

∫ t

t−T
e−λ(t−s)

[
(λ − a(s))x(s) +

m∑
i=1

bi(s)
1 + xn(s − τi(s))

]
ds. (3.2)
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It is easy to show that A is welldefined. Furthermore, since the function

g(t, x1, . . . , xm) =
m∑
i=1

bi(t)
1 + xn

i

for xi ∈ R+ (3.3)

with the bounded partial derivative

∂g(t, x1, . . . , xm)
∂xi

≤ max

{
bi(t)nxn−1

i

1 + xn
i

: t ∈ [0, T], 1 ≤ i ≤ m

}
, (3.4)

then it is easy to prove that the condition (Hf) holds. Following the similar arguments of
Theorem 2.3, we claim that the operatorA has a unique fixed point in C+

T , which is the unique
positive T -periodic solution for equation (3.1). This completes the proof of Theorem 3.1.

Remark 3.2. Theorem 3.1 exhibits that the periodic coefficients hematopoiesis model admits a
unique positive periodic solution without additional restriction. Also, Theorem 3.1 improves
Theorem 2.1 in [2] and Corollary 1 in [3].
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