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It is shown that the convergence of the multistep iterative process with errors is obtained for

uniformly continuous ®-hemicontractive mappings in real Banach spaces. We also revise the
problems of C. E. Chidume and C. O. Chidume (2005).

1. Introduction

Let E be a real Banach space with norm || - || and let E* be its dual space. The normalized
duality mapping J : E — 2F is defined by

J(x) = {f €E: (x,f)=|x|P = ||f||2}, Vx € E, (1.1)

where (-, -) denotes the generalized duality pairing. The single-valued-normalized duality
mapping is denoted by ;.

A mapping T with domain D(T) and range R(T) in E is said to be strongly
pseudocontractive if there is a constant k € (0,1), and forall x,y € D(T), Jj(x-y) € J(x-y)
such that

(Tx =Ty, j(x~y)) <kllx-y|” (1.2)
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The mapping T is called ®-pseudocontractive if there exists a strictly increasing continuous
function @ : [0, +o0) — [0, +o0) with @(0) = 0 such that

(Tx =Ty, j(x~y)) < [lx -yl - @(|lx - yl) (1.3)

holds for all x,y € D(T). It is well known that the strongly pseudocontractive mapping must
be the ®-pseudocontractive mapping in the special case in which ®(t) = (1 - k)#?, but the
converse is not true in general. That is, the class of strongly pseudocontractive mappings is
a proper subclass of the class of ®-pseudocontractive mappings. Let F(T) = {x € D(T) :
Tx = x}#0. If the inequalities (1.2) and (1.3) hold for any x € D(T) and y € F(T), then
the corresponding mapping T is called strongly hemicontractive and ®-hemicontractive,
respectively.

Let N(T) = {x € E : Tx = 0}#0. An operator T : D(T) C E — E is called
strongly quasiaccretive, ®-quasiaccretive if and only if I — T is strongly hemicontractive,
@-hemicontractive, respectively, where I denotes the identity mapping on E. That is, if T
is d-quasi-accretive, then N (T) # @ and there exists a strictly increasing continuous function
@ :[0,+0) — [0, +00) with @(0) = 0 such that

(Tx =Ty, j(x-y)) 2O(||x-y|) (1.4)

holds for all x € D(T) and y € N(T). Many authors have studied extensively the strongly
convergence problems of the iterative algorithms for the class of operators.

In 2004, Rhoades and Soltuz [1] introduced the multistep iteration as follows.

Let D be a nonempty closed convex subset of real Banach space Eand letT : D — D
be a mapping. The multistep iteration {x,} is defined by

xo0 € D,

y,’fl = <1 - bffl)xn + b,’[flTxn, n>0,p>2,
(1.5)
v = (1-b8)xu + BTy, k=p-2,p-3,...,2,1,

n s

Xpe1 = (1 —ap)x, + anTy}l, n>0,

where {a,}, {b’,; } (k=1,2,...,p-1)in [0, 1] satisfy certain conditions. Obviously, the iteration
defined above is generalization of Mann, Ishikawa, and Noor iterations.

Inspired and motivated by the work of Xu [2] and the iteration above, we discuss the
following multistep iteration with errors:

x9 € D,

yﬁ‘l = <1 - dZ_1>xn w0 Tx, + Pl n>0, p>2,
(1.6)
Yn = <1—b,l§—d’,§>xn + BTy + dfwk, k=p-2,p-3,...,2,1,

n n’s

1
Xpe1 = (1 —ay —cn)xy + ay Ty, + chuty, n2>0,

where {an},{cn},{b’;},{d,’;} (k =1,2,...,p—-1)in [0,1] with a, + ¢, < 1, b,’j +df <1,
{un}, {wk} (k=1,2,...,p - 1) are the bounded sequences of D.
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In 2005, C. E. Chidume and C. O. Chidume [3] proved the convergence theorems
for fixed points of uniformly continuous generalized ®-hemicontractive mappings and
published in [3]. However, there exists a gap in the proof course of their theorems.

The aim of this paper is to show the convergence of the multistep iteration with errors
for fixed points of uniformly continuous ®-hemicontractive mappings and revise the results
of C. E. Chidume and C. O. Chidume [3]. For this, we need the following Lemmas.

Lemma 1.1 (see [4]). Let E be a real Banach space and let | : E — 2E" be a normalized duality
mapping. Then

[l +y|1* < 1%l +2(y, j(x + ), (1.7)

forall x,y € E and for all j(x +y) € J(x +y).

Lemma 1.2 (see [5]). Let {6}, {An )i and {yn} o be three nonnegative real sequences and let
@ : [0,400) — [0,+00) be a strictly increasing and continuous function with ®(0) = 0 satisfying
the following inequality:

62

n+1

< 631 = 4 @(6p41) + Y0, n 20, (1.8)

where Ay, € [0,1] with 377 Ay = 00, Yn = 0(Ay). Then 6, — 0asn — oo.

2. Main Results

Theorem 2.1. Let E be an arbitrary real Banach space, D a nonempty closed convex subset of E,
and T : D — D a uniformly continuous ®-hemicontractive mapping with q € F(T)#@. Let
{an}, (b5}, {cn), (dX) be real sequences in [0, 1] and satisfy the conditions:

(i) an+cy <1, b +dk <1, k=1,2,...,p-1;

(ii) an,cn, bk, dk — 0asn — o, k=1,2,...,p-1;
(iii) ¢p = 0(an), Xy An = 0.

For some xj € D, let {u,}, {wl}, {w?},..., {wf;_1 } be any bounded sequences of D, and
let {x,} be the multistep iterative sequence with errors defined by (1.6). Then (1.6) converges

strongly to the fixed point g of T.

Proof. Since T : D — D is ®-hemicontractive mapping, then there exists a strictly increasing
continuous function @ : [0, +00) — [0, +o0) with @(0) = 0 such that

(Tx=Tq,j(x - q)) < [|x = all" - @([lx - qll), @1

forx € D, g € F(T), thatis
(Tx —x,j(x - q)) < ~O(||x - q])- @)

Choose some xp € D and xo#Txp such that ||xg — Txo|| - ||xo — g|| € R(®) and denote that
1o = ||x0 = Txo| - |x0 — gl|, R(®) is the range of ®. Indeed, if ®(r) — +oo0 asr — +oo, then
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79 € R(D); if sup{D(r) : r € [0,+00)} = 11 < +oo with 11 < 1y (here, we only give a example.
Ifrg =2, () =t/(1+1t), then sup{®D(r) : r € [0,+0)} =1 =1 <2 = 1), then for g € D,
there exists a sequence {w,} in D such that w, — gasn — oo with w, #q. Furthermore,
we obtain that Tw, — Tgasn — oo.So {w, — Tw,} is the bounded sequence. Hence, there
exists natural number ng such that ||w, — Tw,| - |w, - q|| < r1/2 for n > ny, then we redefine
X0 = Wy, and [|xg — Txol| - [|x0 — g|| € R(®). This is to ensure that @' (ry) is defined well.

Step 1. We show that {x,} is a bounded sequence.

Set R = @1 (r), then from above formula (@), we obtain that ||xo - g|| < R. Denote
Bi={xeD:|x-q| <R}, B,={xeD:|x-q| <2R}. (2.2)
Since T is the uniformly continuous, so T is a bounded mapping. We let

M = sup{||Tx - g|| +1}

x€B,

p-1
wy, —q

1
wn_q|

} sup s ~all} }

(2.3)

+max{31ip{|

Jsup|

-

Next, we want to prove that x, € B;. If n = 0, then xo € B;. Now, assume that it holds
for some n, that is, x,, € B;. We prove that x,,1 € B;. Suppose that it is not the case, then
llxs+1 — gll > R > R/2. Since T is uniformly continuous, then for €y = ®(R/2)/8R, there exists
6 > 0 such that ||Tx — Ty|| < e when ||x — y|| < 6. Denote

(2.4)

R ®(R/2) 5 }

o= mm{l’ M’ 8R(M + 2R)’ 2M + 4R

Since a,, bX,c,,dX — 0asn — oo fork =1,2,...,p—1. Without loss of generality, we assume
that 0 < a,, bk, c,, dX < 7y for any n > 0. Since ¢, = o(ay), let ¢, < a, 7. Now, estimate ||k — |

fork=1,2,...,p - 1. By using (1.6), we have

=g < (1t =) =+ =+ ol ]
<R+moM (2.5)
< 2R,

then y,’fl € B,. Similarly, we have

7o (1l

< R+19M (26)

Ty,’f1 -q| + d,’fz
| |

p-2
Wy  — q“

< 2R,
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then yfz_2 € By, .... We have

v -al| < (1-0% -t - gl +

<R+nM (2.7)

Ty - q|| + 4

1
wn_q”

< 2R,

then y} € B,. Therefore, we get

vl < (1 - o)~ all + | T2~ ]+ calion -l
< R+1tyM (2’8)

<2R.

And we have

Ty;lz = X || + Culltn — xal|

12n+1 — xn|| < an

< a,(
<m(]

Ty = q|| + [l = all) + ex(flun = gl + |l - 4

T3 g + Nl - qll) + 2l gl

< 19(M +2R)
< (I)(R/Z),
- B8R
xn+1—y,11 <ay Ty,lz—xn +Cn||un_xn||+b}1 Ty,zl—x,, +d711 w}l—xn
< a,( T!/i—q”+||xn—fJ||>+Cn(||”n—q||+||xn—q||)

+bil<
<n[(|| Ty - af| + llun = all + 20l 4l )

v ( )~ g + 2}~ 4 )]

< TO(ZM + 4R)

T2~ a + Il —all) + i

wh~q] + % - qll)

TyZ - q|| +

<6.
(2.9)

Further, by using uniform continuity of T, we have

Txn1 —Tyh| < ®(§R/ 2). (2.10)
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In view of Lemma 1.1 and the above formulas, we obtain

w1 =g

2

= ” (xn—q) + an <Ty}l - xn> + Cp(tty — X)

< [|xn - q|I? +2an<Ty31 = %X,  (Xns1 = q)> +2¢n{Un — X, j(Xns1 = q))

< [l = qll* + 280 { T2 = X1 + X1 = %0 = Tt + Ty j (i1 = 4) )
+ 2Cu ||ty = Xull - || X012 — 4|

< [la = qll” = 2a2®([| 01 = ql1) + 2anlxner = xall - [ 01 = 4

+2a,|Txpm — Ty}l

lxnia = qll +2en([[n = gl + [0 = gl1) |21 4]

R ®(R/2 ®(R/2
< ||xn—q||2—2an(1)<5>+2an (SR/ ) 2R +2a, (SR/ ) 2R +2a,7o(R + M)2R

R D(R/2
< ||xn - ‘1"2 - an®<5> + 2anm(1{ + M)ZR

R
< -alf - Zo(3) <,
(2.11)

which is a contradiction. Hence, x,,.1 € By, thatis, {x,} is a bounded sequence; it leads to that
{y:}, {y2),..., (¥} are all bounded sequences as well.

Step 2. We want to prove ||x, —g|| — 0Oasn — oo.

Since a,,, b’,ﬁ, cn,d’rf — Qasn — ooand {x,}, {y}l} are bounded. From (2.9), we obtain

Xnsl = Y =0. (2.12)

lim [|xp41 — 24| =0, lim | =0, lim ”Txn+1 - Ty,l1
n—aoo n—aoo

n—oo

By (2.11), we have

2
201 = qll* = ” (xn—q) + an<Ty31 - xn) + Cn(thn = Xn)
< Nln = all” + 280 (T = 2, (1 = 4) ) + 260 (14 = X, (X1 = ) )

< lxa—qll* + 2an<Txn+1 = Xns1 + X1 = X = Tope1 + Ty, j (X1 = q)>

+2¢p||un — x| - ”xn+1 - q”
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<l = qlI” = 28, (|1 = ) + 200111 = 2l - || 201 = g}

28, Txps = T8 | It = g1l + 26l =l - 01~ g

= |20 = qll” = 28,@([| 1 — q]|) + 0(an),
(2.13)

where 2a,| X1 = %l | X1 =gl + 2@ | T X1 = Tyl X001 =gl +2¢n |t = 2al| - %041 = g1l = 0(an).
By Lemma 1.2, we obtain that lim,, _, ,[|x, — g|| = 0. O

Theorem 2.2. Let E be an arbitrary real Banach space and let T : E — E be a uniformly continuous
®-quasi-accretive operator with g € N(T) #0. Let {a,}, {bk}, {ca}, {dX} be real sequences in [0,1]
and satisfy the conditions:

() an+cy <1, bE+dk <1, k=1,2,...,p-1;

(ii) an,cn, bk, dk — 0asn — o, k=1,2,...,p-1;
(iii) cn = 0(an), Dpp An = 0.

For some xo € E, let {u,}, {wl}, {w?},..., {wpfl} be any bounded sequences of E, and let {x,} be

the multistep iterative sequence with errors defined by

xo € D,

v = (1 N dﬁ_1>xn +b Sx, +dh W, >0, p>2,
(2.14)
vk = (1 — bk —df ), + BRSyET + diwl, k=p-2,p-3,...,2,1,

1
Xne1 = (1= ay — cp)xy + anSy, + cyty, n >0,

where S : E — E is defined by Sx = x — Tx for all x € E. Then (2.14) converges strongly to the fixed
point q of S.

Proof. We find easily that S is a uniformly continuous ®-hemicontractive. Then the
conclusion of Theorem 2.2 is obtained directly by Theorem 2.1. O

Remark 2.3. In Theorems 2.1 and 2.2, if b,’; = d’n‘ =0(k=p-1,p-2,...,2,1), then, the
conclusions are as follows.

Corollary 2.4. Let E be an arbitrary real Banach space, D a nonempty closed convex subset of E, and
T : D — D a uniformly continuous ®-hemicontractive mapping with q € F(T) #0. Let {a,}, {cn}
be real sequences in [0,1] and satisfy the conditions (i) a, + ¢, < 1; (ii) ap,¢cn — 0asn — oo;
(iii) ¢n = o(ay) and 357 a, = co. For some xy € D, let {u,} be any bounded sequence of D, and let
{xn} be Mann iterative sequence with errors defined by xp1 = (1—a,—cn)xy+anTxy+cptty, n>0.
Then {x,} converges strongly to the fixed point q of T.

Corollary 2.5. Let E be an arbitrary real Banach space and let T : E — E be a uniformly continuous
D-quasi-accretive operator with g € N(T) #0. Let {a,}, {cn} be real sequences in [0, 1] and satisfy
the conditions (i) an + ¢, < 1; (ii) an,cn — O0asn — oo; (iil) ¢, = 0(ay,) and 3,7, a, = oo. For
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some xo € E, let {u,} be any bounded sequence of E, and let {x,} be Mann iterative sequence with
errors defined by xy.1 = (1 — a, — )Xy + aySxy + Cyuty, 1 > 0. where S : E — E is defined by
Sx =x—Tx forall x € E. Then {x,} converges strongly to the fixed point q of S.

Remark 2.6. 1t is mentioned to notice that there exists a serious shortcoming in the proof
process of Theorem 2.3 of [3]. That is, Mic, < (D(€)/4)a, does not hold in line 15 of Claim
2 of page 552. The reason is that the conditions Y,7” ¢, < +oo and >, b, = +oo, b, — 0as
n — oo can not obtain ¢, = o(b,).

Counterexample, let the iteration parameters be a, = 1-b,, —c,, by, ¢, in the following;:

1111111111 1 1 1 1 1 1
{en) 0,7, 5, = 50 =50 =5 o5 250 T 5 o3 T g (2.15)

1 1 1 1 1 1 1 1 1
172718277777 2327 2427 257 262”777 3527 36" 372"

Then, 500 by = +00, Yot cn <2 370,(1/n%) < +oo, but ¢, # 0(by,).

Application 1. Let E = R be a real number space with the usual norm and D = [0, +c0). Define
T:D — Dby

x3

2.16
1+ x2 ( )

Tx =

for all x € D. Then T is uniformly continuous with F(T) = {0}. Define @ : [0, +o0) — [0, +00)
by

t2

_ 2.17
1+ (217)

D(t) =

then @ is a strictly increasing function with ®(0) = 0. For all x € D, g € F(T), we obtain that

<Tx—Tq,j<x—q>>=< < —o,j<x—o>>

1+ x2
x3
"\ 2"
B x* (2.18)
T 1+x2
2
S Ll
1+ |x-q|*

= |x=q” - @(|x-4q]).
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Therefore, T is a ®-hemicontractive mapping. Set

1 3 1 | B a
an =, cn——(n+2)2, b"_d""n+2’ k=12,...,p-1 (2.19)
foralln > 0.
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