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An adaptive pseudospectral method is presented for solving a class of multiterm fractional
boundary value problems (FBVP) which involve Caputo-type fractional derivatives. The
multiterm FBVP is first converted into a singular Volterra integrodifferential equation (SVIDE).
By dividing the interval of the problem to subintervals, the unknown function is approximated
using a piecewise interpolation polynomial with unknown coefficients which is based on
shifted Legendre-Gauss (ShLG) collocation points. Then the problem is reduced to a system of
algebraic equations, thus greatly simplifying the problem. Further, some additional conditions
are considered to maintain the continuity of the approximate solution and its derivatives at the
interface of subintervals. In order to convert the singular integrals of SVIDE into nonsingular
ones, integration by parts is utilized. In the method developed in this paper, the accuracy can
be improved either by increasing the number of subintervals or by increasing the degree of the
polynomial on each subinterval. Using several examples including Bagley-Torvik equation the
proposed method is shown to be efficient and accurate.

1. Introduction

Due to the development of the theory of fractional calculus and its applications, such as
in the fields of physics, Bode’s analysis of feedback amplifiers, aerodynamics and polymer
rheology, and so forth, many works on the basic theory of fractional calculus and fractional
order differential equations have been established [1–3].

In general, the analytical solutions for most of the fractional differential equations are
not readily attainable, and thus the need for finding efficient computational algorithms for
obtaining numerical solutions arises. Recently, there have been many papers dealing with
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the solutions of initial value and boundary value problems for linear and nonlinear fractional
differential equations. These methods include finite difference approximation method [4],
collocation method [5, 6], the Adomian decomposition method [7, 8], variational iteration
method [9–12], operational matrix methods [13–16], and homotopy methods [17, 18]. In
[19] suitable spline functions of polynomial form are derived and used to solve linear and
nonlinear fractional differential equations. The authors of [20] have investigated the existence
and multiplicity of positive solutions of a nonlinear fractional differential equation initial
value problem. Furthermore, some physical and geometrical interpretations of fractional
operators and fractional differential equations have been of concern to many authors
[12, 21, 22].

In the present paper, we intend to introduce an efficient adaptive pseudospectral
method for multiterm fractional boundary value problems (FBVP) of the form

F
(
x, y(x), Dα1y(x), . . . , Dαmy(x)

)
= 0, x ∈ [0, L], (1.1)

subject to

Hr

(
y(ξ0), . . . , y(l)(ξ0), . . . , y(ξl), . . . , y(l)(ξl)

)
= 0, r = 0, 1, . . . , l, (1.2)

where F can be nonlinear in general, 0 < α1 < α2 < · · · < αm, l < αm ≤ l + 1, L ∈ R, Hr are
linear functions, the points ξ0, ξ1, . . ., ξl lie in [0, L], and Dαq denotes the Caputo-fractional
derivative of order αq, defined as follows [23]:

Dαqy(x) =
1

Γ
(
nq − αq

)
∫x

0

y(nq)(t)

(x − t)αq+1−nq
dt, nq =

[
αq
]
+ 1, q = 1, 2, . . . , m, (1.3)

where [αq] denotes the integer part of the real number αq. For details about the mathematical
properties of fractional derivatives, see [2].

In this method, the multi-term FBVP is first converted into a singular Volterra
integrodifferential equation (SVIDE). By dividing the interval of the problem to subintervals,
the unknown function is approximated using a piecewise interpolation polynomial with
unknown coefficients which is based on shifted Legendre-Gauss (ShLG) collocation points.
Then the problem is reduced to a system of algebraic equations using collocation. Further,
some additional conditions are considered to maintain the continuity of the approximate
solution and its first l derivatives at the interface of subintervals. The singular integrals
of SVIDE are converted into nonsingular ones by utilizing integration by parts and thus
greatly improve the accuracy and convergence rate of the approximate solution. The main
characteristics of themethod are that it converts the FBVP into a system of algebraic equations
which greatly simplifies it. In addition, in the method developed in this paper, the accuracy
can be improved either by increasing the number of subintervals or by increasing the degree
of the polynomial on each subinterval. The present adaptive pseudospectral method can be
implemented for FBVPs defined in large domains. Moreover, this new algorithm also works
well even for some solutions having oscillatory behavior. Numerical examples including
Bagley-Torvik equation subject to boundary conditions are also presented to illustrate the
accuracy of the present scheme. Finally, in order to have a physical understanding of
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fractional differential equations, the derivation of Bagley-Torvik equation is given in the
appendix.

The outline of this paper is as follows. In Section 2, some basic properties of Legendre
and shifted Legendre polynomials, which are required for our subsequent development,
are first presented. Piecewise polynomials interpolation based on ShLG points and its
convergence properties are then investigated, and finally the adaptive pseudospectral
method for FBVPs is explained. Section 3 is devoted to some numerical examples. In Section 4,
a brief conclusion is given. The appendix is given which consists of the derivation of Bagley-
Torvik equation.

2. The Adaptive Pseudospectral Method for FBVPs

In this section we drive the adaptive pseudospectral method based on ShLG collocation
points and apply it to solve the nonlinear multi-term FBVP (1.1)-(1.2).

2.1. Review of Legendre and Shifted Legendre Polynomials

The Legendre polynomials, Pi(z), i = 0, 1, 2, . . ., are the eigenfunctions of the singular Sturm-
Liouville problem

[(
1 − z2

)
P ′
i (z)

]′
+ i(i + 1)Pi(z) = 0. (2.1)

Also, they are orthogonal with respect to L2 inner product on the interval [−1, 1] with the
weight function w(z) = 1, that is,

∫1

−1
Pi(z)Pj(z)dz =

2
2i + 1

δij , (2.2)

where δij is the Kronecker delta. The Legendre polynomials satisfy the recursion relation

Pi+1(z) =
2i + 1
i + 1

zPi(z) − i

i + 1
Pi−1(z), (2.3)

where P0(z) = 1 and P1(z) = z. If Pi(z) is normalized so that Pi(1) = 1, then, for any i, the
Legendre polynomials in terms of power of z are

Pi(z) =
1
2i

[i/2]∑

k=0

(−1)k
(
i
k

)(
2i − 2k

i

)
zi−2k, (2.4)

where [i/2] denotes the integer part of i/2.
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The Legendre-Gauss (LG) collocation points −1 < z1 < z2 < · · · < zN−1 < 1 are the roots
of PN−1(z). No explicit formulas are known for the LG points; however, they are computed
numerically using existing subroutines. The LG points have the property that

∫1

−1
p(z)dz =

N−1∑

j=1

wjp
(
zj
)
, (2.5)

is exact for polynomials of degree at most 2N − 3, where

wj =
2

(
1 − z2j

)[
P ′
N−1

(
zj
)]2 , j = 1, 2, . . . ,N − 1, (2.6)

are LG quadrature weights. For more details about Legendre polynomials, see [24].
The shifted Legendre polynomials on the interval x ∈ [a, b] are defined by

P̂i(x) = Pi
(

1
b − a (2x − a − b)

)
, i = 0, 1, 2, . . . , (2.7)

which are obtained by an affine transformation from the Legendre polynomials. The set
of shifted Legendre polynomials is a complete L2[a, b]-orthogonal system with the weight
function w(x) = 1. Thus, any function f ∈ L2[a, b] can be expanded in terms of shifted
Legendre polynomials.

The ShLG collocation points a < x1 < x2 < · · · < xN−1 < b on the interval [a, b] are
obtained by shifting the LG points, zj , using the transformation

xj =
1
2
(
(b − a)zj + a + b

)
, j = 1, 2, . . . ,N − 1. (2.8)

Thanks to the property of the standard LG quadrature, it follows that for any polynomial p
of degree at most 2N − 3 on (a, b),

∫b

a

p(x)dx =
b − a
2

∫1

−1
p

(
1
2
[(b − a)z + a + b]

)
dz

=
b − a
2

N−1∑

j=1

wjp

(
1
2
[
(b − a)zj + a + b

]
)

=
N−1∑

j=1

ŵjp
(
xj
)
,

(2.9)

where ŵj = ((b − a)/2)wj , 1 � j � N − 1 are ShLG quadrature weights.

2.2. Function Approximation

Suppose that the interval [0, L] is divided into K subintervals Ik = [(k − 1)h, kh], k =
1, 2, . . . , K, where h = L/K. Let yk(x) be the solution of the problem in (1.1)-(1.2) in the
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subinterval Ik. Consider now the ShLG collocation points (k − 1)h < xk1 < · · · < xk,N−1 < kh
on the kth subinterval Ik, k = 1, 2, . . . , K, obtained using (2.8). Obviously,

xkj =
h

2
(
zj + 2k − 1

)
, j = 1, 2, . . . ,N − 1. (2.10)

Also, consider two additional noncollocated points xk0 = (k − 1)h and xkN = kh. Let us define

�kN = Span{Lk0(x), Lk1(x), . . . , LkN(x)}, x ∈ Ik, (2.11)

where

Lki(x) =
N∏

l=0,l /= i

x − xkl
xki − xkl , i = 0, 1, . . . ,N, (2.12)

is a basis of Lagrange interpolating polynomials on the subinterval Ik that satisfy Lki(xkj) =
δij , where δij is the Kronecker delta function. The L2(Ik)-orthogonal projection IN : L2(Ik) →
�kN is a mapping in a way that for any yk ∈ L2(Ik)

〈
IN
(
yk
) − yk, φk

〉
= 0, ∀φk ∈ �kN, (2.13)

or equivalently

IN
(
yk
)
(x) =

N∑

i=0

ykiLki(x), x ∈ Ik, (2.14)

where yki = yk(xki).
Here, it can be easily seen that for i = 0, 1, . . . ,N and k = 1, 2, . . . , K, we have

Lki(x) = L1i(x − xk0), x ∈ Ik. (2.15)

Thus, by utilizing (2.15) for (2.14), the approximation of yk(x)within each subinterval Ik can
be restated as

yk(x) ≈ IN
(
yk
)
(x) =

N∑

i=0

ykiL1i(x − xk0) = Y T

k · Lk(x), x ∈ Ik, (2.16)

where Yk and Lk(x) are (N + 1) × 1 matrices given by Yk = [yk0, . . . , ykN]T and Lk(x) =
[L10(x − xk0), . . . , L1N(x − xk0)]

T

. It is important to observe that the series (2.16) includes the
Lagrange polynomials associated with the noncollocated points xk0 = (k − 1)h and xkN = kh.
Moreover, it is seen from (2.15)-(2.16) that, in the present adaptive scheme, it is only needed
to produce the basis of Lagrange polynomials L1i(x) at the first subinterval.
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By nm + 1 times (nm is defined in (1.3)) differentiating of (2.16), we obtain

y
(r)
k (x) ≈ Y T

k · L(r)
k (x), x ∈ Ik, (2.17)

where L(r)
k
(x) = (dr/dxr)Lk(x).

2.3. Convergence Rate

ForN � 1 we introduce the piecewise polynomials space

ΨN
Ik

=
{
y ∈ C0([0, L]) : yk = y|Ik ∈ PN(Ik)

}
, (2.18)

which is the space of the continuous functions over [0, L] whose restrictions on each
subinterval Ik are polynomials of degree � N. Then, for any continuous function y in
[0, L], the piecewise interpolation polynomial ψN(y) coincides on each subinterval Ik with
the interpolating polynomial IN(y) of yk = y|Ik at the ShLG points.

In [25], with the aid of the formulas (5.4.33), (5.4.34) of [24], we prove the convergence
properties of piecewise interpolation polynomial based on shifted Legendre-Gauss-Radau
points in the norms of the Sobolev spaces. Accordingly, the following results for the
convergence based on ShLG points hold.

Theorem 2.1. Suppose that y ∈ Hv(0, L) with v � 1. Then

∥∥y − ψN
(
y
)∥∥

L2(0,L) � cN−v∣∣y
∣∣
H0;v;N;h(0,L), (2.19)

and, for 1 � u � v, if h � 1, then

∥∥y − ψN(y)
∥∥
Hu(0,L) � cN2u−(1/2)−v∣∣y

∣∣
Hu;v;N;h(0,L), (2.20)

and if h > 1, then

∥∥y − ψN(y)
∥∥
Hu(0,L) � cN2u−(1/2)−v∣∣y

∣∣
H0;v;N;h(0,L). (2.21)

Note that c denotes a positive constant that depends on v, but which is independent of
the function y and integerN. Moreover, we introduce the seminorm ofHv(0, L), 0 � u � v,
N � 0, h > 0, as

∣∣y
∣∣
Hu;v;N;h(0,L) =

⎛

⎝
v∑

l=min{v,N+1}
h2l−2u

∥∥∥y(l)
∥∥∥
2

L2(0,L)

⎞

⎠

1/2

. (2.22)

Remark 2.2. WheneverN � v − 1, using (2.19)–(2.22), we get

∥∥y − ψN(y)
∥∥
L2(0,L) � cN−vhv

∥∥∥y(v)
∥∥∥
L2(0,L)

, (2.23)
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and, for u � 1, if h � 1, then

∥
∥y − ψN(y)

∥
∥
Hu(0,L) � cN2u−(1/2)−vhv−u

∥
∥
∥y(v)

∥
∥
∥
L2(0,L)

, (2.24)

and if h > 1, then

∥
∥y − ψN(y)

∥
∥
Hu(0,L) � cN2u−(1/2)−vhv

∥
∥
∥y(v)

∥
∥
∥
L2(0,L)

. (2.25)

Equations (2.23)–(2.25) show that if y is infinitely smooth on [0, L] and h � 1, the
convergence rate of ψN(y) to y is faster than h to the power of N + 1 − u and any power
of 1/N, which is superior to that for the global collocation method over [0, L]. Thus, the
bigger the subinterval length the slower the convergence rate.

2.4. Problem Replacement and the Solution Technique

Consider the multi-term FBVP in (1.1)-(1.2). With substituting the definition of the Caputo-
derivative (1.3) into (1.1), we can convert (1.1) into an equivalent SVIDE as

F

(

x, y(x),
1

Γ(n1 − α1)
∫x

0

y(n1)(t)

(x − t)α1+1−n1
dt, . . . ,

1
Γ(nm − αm)

∫x

0

y(nm)(t)

(x − t)αm+1−nm
dt

)

= 0.

(2.26)

The problem is to find y(x), x ∈ [0, L], satisfying (2.26) and (1.2).
The generally nonlinear SVIDE in (2.26) is given in subinterval Ik, k = 1, 2, . . . , K as

follows:

F

⎛

⎝x, yk(x),
1

Γ(n1 − α1)

⎡

⎣
k−1∑

s=1

Λα1,s(x) +
∫x

(k−1)h

y
(n1)
k (t)

(x − t)α1+1−n1dt

⎤

⎦

, . . . ,
1

Γ(nm − αm)

⎡

⎣
k−1∑

s=1

Λαm,s(x) +
∫x

(k−1)h

y
(nm)
k (t)

(x − t)αm+1−nm
dt

⎤

⎦

⎞

⎠ = 0,

(2.27)

where x ∈ Ik and

Λαq,s(x) =
∫ sh

(s−1)h

y
(nq)
s (t)

(x − t)αq+1−nq
dt, q = 1, 2, . . . , m; s = 1, 2, . . . , k − 1. (2.28)

It is important to note that, at the first subinterval, the summations in (2.27) are automatically
discarded. For approximating the functions Λαq,s(x), q = 1, . . . , m; s = 1, . . . , k − 1, with the
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aid of (2.17) and the Gaussian integration formula in the subinterval Is, given by (2.9), we
obtain

Λαq,s(x) 	
h

2

N−1∑

j=1

wj

Y
T

s · L(nq)
s

(
xsj

)

(
x − xsj

)αq+1−nq , (2.29)

where the ShLG collocation points xsj on the subinterval Is are defined by (2.10).
From (2.27), (2.16), and (2.17), for k = 1, 2, . . . , K we have

F

⎛

⎝x, Y
T

k · Lk(x), 1
Γ(n1 − α1)

⎡

⎣
k−1∑

s=1

Λα1,s(x) +
∫x

xk0

Y
T

k · L(n1)
k (t)

(x − t)α1+1−n1
dt

⎤

⎦

, . . . ,
1

Γ(nm − αm)

⎡

⎣
k−1∑

s=1

Λαm,s(x) +
∫x

xk0

Y
T

k
· L(nm)

k (t)

(x − t)αm+1−nm
dt

⎤

⎦

⎞

⎠ = 0, x ∈ Ik.

(2.30)

We now collocate (2.30) at collocation points xkj , k = 1, 2, . . . , K and j = 1, . . . ,N − l as

F

⎛

⎝xkj , Y
T

k · Lk
(
xkj

)
,

1
Γ(n1 − α1)

⎡

⎣
k−1∑

s=1

Λα1,s

(
xkj

)
+
∫xkj

xk0

Y
T

k · L(n1)
k (t)

(
xkj − t

)α1+1−n1 dt

⎤

⎦

, . . . ,
1

Γ(nm − αm)

⎡

⎣
k−1∑

s=1

Λαm,s

(
xkj

)
+
∫xkj

xk0

Y
T

k · L(nm)
k (t)

(
xkj − t

)αm+1−nm dt

⎤

⎦

⎞

⎠ = 0.

(2.31)

The integrals involved in (2.31) are singular. In order to convert them into nonsingular
integrals, using integration by parts and with the aid of (2.10)we obtain

F

⎛

⎝xkj , ykj ,
1

Γ(n1 − α1)

×
⎡

⎣
k−1∑

s=1

Λα1,s

(
xkj

)
+

1
n1 − α1

⎛

⎝xn1−α11j Y
T

k · L(n1)
k (xk0) +

∫xkj

xk0

Y
T

k · L(n1+1)
k (t)

(
xkj − t

)α1−n1 dt

⎞

⎠

⎤

⎦,

. . . ,
1

Γ(nm − αm)

×
⎡

⎣
k−1∑

s=1

Λαm,s

(
xkj

)
+

1
nm − αm

⎛

⎝xnm−αm1j Y
T

k · L(nm)
k (xk0) +

∫xkj

xk0

Y
T

k · L(nm+1)
k (t)

(
xkj − t

)αm−nm dt

⎞

⎠

⎤

⎦

⎞

⎠ = 0.

(2.32)
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In order to use the Gaussian integration formula in the subinterval Ik for (2.32), we transfer
the t-interval [xk0, xkj] into the τ-interval Ik by means of the transformation τ = (h/x1j) (t −
xk0) + xk0. Using this transformation, the Gaussian integration formula and (2.10), we have

∫xkj

xk0

Y
T

k
· L(nq+1)

k (t)
(
xkj − t

)αq−nq dt =
x1j

h

∫xkN

xk0

Y
T

k
· L(nq+1)

k

((
x1j/h

)
(τ − xk0) + xk0

)

(
x1j − (x1j/h)(τ − xk0)

)αq−nq dτ

	 x1j

2

N−1∑

p=1

wp

Y
T

k
· L(nq+1)

k

((
x1jx1p/h

)
+ xk0

)

(
x1j − (x1j x1p/h)

)αq−nq := Gq

(
x1j

)
.

(2.33)

By (2.33), (2.32) may be approximated as

F

(

xkj , ykj ,
1

Γ(n1 − α1)

[
k−1∑

s=1

Λα1,s

(
xkj

)
+

1
n1 − α1

(
xn1−α11j Y

T

k · L(n1)
k (xk0) +G1

(
x1j

))
]

, . . . ,
1

Γ(nm − αm)

[
k−1∑

s=1

Λαm,s

(
xkj

)
+

1
nm − αm

(
xnm−αm1j Y

T

k · L(nm)
k (xk0) +Gm

(
x1j

))
])

= 0.

(2.34)

In addition, substituting (2.16) and (2.17) into the boundary conditions (1.2) yields

Hr

(
Y

T

ρ0 · Lρ0(ξ0), . . . , Y
T

ρ0 · L
(l)
ρ0 (ξ0), . . . , Y

T

ρl · Lρl(ξl), . . . , Y
T

ρl · L
(l)
ρl (ξl)

)
= 0, r = 0, 1, . . . , l,

(2.35)

where ξr ∈ Iρr . Besides, it is required that the approximate solution and its first l derivatives
be continuous at the interface of subintervals, that is,

Y
T

k · L(r)
k (xkN) = Y

T

k+1 · L
(r)
k+1(xk+1,0), k = 1, 2, . . . , K − 1, r = 0, 1, . . . , l. (2.36)

Equation (2.34) for k = 1, . . . , K, j = 1, . . . ,N − l together with (2.35)-(2.36) gives a
system of equations withK(N + 1) set of algebraic equations, which can be solved to find the
unknowns of the vectors Yk, k = 1, 2, . . . , K. Consequently, the unknown functions y(x)|

Ik
	

yk(x) given in (2.16) can be calculated.

3. Numerical Examples

In this section we give the computational results of numerical experiments with the method
based on preceding sections to support our theoretical discussion.
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Example 3.1. In this example, we consider the Bagley-Torvik equation [26]

Ay′′(x) + BDαy(x) + Cy(x) = f(x), x ∈ [0, L], (3.1)

with boundary conditions

y(0) = c0, y(L) = c1, (3.2)

where A,B,C ∈ R and A/= 0. Bagley-Torvik equation involving fractional derivative of order
1/2 or 3/2 arises in the modeling of the motion of a rigid plate in a Newtonian fluid and a
gas in a fluid. Since the Bagley-Torvik equation is a prototype fractional differential equation
with two derivatives and represents a general form of the fractional problems, its solution can
give many ideas about the solution of similar problems in fractional differential equations.
Podlubny [2] has investigated the solution of Bagley-Torvik equation (3.1) and for α = 3/2
gave the analytical solution with homogeneous initial conditions by using Green’s function,
as follows:

y(x) =
∫x

0
G3(x − t)f(t)dt,

G3(x) =
1
A

∞∑

k=0

(−1)k
k!

(
C

A

)k

x2k+1E
(k)
1/2,2+(3k/2)

(
−B
A

√
x

)
,

E
(k)
λ,μ(z) =

dk

dzk
Eλ,μ(z) =

∞∑

j=0

(
j + k

)
!zj

j!Γ
(
λj + λk + μ

) , k = 0, 1, 2, . . . ,

(3.3)

where Eλ,μ is the Mittag-Leffler function in two parameters and the G3 three-term Green’s
function. However, in practice, these equations can not be evaluated easily for different
functions f(x). Several other authors have proposed different techniques for the solution
of this equation. A review of the solution techniques for Bagley-Torvik equation can be found
in [27].

Here, we solve (3.1) with two-point boundary conditions (3.2) by using the adaptive
pseudospectral method. For comparison purposes and in order to demonstrate the efficiency
of our method, we investigate the following cases. Further, for completeness, the derivation
of Bagley-Torvik equation is given in the appendix.

Case 1. In (3.1)-(3.2) set α = 3/2, A = B = C = 1, f(x) = x2 + 2 + 4
√
x/π , L = 5, c0 = 0, and

c1 = 25. It is readily verified that the exact solution of this case is y(x) = x2. Using the adaptive
pseudospectral method in Section 2 with K = 1 and N = 2, the unknowns yki, k = 1, . . . , K,
i = 0, . . . ,N in (2.16) are found to be

y10 = 0, y11 = 6.25, y12 = 5, (3.4)

which lead to the exact solution y(x) = x2. This case was solved in [6] using a collocation-
shooting method. Their computed maximum absolute error and L2 error norm were 2.00 ×
10−14 and 3.78 × 10−12, respectively, which show that our method is more efficient.
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Table 1:Maximum absolute errors for Example 3.1, Case 2.

N = 10 N = 20 N = 30 N = 40
K = 1 3.5 × 10−5 3.8 × 10−6 1.5 × 10−6 4.4 × 10−7

K = 2 6.9 × 10−6 7.1 × 10−7 2.0 × 10−7 8.4 × 10−8

Table 2: Comparison of solutions for Example 3.1, Case 3.

x GTCM [27] Present method Analytical [2]
0 0 0 0
0.1 0.03648555 0.03648741 0.03648748
0.2 0.14063472 0.14063951 0.14063962
0.3 0.30747623 0.30748449 0.30748463
0.4 0.53327129 0.53328396 0.53328411
0.5 0.81473561 0.81475679 0.81475695
0.6 1.14880581 1.14883734 1.14883742
0.7 1.53252126 1.53256541 1.53256543
0.8 1.96297499 1.96302931 1.96302925
0.9 2.43745598 2.43733391 2.43733397
1 2.95407000 2.95258388 2.95258388

Case 2. Set α = 3/2, A = B = C = 1, f(x) = (15/4)
√
x + (15/8)

√
πx + x5/2 + 1, L = 1, c0 = 1,

and c1 = 2. The exact solution of this case, which was considered in [5], is y(x) = x5/2 + 1. In
Table 1 the maximum absolute errors for different values of K and N are presented. We see
from Table 1 that, as stated in Section 2.3, the more rapid convergence rate is obtained with
smaller subinterval length.

Case 3. For comparison, the same coefficients as considered in [27] have been used here.
Set α = 3/2, A = 1, B = C = 1/2, f(x) = 8, L = 1, c0 = 0, and c1 = 2.95258388. Table 2
shows the comparison of solutions of this case by the present method (with K = 2,N = 40),
GTC method [27] and the analytical solution [2], and the good agreement of our adaptive
pseudospectral solution with analytical solution.

Case 4. Set α = 1/2, A = B = C = 1, f(x) = 8, L = 1, c0 = 0, and c1 = 3.10190571. The
numerical solutions obtained by the present method (with K = 2, N = 40), fractional finite
difference method (FDM), the Adomian decomposition method (ADM), and the variational
iteration method (VIM) from [28] are given in Table 3. The exact solution refers to the closed
form series solution given in [28]. Table 3 shows the excellent agreement of our adaptive
pseudospectral solution with the exact solution.

Example 3.2. As a multi-term equation, consider the linear multi-term FBVP described by

√
πxD5/2y(x)+ 10Γ

(
2
3

)
3
√
xD4/3y(x) + Γ

(
3
4

)
4
√
xD1/4y(x) − 40

77
y(x) = 12x + 54x2 +

8
7
x3,

y(0) = y′(0) = 0, y(1) = 1.
(3.5)
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Table 3: Comparison of solutions for Example 3.1, Case 4.

x FDM [28] ADM [28] VIM [28] Present method Exact
0 0 0 0 0 0
0.1 0.039473 0.039874 0.039874 0.03975004 0.03975003
0.2 0.157703 0.158512 0.158512 0.15703584 0.15703582
0.3 0.352402 0.353625 0.353625 0.34736999 0.34736998
0.4 0.620435 0.622083 0.622083 0.60469514 0.60469515
0.5 0.957963 0.960047 0.960047 0.92176757 0.92176764
0.6 1.360551 1.363093 1.363093 1.29045651 1.29045656
0.7 1.823267 1.826257 1.826257 1.70200794 1.70200797
0.8 2.340749 2.344224 2.344224 2.14728692 2.14728693
0.9 2.907324 2.911278 2.911278 2.61700100 2.61700101
1 3.517013 3.521462 3.521462 3.10190571 3.10190571

Table 4: Comparison of maximum absolute errors for Example 3.2.

Present method Method [13]
N = 4 N = 8 N = 16 N = 24 J Error

K = 1 6.9 × 10−4 6.4 × 10−5 4.1 × 10−6 9.9 × 10−7 4 1.5 × 10−3

K = 2 2.2 × 10−4 1.2 × 10−5 1.3 × 10−6 2.5 × 10−7 5 6.1 × 10−4

K = 3 8.1 × 10−5 4.7 × 10−6 4.0 × 10−7 9.8 × 10−8 6 1.8 × 10−4

K = 4 4.5 × 10−5 2.8 × 10−6 2.4 × 10−7 5.9 × 10−8 7 7.2 × 10−5

The exact solution to this problem is y(x) = x3. Since this problem is a third-order equation, it
can demonstrate the effect of the continuity conditions (2.36) on the approximate solution.
Table 4 compares the maximum absolute errors obtained using the present method for
different values of K and N with the errors reported in [13] using operational matrix of
fractional derivatives using B-spline functions. Note that in [13], for each value of J , the
obtained algebraic system is of order 2J+1, while in the present method the obtained algebraic
system is of order K(N + 1). It is important to see that our method provides more accurate
results with solving lower-order algebraic systems. Further, it is seen that in the present
method the accuracy can be improved either by increasing the number of subintervals or
by increasing the number of collocation points within each subinterval.

Example 3.3. Consider the nonlinear multi-term FBVP described by

y′′(x) + Γ
(
4
5

)
5
√
x6D6/5y(x) +

11
9
Γ
(
5
6

)
6
√
xD1/6y(x) − (y′(x)

)2 = 2 +
1
10
x2,

y(0) = 1, y(1) = 2.

(3.6)

The exact solution to this problem is y(x) = x2 + 1. In Table 5, we compare the maximum
absolute errors obtained using the present adaptive method for different values of K and
N with the errors reported in [13] using operational matrix of fractional derivatives using
B-spline functions.
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Table 5: Comparison of maximum absolute errors for Example 3.3.

Present method Method [13]
N = 10 N = 20 N = 30 N = 40 J Error

K = 1 1.3 × 10−6 8.9 × 10−8 2.0 × 10−8 6.7 × 10−9 4 1.2 × 10−3

K = 2 7.5 × 10−7 5.3 × 10−8 1.7 × 10−8 4.9 × 10−9 5 3.3 × 10−4

K = 3 6.5 × 10−7 4.7 × 10−8 1.4 × 10−8 3.6 × 10−9 6 8.1 × 10−5

K = 4 5.0 × 10−7 3.6 × 10−8 7.9 × 10−9 2.8 × 10−9 7 2.1 × 10−5

Table 6: Comparison of absolute errors for Example 3.4.

α x = 0.1 x = 0.3 x = 0.5 x = 0.7 x = 0.9

1.1 Present method 2.7 × 10−10 5.0 × 10−10 2.1 × 10−9 6.4 × 10−10 1.3 × 10−9

Method [16] 2.9 × 10−4 6.0 × 10−3 8.4 × 10−3 5.8 × 10−3 3.4 × 10−3

1.3 Present method 2.6 × 10−9 9.0 × 10−9 2.4 × 10−8 1.5 × 10−8 9.4 × 10−9

Method [16] 2.0 × 10−4 3.0 × 10−3 4.5 × 10−3 3.0 × 10−3 4.0 × 10−3

1.5 Present method 6.3 × 10−9 3.8 × 10−8 1.0 × 10−7 7.9 × 10−8 2.9 × 10−8

Method [16] 9.7 × 10−5 1.5 × 10−3 2.4 × 10−3 1.5 × 10−3 4.7 × 10−3

1.7 Present method 3.1 × 10−8 1.6 × 10−8 2.0 × 10−7 1.8 × 10−7 7.9 × 10−8

Method [16] 4.8 × 10−5 7.5 × 10−4 1.3 × 10−3 6.0 × 10−4 5.4 × 10−3

1.9 Present method 2.1 × 10−7 3.7 × 10−7 2.0 × 10−7 1.2 × 10−7 2.2 × 10−7

Method [16] 2.9 × 10−5 3.7 × 10−4 6.8 × 10−4 9.2 × 10−5 6.2 × 10−3

2.0 Present method 7.0 × 10−14 9.0 × 10−14 6.8 × 10−14 3.7 × 10−13 2.1 × 10−13

Method [16] 2.4 × 10−5 2.6 × 10−4 4.9 × 10−4 7.0 × 10−5 6.6 × 10−3

Example 3.4. Consider the following nonlinear FBVP:

Dαy(x) + ayn(x) = f(x), 1 < α � 2,

y(0) = c0, y(1) = c1.
(3.7)

For comparison, we choose n = 2, a = e−2π , f(x) = (105
√
π/16Γ((9/2) − α))x(7/2)−α + e−2πx7,

c0 = 0, and c1 = 1. It is readily verified that the exact solution is y(x) = x7/2. In Table 6,
the absolute errors obtained using the present adaptive pseudospectral method for K = 4
and N = 40 and different values of α are compared with the errors obtained in [16] using
Legendre wavelets, which show that the present method provides more accurate numerical
results.

Example 3.5. In this example, to show the applicability of the present method for larger
interval, we consider the nonlinear FBVP described by

Dαy(x) + y2(x) = E2
α(−xα) − Eα(−xα), 1 < α � 2,

y(0) = 1, y(10) = Eα(−10α).
(3.8)
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Figure 1: Comparison of y(x) for K = 20,N = 30 with exact solutions for Example 3.5.

Table 7: Maximum absolute errors for α = 1.75 for Example 3.5.

N = 10 N = 20 N = 30
K = 5 3.5 × 10−3 8.1 × 10−4 3.5 × 10−4

K = 10 1.7 × 10−3 3.9 × 10−4 1.8 × 10−4

K = 20 9.4 × 10−4 2.1 × 10−4 9.1 × 10−5

The exact solution of this problem is given by y(x) = Eα(−xα), where Eα(z) =
∑∞

k=0(z
k/Γ(αk+

1)) is the Mittag-Leffler function.
In Table 7, the maximum absolute errors in the interval [0, 10] for α = 1.75 and different

values ofK andN are presented, which shows the efficiency of the present method for FBVPs
in large domains. Also, the numerical results for y(x) by adaptive pseudospectral method for
K = 20, N = 30 and α = 1.25, 1.5, 1.75, 1.95, and 2 together with the exact solutions are
plotted in Figure 1, which indicates that the numerical results are in high agreement with the
exact ones. Moreover, Figure 1 demonstrates the efficiency of the present method for solutions
having oscillatory behavior. For α = 2, the exact solution is given as y(x) = cos(x). Note that
as α approaches 2, the numerical solution converges to the analytical solution; that is, in the
limit, the solution of the fractional differential equations approaches to that of the integer-
order differential equations.

Example 3.6. Finally consider the nonlinear multi-term FBVP described by

ay′′(x) + bDα2y(x) + c
(
Dα1y(x)

)2 + ey3(x) = f(x), 0 � x � 2,

y(0) = 0, y(2) =
8
3
,

(3.9)

where a, b, c, e ∈ R, 0 < α1 � 1, 1 < α2 � 2 and f(x) = 2ax + (2b/Γ(4 − α2))x3−α2 +
c((2/Γ(4 − α1))x3−α1)2 + e((1/3)x3)3. The exact solution to this problem is y(x) = (1/3)x3.
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For a = b = c = e = 1, α1 = 0.555, and α2 = 1.455 the maximum absolute errors
obtained using the adaptive pseudospectral method are given in Table 8. Also, for a = 0.1,
b = c = e = 0.5, α1 = 0.219, and α2 = 1.965 the maximum absolute errors are given in
Table 9. Again, it is seen that in the present adaptive pseudospectral method the accuracy
is improved either by increasing the number of subintervals or by increasing the number of
collocation points within each subinterval.

4. Conclusion

In this work a new adaptive pseudospectral method based on ShLG collocation points has
been proposed for solving the multi-term FBVPs. We converted the original FBVP into
a SIVDE and then reduced it to a system of algebraic equations using collocation. The
difficulty in SIVDE, due to the singularity, is overcome here by utilizing integration by
parts. By considering some additional conditions, the continuity of the approximate solution
and its first l derivatives is kept. It was also shown that the accuracy can be improved
either by increasing the number of subintervals or by increasing the number of collocation
points in subintervals. Moreover, this method is valid for large-domain calculations. The
achieved results are compared with exact solutions and with the solutions obtained by some
other numerical methods, which demonstrate the convergence, validity, and accuracy of the
proposed method.

Appendix

The Derivation of Bagley-Torvik Equation

Here, in order to give a physical understanding of fractional differential equations, the
derivation of Bagley-Torvik equation, which describes the modeling of the motion of a rigid
plate in a Newtonian fluid, is given.

Consider a half-space Newtonian viscous fluid in which certain motions are induced
by the general transverse motion of an infinite plate. The equation of motion of the half-space
fluid is the diffusion equation:

ρ
∂v(z, t)
∂t

= μ
∂2v(z, t)
∂z2

, (A.1)

where ρ is the fluid density, μ is the viscosity, and v(z, t) describes the transverse fluid velocity
as a function of z and t. Taking the Laplace transform of (A.1) and using the properties of the
Laplace transform, one obtains

ρsL[v(z, t)] − ρv(z, t = 0) = μ
∂2

∂z2
L[v(z, t)]. (A.2)

Torvik and Bagley assumed the initial velocity profile in the fluid to be zero and thus (A.2)
reduces to

ρsL[v(z, t)] = μ
∂2

∂z2
L[v(z, t)]. (A.3)



16 Abstract and Applied Analysis

Since the Laplace transformation is evaluated with respect to the time variable, only the
following representation for the velocity profile with respect to the depth z can be used:

v(z, t) = v(t)eλz, (A.4)

thus

L[v(z, t)] = eλzL[v(t)],

∂2

∂z2
L[v(z, t)] = λ2eλzL[v(t)].

(A.5)

With insertion of (A.5) in (A.3) the following algebraic equation for the unknown parameter
λ is obtained:

λ =

√
sρ

μ
. (A.6)

Next, the shear stress relationship of the Newtonian fluid given as

σ(z, t) = μ
∂v(z, t)
∂z

(A.7)

can be transformed into the Laplace domain using the above results:

L[σ(z, t)] = μ

√
sρ

μ
e
√

(sρ/μ)zL[v(t)] =
√
μρ

√
sL[v(z, t)]. (A.8)

Equation (A.8) can be restated as

L[σ(z, t)] =
√
μρ

s√
s
L[v(z, t)]. (A.9)

Now, the following two transforms can be identified in (A.9):

sL[v(z, t)] = L
[
∂v(z, t)
∂t

]
,

1√
s
= L

[
1

Γ(1/2)
√
t

]

.

(A.10)

With substituting (A.10) into (A.9), one obtains

L[σ(z, t)] =
√
μρL

[
1

Γ(1/2)
√
t

]

· L[v̇(z, t)]. (A.11)
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Table 8: Maximum absolute errors for a = b = c = e = 1, α1 = 0.555, α2 = 1.455 for Example 3.6.

N = 10 N = 20 N = 30
K = 1 1.4 × 10−3 1.7 × 10−4 5.0 × 10−5

K = 2 3.3 × 10−4 4.1 × 10−5 8.3 × 10−6

K = 4 2.2 × 10−5 3.0 × 10−6 9.1 × 10−7

Table 9:Maximum absolute errors for a = 0.1, b = c = e = 0.5, α1 = 0.219, α2 = 1.965 for Example 3.6.

N = 10 N = 20 N = 30
K = 1 1.9 × 10−2 1.7 × 10−3 6.6 × 10−4

K = 2 2.4 × 10−3 4.2 × 10−4 1.7 × 10−4

K = 4 3.2 × 10−4 5.8 × 10−5 2.4 × 10−5

The product of two transforms in (A.11) corresponds to the following convolution when
evaluating the inverse transformation:

σ(z, t) =
√
μρ

1
Γ(1/2)

∫ t

0

v̇(z, τ)

(t − τ)1/2
dτ =

√
μρD1/2

t v(z, t), (A.12)

which introduces a fractional derivative of degree α = 1/2 within the shear stress-velocity
relationship of a half-space Newtonian fluid.

Finally, consider a rigid plate of mass m immersed into an infinite Newtonian fluid.
The plate is held at a fixed point by means of a spring of stiffness k. It is assumed that the
motions of the spring do not influence the motion of the fluid, and that the surface A of the
plate is very large, such that the stress-velocity relationship in (A.12) is valid on both sides of
the plate. Equilibrium of all forces acting on the plate gives

my′′(t) + ky(t) + 2Aσ(z = 0, t) = 0. (A.13)

By substituting (A.12) one obtains

my′′(t) + ky(t) + 2A
√
μρD1/2

t v(z = 0, t) = 0. (A.14)

With v(z = 0, t) = y′(t), a fractional differential equation of degree α = 3/2 follows for the
displacement of a rigid plate immersed into an infinite Newtonian fluid, as follows:

my′′(t) + ky(t) + 2A
√
μρD3/2

t y(t) = 0. (A.15)
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