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Let A be a ternary Banach algebra. We prove that if A has a left-bounded approximating set, then A
has a left-bounded approximate identity. Moreover, we show that if A has bounded left and right
approximate identities, then A has a bounded approximate identity. Hence, we prove Altman’s
Theorem and Dixon’s Theorem for ternary Banach algebras.

1. Introduction

Ternary algebraic operations were considered in the 19th century by several mathematicians
such as Cayley [1] who introduced the notion of cubic matrix which in turn was generalized
by Kapranov et al. in [2]. The comments on physical applications of ternary structures can be
found in [3–7].

A nonempty set G with a ternary operation [·, ·, ·] : G × G × G → G is called a ternary
groupoid and denoted by (G, [·, ·, ·]). The ternary groupoid (G, [·, ·, ·]) is called a ternary
semigroup if the operation [·, ·, ·] is associative, that is, if

[[
x, y, z

]
, u, v

]
=
[
x,

[
y, z, u

]
, v

]
=
[
x, y, [z, u, v]

]
(1.1)
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holds for all x, y, z, u, v ∈ G. A ternary semigroup (G, [·, ·, ·])) is a ternary group if for all
a, b, c ∈ G, there are x, y, z ∈ G such that

[x, a, b] =
[
a, y, b

]
= [a, b, z] = c, (1.2)

where the elements x, y, z are uniquely determined (see [8]).
A ternary Banach algebra is a complex Banach space A, equipped with a ternary

product (x, y, z) �→ [x, y, z] of A3 into A, which is associative in the sense that
[[x, y, z], u, v] = [x, y, [z, u, v]] = [x, [y, z, u], v] and satisfies ‖[x, y, z]‖ ≤ ‖x‖‖y‖‖z‖. An
element e ∈ A is an identity of A if x = [x, e, e] = [e, e, x] for all x ∈ A.

Assume that A is a ternary Banach algebra a bounded net (eα, fα) is a left-bounded
approximate identity for A if limα[eα, fα, a] = a for all a ∈ A. Similarly, a bounded net
(eα, fα) is a right-bounded approximate identity for A if limα[a, eα, fα] = a for all a ∈ A.
Also, (eα, fα) is a middle-bounded approximate identity for A if limα[eα, a, fα] = a for all
a ∈ A. A net (eα, fα) is a bounded approximate identity for A if (eα, fα) is a left-, right-,and
middle-bounded approximate identity for A.

For ternary Banach algebra A, a set U × V is said to be an approximating set for A (U
and V are bounded subsets of A) if for every ε > 0, and every a ∈ A, there exist u ∈ U, v ∈ V
such that ‖[u, v, a] − a‖ < ε, ‖[u, a, v] − a‖ < ε, ‖[a, u, v] − a‖ < ε.

Existence of bounded approximating set for binary Banach algebras guarantees
existing of bounded approximate identity (Altman’s Theorem [9, Proposition 2, page 58] or
[10]) and also this notion generalized for commutative Fréchet algebras [11]. For normed
algebra A with left-bounded approximate identity and right-bounded approximate identity,
Dixon [12] proved that A has a bounded approximate identity [13, Proposition 2.9.3].

In this paper, we prove Altman’s Theorem and Dixon’s Theorem for ternary Banach
algebras. By “◦′′, we mean the quasiproduct between elements x, y of binary algebraAwhich
are defined by x ◦ y = x + y − xy.

2. Main Results

We start our work with the following theoremwhich can be regarded as a version of Altman’s
Theorem for ternary Banach algebras.

Theorem 2.1. Let A be a ternary Banach algebra and U,V be bounded subsets of A such that for
given a ∈ A and ε > 0 there are u ∈ U and v ∈ V , ‖[u, v, a]−a‖ < ε. ThenA possess a left-bounded
approximate identity.

Proof. Let ε > 0, and set

W = UV ◦UV = {(u1v1) ◦ (u2v2) : u1, u2 ∈ U, v1v2 ∈ V }. (2.1)

For proof of theorem, it is sufficient to show that for every finite subset F ⊂ A, there
exists w = uv ◦ st ∈ W such that ‖[uv ◦ st, a] − a‖ < ε for every a ∈ F.
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Step 1. Let F = {a} be singleton. Then, there are u ∈ U and v ∈ V such that ‖uv‖ < M, and

‖[u, v, a] − a‖ <
ε

(M + 1)
. (2.2)

Letting w = uv ◦ uv, then

‖[uv ◦ uv, a] − a‖ = ‖[u, v, [u, v, a] − a] − ([u, v, a] − a)‖ < ε. (2.3)

Step 2. Let F = {a1, a2}. There is a (u1, v1) ∈ U × V such that ‖[u1, v1, a1] − a1‖ < ε/(1 +M),
and for [u1, v1, a2] − a2 ∈ A there is a (u2, v2) ∈ U × V such that

‖[u2, v2, [u1, v1, a2] − a2] − ([u1, v1, a2] − a2)‖ < ε. (2.4)

Put w1 = u1v1 and w2 = u2v2. Then

‖[w2 ◦w1, ai] − ai‖ = ‖[u2, v2, ai] + [u1, v1, ai] − [u2, v2, [u1, v1, ai]] − ai‖
= ‖[u2, v2, ai − [u1, v1, ai]] − (ai − [u1, v1, ai])‖ < ε,

(2.5)

for i = 1, 2.

Step 3. Now, suppose that obtained results in Steps 1 and 2 are true for i = 1, 2, . . . , n. Let
F = {a1, a2, . . . , an+1}, and let K = max{‖ai‖ : i = 1, . . . , n}. There exist w1 ◦w2 ∈ W such that
‖ai − [w2 ◦w1, ai]‖ < ε/3(M+ 1)2, for i = 1, 2, . . . , n, wherew1 andw2 are defined as in Step 2.
Also, we can choose α1 = θ1η1 and α2 = θ2η2 such that α1 ◦ α2 ∈ W ,

‖[α2 ◦ α1, w2 ◦w1] −w2 ◦w1‖
=
∥∥[θ2, η2, w2 ◦w1 −

[
θ1, η1, w2 ◦w1

]] − (
w2 ◦w1 −

[
θ1, η1, w2 ◦w1

])∥∥

<
ε

3K
,

(2.6)

and ‖[α2 ◦ α1, an+1] − an+1‖ < ε. Then for every j = 1, 2, . . . , n we have

∥∥[α2 ◦ α1, aj

] − aj

∥∥ ≤ ∥∥aj −
[
w2 ◦w1, aj

]∥∥ +
∥∥[α2 ◦ α1, aj

] − [
α2 ◦ α1,

[
w2 ◦w1, aj

]]∥∥

+
∥∥[α2 ◦ α1,

[
w2 ◦w1, aj

]] − [
w2 ◦w1, aj

]∥∥

≤
∥∥∥aj−[w2◦w1,aj ]

∥∥∥ + ‖α2 ◦ α1‖
∥∥aj −

[
w2 ◦w1, aj

]∥∥

+ ‖[α2 ◦ α1, w2 ◦w1] −w2 ◦w1‖
∥∥aj

∥∥

< ε.

(2.7)
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Let F(A) be the collection of all finite subsets of A and Λ = N × N × F(A). Then Λ is a
direct set with the following partial order:

(n1, m1, F1) ≤ (n2, m2, F2) iff F1 ⊆ F2, n1 ≤ n2, m1 ≤ m2. (2.8)

Now, we can choose a bounded approximate identity (eλ, fλ)λ∈Λ for A.

Now, we prove Dixon’s Theorem for ternary Banach algebras. Hence, we prove that if
a ternary Banach algebra has both left- and right-bounded approximate identities, then it has
a bounded approximate identity.

Theorem 2.2. Let A be a ternary Banach algebra and (eα, fα) and (eβ, fβ) be bounded left and right
approximate identities of A, respectively. Then A has a bounded approximate identity.

Proof. Consider (cα,β, dα,β) = (eαfα ◦ eβfβ, eβfβ ◦ eαfα). We claim that (cα,β, dα,β) is a bounded
approximate identity for A. Boundedness of mentioned net is clear. Therefore, we have to
show that (cα,β, dα,β) is a right, left, and middle approximate identity for A.

Step 1. (cα,β, dα,β) is a left approximate identity. Because

∥∥[eαfα ◦ eβfβ, eβfβ ◦ eαfα, a
] − a

∥∥

=
∥∥[eαfα, eβfβ ◦ eαfα, a

]
+
[
eβfβ, eβfβ ◦ eαfα, a

] − [
eαfαeβfβ, eβfβ ◦ eαfα, a

] − a
∥∥

≤ ∥∥[eαfα, eαfα, a
] − a

∥∥ +
∥∥[eαfα, eβfβ, a

] − [
eαfαeβfβ, eαfα, a

]∥∥

+
∥∥[eαfαeβfβ, eαfα, a

] − [
eβfβ, eαfα, a

]∥∥ +
∥∥[eαfαeβfβ, eβfβ, a

] − [
eβfβ, eβfβ, a

]∥∥

+
∥∥[eαfαeβfβ, eβfβeαfα, a

] − [
eβfβeβfβ, eαfα, a

]∥∥

≤ ∥∥[eα, fα,
[
eα, fα, a

]] − [
eα, fα, a

]∥∥ +
∥∥[eα, fα, a

] − a
∥∥ +

∥∥eαfα
∥∥∥∥eβfβ

∥∥∥∥a − [
eα, fα, a

]∥∥

+
∥∥[eα, fα,

[
eβfβ, eαfα, a

]] − [
eβfβ, eαfα, a

]∥∥

+
∥∥[eα, fα,

[
eβfβ, eβfβ, a

]] − [
eβfβ, eβfβ, a

]∥∥

+
∥∥[eα, fα,

[
eβfβ, eβfβeαfα, a

]] − [
eβfβeβfβ, eαfα, a

]∥∥

≤ 5ε
MN + 1

+MN
ε

MN + 1
< ε,

(2.9)

where ‖eαfα‖ ≤ ‖eα‖‖fα‖ ≤ M, and ‖eβfβ‖ ≤ ‖eβ‖‖fβ‖ ≤ N.
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Step 2. (cα,β, dα,β) is a right approximate identity because

∥∥[a, eαfα ◦ eβfβ, eβfβ ◦ eαfα
] − a

∥∥

=
∥∥[a, eαfα, eβfβ ◦ eαfα

]
+
[
a, eβfβ, eβfβ ◦ eαfα

] − [
a, eαfαeβfβ, eβfβ ◦ eαfα

] − a
∥∥

≤ ∥∥[a, eβfβ, eβfβ
] − a

∥∥ +
∥∥[a, eαfα, eβfβ

] − [
a, eαfαeβfβ, eβfβ

]∥∥

+
∥∥[a, eαfαeβfβ, eαfα

] − [
a, eαfα, eαfα

]∥∥ +
∥∥[a, eβfβ, eβfβeαfα

] − [
a, eβfβ, eαfα

]∥∥

+
∥∥[a, eαfαeβfβ, eβfβeαfα

] − [
a, eαfα, eβfβeαfα

]∥∥

≤ ∥∥[[a, eβ, fβ
]
, eβ, fβ

] − [
a, eβ, fβ

]∥∥ +
∥∥[a, eβ, fβ

] − a
∥∥

+
∥∥[a, eα, fα

] − [[
a, eα, fα

]
, eβ, fβ

]∥∥∥∥eβfβ
∥∥ +

∥∥[[a, eα, fα
]
, eβ, fβ

] − [
a, eα, fα

]∥∥∥∥eαfα
∥∥

+
∥∥[[a, eβ, fβ

]
, eβ, fβ

] − [
a, eβ, fβ

]∥∥∥∥eαfα
∥∥

+
∥∥[[a, eαfα, eβfβ

]
, eβfβ

] − [
a, eαfα, eβfβ

]∥∥∥∥eαfα
∥∥

≤ 2ε
MN + 1

+
3Mε

MN + 1
+

Nε

MN + 1
< ε.

(2.10)

Step 3. By the similar method, we show that the net (cα,β, dα,β) is a middle approximate
identity:

∥∥[eαfα ◦ eβfβ, a, eβfβ ◦ eαfα
] − a

∥∥

=
∥∥[eαfα, a, eβfβ ◦ eαfα

]
+
[
eβfβ, a, eβfβ ◦ eαfα

] − [
eαfαeβfβ, a, eβfβ ◦ eαfα

] − a
∥∥

≤ ∥∥[eαfα, a, eβfβ
] − a

∥∥ +
∥∥[eαfα, a, eαfα

] − [
eαfα, a, eβfβeαfα

]∥∥

+
∥∥[eαfαeβfβ, a, eβfβ

] − [
eβfβ, a, eβfβ

]∥∥ +
∥∥[eαfαeβfβ, a, eαfα

] − [
eβfβ, a, eαfα

]∥∥

+
∥∥[eαfαeβfβ, a, eβfβeαfα

] − [
eβfβ, a, eβfβeαfα

]∥∥

≤ ∥∥[eα, fα,
[
a, eβ, fβ

]] − [
a, eβ, fβ

]∥∥ +
∥∥[a, eβ, fβ

] − a
∥∥

+
∥∥[eα, fα, a

] − [[
eα, fα, a

]
, eβ, fβ

]∥∥∥∥eαfα
∥∥

+
∥∥[eα, fα,

[
eβfβ, a, eβfβ

]] − [
eβfβ, a, eβfβ

]∥∥

+
∥∥[eα, fα,

[
eβfβ, a, eαfα

]] − [
eβfβ, a, eαfα

]∥∥

+
∥∥[eα, fα,

[
eβfβ, a, eβfβeαfα

]] − [
eβfβ, a, eβfβeαfα

]∥∥

≤ 5ε
MN + 1

+
Mε

MN + 1
< ε.

(2.11)

This completes the proof of theorem.
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