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By using the weakly commutative and weakly compatible conditions of self-mapping pairs,
we prove some new common fixed point theorems for six self-mappings in the framework of
generalized metric spaces. An example is provided to support our result. The results presented
in this paper generalize the well-known comparable results in the literature due to Abbas, Nazir,
Saadati, Mustafa, and Sims.

1. Introduction and Preliminaries

The study of fixed points of mappings satisfying certain conditions has been at the center of
vigorous research activity. In 2006, Mustafa and Sims [1] introduced a new structure of gen-
eralized metric spaces, which are called G-metric spaces as follows.

Definition 1.1 (see [1]). Let X be a nonempty set and let G : X × X × X → R+ be a function
satisfying the following properties:

(G1) G(x, y, z) = 0 if x = y = z;

(G2) 0 < G(x, x, y), for all x, y ∈ X with x /=y;

(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z/=y;

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · , symmetry in all three variables;

(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X (rectangle inequality).

Then the function G is called a generalized metric, or, more specifically, a G-metric on X, and
the pair (X,G) is called a G-metric space.
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Since then the fixed point theory in G-metric spaces has been studied and developed
by authors (see [2–43]). Fixed point problems have also been considered in partially ordered
G-metric spaces (see [44–56]).

The purpose of this paper is to use the concept of weakly commuting mappings and
weakly compatible mappings to discuss some new common fixed point problem for six self-
mappings in G-metric spaces. The results presented in this paper extend and improve the
corresponding results of Abbas et al. [2] and Mustafa and Sims [3].

We now recall some of the basic concepts and results in G-metric spaces.

Proposition 1.2 (see [1]). Let (X,G) be a G-metric space, then the function G(x, y, z) is jointly
continuous in three of its variables.

Definition 1.3 (see [1]). Let (X,G) be a G-metric space, and let (xn) be a sequence of points of
X. A point x ∈ X is said to be the limit of the sequence (xn), if limn,m→+∞G(x, xn, xm) = 0, and
we say that the sequence (xn) is G-convergent to x or (xn) G-convergent to x, that is, for any
ε > 0, there exists N ∈ N such that G(x, xn, xm) < ε for all m,n ≥ N (throughout this paper
we mean by N the set of all natural numbers).

Proposition 1.4 (see [1]). Let (X,G) be a G-metric space, then the following are equivalent:

(i) (xn) is G-convergent to x;

(ii) G(xn, xn, x) → 0 as n → +∞;

(iii) G(xn, x, x) → 0 as n → +∞;

(iv) G(xn, xm, x) → 0 as n,m → +∞.

Definition 1.5 (see [1]). Let (X,G) be a G-metric space. A sequence (xn) is called G-cauchy
if for every ε > 0, there is N ∈ N such that G(xn, xm, xl) < ε for all m,n, l ≥ N, that is
G(xn, xm, xl) → 0 as n,m, l → +∞.

Proposition 1.6 (see [1]). Let (X,G) be a G-metric space, then the following are equivalent:

(i) the sequence (xn) is G-cauchy;

(ii) for every ε > 0, there isN ∈ N such that G(xn, xm, xm) < ε for allm,n ≥N.

Definition 1.7 (see [1]). A G-metric space (X,G) is G-complete if every G-cauchy sequence in
(X,G) is G-convergent in X.

Definition 1.8 (see [1]). Let (X,G) and (X′, G′) be G-metric spaces, and let f : (X,G) →
(X′, G′) be a function. Then f is said to beG-continuous at a point a ∈ X if and only if for every
ε > 0, there is δ > 0 such that x, y ∈ X, and G(a, x, y) < δ implies G′(f(a), f(x), f(y)) < ε. A
function f is G-continuous at X if and only if it is G-continuous at all a ∈ X.

Proposition 1.9 (see [1]). Let (X,G) and (X′, G′) be G-metric spaces, then a function f : X → X′

is G-continuous at a point x ∈ X if and only if it is G-sequentially continuous at x, that is, whenever
(xn) is G-convergent to x, (f(xn)) is G-convergent to f(x).

Definition 1.10 (see [4]). Two self-mappings f and g of a G-metric space (X,G) are said to be
weakly commuting if G(fgx, gfx, gfx) ≤ G(fx, gx, gx) for all x in X.
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Definition 1.11 (see [4]). Let f and g be two self-mappings from a G-metric space (X,G) into
itself. Then the mappings f and g are said to be weakly compatible if G(fgx, gfx, gfx) = 0
whenever G(fx, gx, gx) = 0.

Proposition 1.12 (see [1]). Let (X,G) be a G-metric space. Then, for all x, y, z, a in X, it follows
that

(i) if G(x, x, y) = 0, then x = y = z;

(ii) G(x, y, z) ≤ G(x, x, y) +G(x, x, z);
(iii) G(x, y, y) ≤ 2G(y, x, x);

(iv) G(x, y, z) ≤ G(x, a, z) +G(a, y, z);
(v) G(x, y, z) ≤ (2/3)(G(x, y, a) +G(x, a, z) +G(a, y, z));

(vi) G(x, y, z) ≤ G(x, a, a) +G(y, a, a) +G(z, a, a).

2. Common Fixed Point Theorems

Theorem 2.1. Let (X,G) be a complete G-metric space, and let f , g, h, A, B, and C be six mappings
of X into itself satisfying the following conditions:

(i) f(X) ⊂ B(X), g(X) ⊂ C(X), h(X) ⊂ A(X);

(ii) for all x, y, z ∈ X,

G
(
fx, gy, hz

) ≤ kmax

⎧
⎨

⎩

G
(
Ax, gy, gy

)
+G

(
By, fx, fx

)
,

G
(
By, hz, hz

)
+G

(
Cz, gy, gy

)
,

G
(
Cz, fx, fx

)
+G(Ax, hz, hz)

⎫
⎬

⎭
(2.1)

or

G
(
fx, gy, hz

) ≤ kmax

⎧
⎨

⎩

G
(
Ax,Ax, gy

)
+G

(
By, By, fx

)
,

G
(
By, By, hz

)
+G

(
Cz,Cz, gy

)
,

G
(
Cz,Cz, fx

)
+G(Ax,Ax, hz)

⎫
⎬

⎭
, (2.2)

where k ∈ [0, 1/3). Then one of the pairs (f,A), (g, B), and (h,C) has a coincidence point
in X. Further, if one of the following conditions is satisfied, then the mappings f , g, h, A,
B, and C have a unique common fixed point in X.

(a) Either f or A is G-continuous, the pair (f,A) is weakly commutative, the pairs (g, B) and
(h,C) are weakly compatible;

(b) Either g or B is G-continuous, the pair (g, B) is weakly commutative, the pairs (f,A) and
(h,C) are weakly compatible;

(c) Either h or C is G-continuous, the pair (h,C) is weakly commutative, the pairs (f,A) and
(g, B) are weakly compatible.
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Proof. Suppose that mappings f , g, h, A, B, and C satisfy condition (2.1).
Let x0 in X be arbitrary point, since f(X) ⊂ B(X), g(X) ⊂ C(X), h(X) ⊂ A(X), there

exist the sequences {xn} and {yn} in X such that

y3n = fx3n = Bx3n+1, y3n+1 = gx3n+1 = Cx3n+2, y3n+2 = hx3n+2 = Ax3n+3, (2.3)

for n = 0, 1, 2, . . ..
If yn = yn+1 for some n, with n = 3m, then p = x3m+1 is a coincidence point of the pair

(g, B); if yn+1 = yn+2 for some n, with n = 3m, then p = x3m+2 is a coincidence point of the pair
(h,C); if yn+2 = yn+3 for some n, with n = 3m, then p = x3m+3 is a coincidence point of the pair
(f,A). Without loss of generality, we can assume that yn /=yn+1 for all n = 0, 1, 2 . . ..

Now we prove that {yn} is a G-cauchy sequence in X.
Actually, using the condition (2.1) and (G3), we have

G
(
y3n−1, y3n, y3n+1

)

= G
(
fx3n, gx3n+1, hx3n−1

)

≤ kmax

⎧
⎨

⎩

G
(
Ax3n, gx3n+1, gx3n+1

)
+G

(
Bx3n+1, fx3n, fx3n

)
,

G(Bx3n+1, hx3n−1, hx3n−1) +G
(
Cx3n−1, gx3n+1, gx3n+1

)
,

G
(
Cx3n−1, fx3n, fx3n

)
+G(A3n, hx3n−1, hx3n−1)

⎫
⎬

⎭

= kmax

⎧
⎨

⎩

G
(
y3n−1, y3n+1, y3n+1

)
+G

(
y3n, y3n, y3n

)
,

G
(
y3n, y3n−1, y3n−1

)
+G

(
y3n−2, y3n+1, y3n+1

)
,

G
(
y3n−2, y3n, y3n

)
+G

(
y3n−1, y3n−1, y3n−1

)

⎫
⎬

⎭

≤ kmax
{

G
(
y3n−1, y3n, y3n+1

)
, G

(
y3n−2, y3n−1, y3n

)
,

G
(
y3n−1, y3n, y3n+1

)
+
[
G
(
y3n−2, y3n−1, y3n−1

)
+G

(
y3n−1, y3n+1, y3n+1

)]
}

≤ kmax
{
G
(
y3n−1, y3n, y3n+1

)
, G

(
y3n−2, y3n−1, y3n

)
,

2G
(
y3n−1, y3n, y3n+1

)
+G

(
y3n−2, y3n−1, y3n

)
}

= k
[
2G

(
y3n−1, y3n, y3n+1

)
+G

(
y3n−2, y3n−1, y3n

)]
,

(2.4)

which further implies that

(1 − 2k)G
(
y3n−1, y3n, y3n+1

) ≤ kG(y3n−2, y3n−1, y3n
)
. (2.5)

Thus

G
(
y3n−1, y3n, y3n+1

) ≤ λG(y3n−2, y3n−1, y3n
)
, (2.6)

where λ = k/(1 − 2k). Obviously 0 ≤ λ < 1.
Similarly it can be shown that

G
(
y3n, y3n+1, y3n+2

) ≤ λG(y3n−1, y3n, y3n+1
)
,

G
(
y3n+1, y3n+2, y3n+3

) ≤ λG(y3n, y3n+1, y3n+2
)
.

(2.7)
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It follows from (2.6) and (2.7) that, for all n ∈ N,

G
(
yn, yn+1, yn+2

) ≤ λG(yn−1, yn, yn+1
) ≤ λ2G(yn−2, yn−1, yn

) ≤ · · · ≤ λnG(y0, y1, y2
)
. (2.8)

Therefore, for all n,m ∈ N, n < m, by (G3) and (G5)we have

G
(
yn, ym, ym

) ≤ G
(
yn, yn+1, yn+1

)
+G

(
yn+1, yn+2, yn+2

)
+G

(
yn+2, yn+3, yn+3

)

+ · · · +G(ym−1, ym, ym
)

≤ G
(
yn, yn+1, yn+2

)
+G

(
yn+1, yn+2, yn+3

)
+ · · · +G(ym−1, ym, ym+1

)

≤
(
λn + λn+1 + λn+2 + · · · + λm−1

)
G
(
y0, y1, y2

)

≤ λn

1 − λG
(
y0, y1, y2

) −→ 0, as n −→ ∞.

(2.9)

Hence {yn} is a G-cauchy sequence in X, since X is complete G-metric space, there exists a
point u ∈ X such that yn → u(n → ∞).

Since the sequences {fx3n} = {Bx3n+1}, {gx3n+1} = {Cx3n+2}, and {hx3n−1} = {Ax3n}
are all subsequences of {yn}, then they all converge to u, that is,

y3n = fx3n = Bx3n+1 −→ u, y3n+1 = gx3n+1 = Cx3n+2 −→ u,

y3n−1 = hx3n−1 = Ax3n −→ u (n −→ ∞).
(2.10)

Now we prove that u is a common fixed point of f , g, h, A, B, and C under the
condition (a).

First, we suppose that A is continuous, the pair (f,A) is weakly commutative, the
pairs (g, B) and (h,C) are weakly compatible.

Step 1. We prove that u = fu = Au.
By (2.10) and weakly commutativity of mapping pair (f,A), we have

G
(
fAx3n,Afx3n,Afx3n

) ≤ G(fx3n,Ax3n,Ax3n
) −→ 0 (n −→ ∞). (2.11)

Since A is continuous, then A2x3n → Au (n → ∞), Afx3n → Au (n → ∞). By (2.11), we
know that fAx3n → Au (n → ∞).

From the condition (2.1), we get

G
(
fAx3n, gx3n+1, hx3n+2

)

≤ kmax

⎧
⎨

⎩

G
(
A2x3n, gx3n+1, gx3n+1

)
+G

(
Bx3n+1, fAx3n, fAx3n

)
,

G(Bx3n+1, hx3n+2, hx3n+2) +G
(
Cx3n+2, gx3n+1, gx3n+1

)
,

G
(
Cx3n+2, fAx3n, fAx3n

)
+G

(
A2x3n, hx3n+2, hx3n+2

)

⎫
⎬

⎭
.

(2.12)
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Letting n → ∞ and using the Proposition 1.12(iii), we have

G(Au, u, u) ≤ kmax

⎧
⎨

⎩

G(Au, u, u) +G(u,Au,Au),
G(u, u, u) +G(u, u, u),

G(u,Au,Au) +G(Au, u, u)

⎫
⎬

⎭

= k[G(Au, u, u) +G(u,Au,Au)]

≤ 3kG(Au, u, u).

(2.13)

Hence, G(Au, u, u) = 0 and Au = u, since 0 ≤ k < 1/3.
Again by using condition (2.1), we have

G
(
fu, gx3n+1, hx3n+2

)

≤ kmax

⎧
⎨

⎩

G
(
Au, gx3n+1, gx3n+1

)
+G

(
Bx3n+1, fu, fu

)
,

G(Bx3n+1, hx3n+2, hx3n+2) +G
(
Cx3n+2, gx3n+1, gx3n+1

)
,

G
(
Cx3n+2, fu, fu

)
+G(Au, hx3n+2, hx3n+2)

⎫
⎬

⎭
.

(2.14)

Letting n → ∞, we have

G
(
fu, u, u

) ≤ kG(u, fu, fu). (2.15)

From the Proposition 1.12(iii), we get

G
(
fu, u, u

) ≤ kG(u, fu, fu) ≤ 2kG
(
fu, u, u

)
. (2.16)

Hence, G(fu, u, u) = 0 and fu = u, since 0 ≤ k < 1/3.
So we have u = Au = fu.

Step 2. We prove that u = gu = Bu.
Since f(X) ⊂ B(X) and u = fu ∈ f(X), there is a point v ∈ X such that u = fu = Bv.

Again by using condition (2.1), we have

G
(
fu, gv, hx3n+2

) ≤ kmax

⎧
⎨

⎩

G
(
Au, gv, gv

)
+G

(
Bv, fu, fu

)
,

G(Bv, hx3n+2, hx3n+2) +G
(
Cx3n+2, gv, gv

)
,

G
(
Cx3n+2, fu, fu

)
+G(Au, hx3n+2, hx3n+2)

⎫
⎬

⎭
. (2.17)

Letting n → ∞, using u = Au = fu and the Proposition 1.12(iii), we obtain

G
(
u, gv, u

) ≤ kG(u, gv, gv) ≤ 2kG
(
u, gv, u

)
. (2.18)

Hence, G(u, gv, u) = 0 and so gv = u = Bv, since 0 ≤ k < 1/3.
Since the pair (g, B) is weakly compatible, we have

gu = gBv = Bgv = Bu. (2.19)
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Again by using condition (2.1), we have

G
(
fu, gu, hx3n+2

) ≤ kmax

⎧
⎨

⎩

G
(
Au, gu, gu

)
+G

(
Bu, fu, fu

)
,

G(Bu, hx3n+2, hx3n+2) +G
(
Cx3n+2, gu, gu

)
,

G
(
Cx3n+2, fu, fu

)
+G(Au, hx3n+2, hx3n+2)

⎫
⎬

⎭
. (2.20)

Letting n → ∞, using u = Au = fu, gu = Bu and the Proposition 1.12(iii), we have

G
(
u, gu, u

) ≤ k[G(u, gu, gu) +G(u, gu, u)] ≤ 3kG
(
u, gu, u

)
. (2.21)

Hence, G(u, gu, u) = 0 and so u = gu = Bu, since 0 ≤ k < 1/3.
So we have u = gu = Bu.

Step 3. We prove that u = hu = Cu.
Since g(X) ⊂ C(X) and u = gu ∈ g(X), there is a point w ∈ X such that u = gu = Cw.

Again by using condition (2.1), we have

G
(
fu, gu, hw

) ≤ kmax

⎧
⎨

⎩

G
(
Au, gu, gu

)
+G

(
Bu, fu, fu

)
,

G(Bu, hw, hw) +G
(
Cw, gu, gu

)
,

G
(
Cw, fu, fu

)
+G(Au, hw, hw)

⎫
⎬

⎭
. (2.22)

Using u = Au = fu, u = gu = Bu = Cw and the Proposition 1.12(iii), we obtain

G(u, u, hw) ≤ kG(u, hw, hw) ≤ 2kG(u, u, hw). (2.23)

Hence, G(u, u, hw) = 0 and so hw = u = Cw, since 0 ≤ k < 1/3.
Since the pair (h,C) is weakly compatible, we have

hu = hCw = Chw = Cu. (2.24)

Again by using condition (2.1), we have

G
(
fu, gu, hu

) ≤ kmax

⎧
⎨

⎩

G
(
Au, gu, gu

)
+G

(
Bu, fu, fu

)
,

G(Bu, hu, hu) +G
(
Cu, gu, gu

)
,

G
(
Cu, fu, fu

)
+G(Au, hu, hu)

⎫
⎬

⎭
. (2.25)

Using u = Au = fu, u = gu = Bu, Cu = hu and the Proposition 1.12(iii), we have

G(u, u, hu) ≤ k[G(u, hu, hu) +G(hu, u, u)] ≤ 3kG(u, u, hu). (2.26)

Hence, G(u, u, hu) = 0 and so u = hu = Cu, since 0 ≤ k < 1/3.
Therefore, u is the common fixed point of f , g, h, A, B, and C when A is continuous

and the pair (f,A) is weakly commutative, the pairs (g, B) and (h,C) are weakly compatible.
Next, we suppose that f is continuous, the pair (f,A) is weakly commutative, the pairs

(g, B) and (h,C) are weakly compatible.
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Step 1. We prove that u = fu.
By (2.10) and weak commutativity of mapping pair (f,A), we have

G
(
fAx3n,Afx3n,Afx3n

) ≤ G(fx3n,Ax3n,Ax3n
) −→ 0 (n −→ ∞). (2.27)

Since f is continuous, then f2x3n → fu (n → ∞), fAx3n → fu (n → ∞). By (2.10), we
know that Afx3n → fu (n → ∞).

From the condition (2.1), we have

G
(
f2x3n, gx3n+1, hx3n+2

)
≤ kmax

⎧
⎨

⎩

G
(
Afx3n, gx3n+1, gx3n+1

)
+G

(
Bx3n+1, f

2x3n, f
2x3n

)
,

G(Bx3n+1, hx3n+2, hx3n+2) +G
(
Cx3n+2, gx3n+1, gx3n+1

)
,

G
(
Cx3n+2, f

2x3n, f
2x3n

)
+G

(
Afx3n, hx3n+2, hx3n+2

)

⎫
⎬

⎭
.

(2.28)

Letting n → ∞ and noting the Proposition 1.12(iii), we have

G
(
fu, u, u

) ≤ kmax

⎧
⎨

⎩

G
(
fu, u, u

)
+G

(
u, fu, fu

)
,

G(u, u, u) +G(u, u, u),
G
(
u, fu, fu

)
+G

(
fu, u, u

)

⎫
⎬

⎭

= k
[
G
(
fu, u, u

)
+G

(
u, fu, fu

)]

≤ 3kG
(
fu, u, u

)
.

(2.29)

Hence, G(fu, u, u) = 0 and so fu = u, since 0 ≤ k < 1/3.

Step 2. We prove that u = gu = Bu.
Since f(X) ⊂ B(X) and u = fu ∈ f(X), there is a point z ∈ X such that u = fu = Bz.

Again by using condition (2.1), we have

G
(
f2x3n, gz, hx3n+2

)
≤ kmax

⎧
⎨

⎩

G
(
Afx3n, gz, gz

)
+G

(
Bz, f2x3n, f

2x3n
)
,

G(Bz, hx3n+2, hx3n+2) +G
(
Cx3n+2, gz, gz

)
,

G
(
Cx3n+2, f

2x3n, f
2x3n

)
+G

(
Afx3n, hx3n+2, hx3n+2

)

⎫
⎬

⎭
.

(2.30)

Letting n → ∞ and using u = fu and the Proposition 1.12(iii), we have

G
(
u, gz, u

) ≤ kG(u, gz, gz) ≤ 2kG
(
u, gz, u

)
. (2.31)

Hence G(u, gz, u) = 0 and so gz = u = Bz, since 0 ≤ k < 1/3.
Since the pair (g, B) is weakly compatible, we have

gu = gBz = Bgz = Bu. (2.32)
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Again by using condition (2.1), we have

G
(
fx3n, gu, hx3n+2

) ≤ kmax

⎧
⎨

⎩

G
(
Ax3n, gu, gu

)
+G

(
Bu, fx3n, fx3n

)
,

G(Bu, hx3n+2, hx3n+2) +G
(
Cx3n+2, gu, gu

)
,

G
(
Cx3n+2, fx3n, fx3n

)
+G(Ax3n, hx3n+2, hx3n+2)

⎫
⎬

⎭
. (2.33)

Letting n → ∞ and using u = fu, gu = Bu and the Proposition 1.12(iii), we have

G
(
u, gu, u

) ≤ k[G(u, gu, gu) +G(gu, u, u)] ≤ 3kG
(
u, gu, u

)
. (2.34)

Hence, G(u, gu, u) = 0 and so gu = u = Bu, since 0 ≤ k < 1/3.
So we have u = gu = Bu.

Step 3. We prove that u = hu = Cu.
Since g(X) ⊂ C(X) and u = gu ∈ g(X), there is a point t ∈ X such that u = gu = Ct.

Again by using condition (2.1), we have

G
(
fx3n, gu, ht

) ≤ kmax

⎧
⎨

⎩

G
(
Ax3n, gu, gu

)
+G

(
Bu, fx3n, fx3n

)
,

G(Bu, ht, ht) +G
(
Ct, gu, gu

)
,

G
(
Ct, fx3n, fx3n

)
+G(Ax3n, ht, ht)

⎫
⎬

⎭
. (2.35)

Letting n → ∞ and using u = gu = Bu and the Proposition 1.12(iii), we obtain

G(u, u, ht) ≤ kG(u, ht, ht) ≤ 2kG(u, u, ht). (2.36)

Hence, G(u, u, ht) = 0 and so ht = u = Ct, since 0 ≤ k < 1/3.
Since the pair (h,C) is weakly compatible, we have

hu = hCt = Cht = Cu. (2.37)

Again by using condition (2.1), we have

G
(
fx3n, gu, hu

) ≤ kmax

⎧
⎨

⎩

G
(
Ax3n, gu, gu

)
+G

(
Bu, fx3n, fx3n

)
,

G(Bu, hu, hu) +G
(
Cu, gu, gu

)
,

G
(
Cu, fx3n, fx3n

)
+G(Ax3n, hu, hu)

⎫
⎬

⎭
. (2.38)

Letting n → ∞ and using u = gu = Bu and the Proposition 1.12(iii), we have

G(u, u, hu) ≤ k[G(u, hu, hu) +G(u, u, hu)] ≤ 3kG(u, u, hu). (2.39)

Hence, G(u, u, hu) = 0 and so hu = u = Cu, since 0 ≤ k < 1/3.
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Step 4. We prove that u = Au.
Since h(X) ⊂ A(X) and u = hu ∈ h(X), there is a point p ∈ X such that u = hu = Ap.

Again by using condition (2.1), we have

G
(
fp, gu, hu

) ≤ kmax

⎧
⎨

⎩

G
(
Ap, gu, gu

)
+G

(
Bu, fp, fp

)
,

G(Bu, hu, hu) +G
(
Cu, gu, gu

)
,

G
(
Cu, fp, fp

)
+G

(
Ap, hu, hu

)

⎫
⎬

⎭
. (2.40)

Using u = gu = Bu, u = hu = Cu, and the Proposition 1.12(iii), we obtain

G
(
fp, u, u

) ≤ kG(u, fp, fp) ≤ 2kG
(
fp, u, u

)
. (2.41)

Hence G(fp, u, u) = 0 and fp = u = Ap, since 0 ≤ k < 1/3.
Since the pair (f,A) is weakly compatible, we have

fu = fAp = Afp = Au = u. (2.42)

Therefore, u is the common fixed point of f , g, h, A, B, and C when f is continuous and the
pair (f,A) is weakly commutative, the pairs (g, B) and (h,C) are weakly compatible.

Similarly, we can prove the result that u is a common fixed point of f , g, h, A, B, and
C when under the condition of (b) or (c).

Finally, we prove uniqueness of common fixed point u.
Let u and q be two common fixed points of f , g, h, A, B, and C, by using condition

(2.1), we have

G
(
q, u, u

)
= G

(
fq, gu, hu

)

≤ kmax

⎧
⎨

⎩

G
(
Aq, gu, gu

)
+G

(
Bu, fq, fq

)
,

G(Bu, hu, hu) +G
(
Cu, gu, gu

)
,

G
(
Cu, fq, fq

)
+G

(
Aq, hu, hu

)

⎫
⎬

⎭

= k
[
G
(
q, u, u

)
+G

(
u, q, q

)]

≤ 3kG
(
q, u, u

)
.

(2.43)

Hence, G(q, u, u) = 0 and so q = u, since 0 ≤ k < 1/3. Thus common fixed point is unique.
The proof using (2.2) is similar. This completes the proof.

Now we introduce an example to support Theorem 2.1.
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Example 2.2. Let X = [0, 1], and let (X,G) be a G-metric space defined by G(x, y, z) = |x − y| +
|y − z| + |z − x| for all x, y, and z in X. Let f , g, h, A, B, and C be self-mappings defined by

fx =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, x ∈
[
0,

1
2

]
,

7
8
, x ∈

(
1
2
, 1
]
,

gx =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

10
11
, x ∈

[
0,

1
2

]
,

7
8
, x ∈

(
1
2
, 1
]
,

hx =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

9
10
, x ∈

[
0,

1
2

]
,

7
8
, x ∈

(
1
2
, 1
]
,

Ax = x, Bx =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, x ∈
[
0,

1
2

]
,

7
8
, x ∈

(
1
2
, 1
)
,

0, x = 1,

Cx =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1, x ∈
[
0,

1
2

]
,

7
8
, x ∈

(
1
2
, 1
)
,

10
11
, x = 1.

(2.44)

Note that A is G-continuous in X, and f , g, h, B, and C are not G-continuous in X.

Clearly we can get f(X) ⊂ B(X), g(X) ⊂ C(X), and h(X) ⊂ A(X).
Actually, since fX = {7/8, 1}, BX = {0, 7/8, 1}, gX = {7/8, 10/11}, CX =

{7/8, 10/11, 1}, hX = {7/8, 9/10}, and AX = X = [0, 1], so we know f(X) ⊂ B(X),
g(X) ⊂ C(X), and h(X) ⊂ A(X).

By the definition of the mappings of f and A, for all x ∈ [0, 1], G(fAx,Afx,Afx) =
G(fx, fx, fx) = 0 ≤ G(fx,Ax,Ax), so we can get the pair (f,A) is weakly commuting.

By the definition of the mappings of g and B, only for x ∈ (1/2, 1), gx = Bx = 7/8,
at this time gBx = g(7/8) = 7/8 = B(7/8) = Bgx, so gBx = Bgx, so we can obtain that the
pair (g, B) is weakly compatible. Similarly, we can show that the pair (h,C) is also weakly
compatible.

Now we proof that the mappings f , g, h,A, B, and C are satisfying the condition (2.1)
of Theorem 2.1 with k = 5/16 ∈ [0, 1/3). Let

M
(
x, y, z

)
= max

⎧
⎨

⎩

G
(
Ax, gy, gy

)
+G

(
By, fx, fx

)
,

G
(
By, hz, hz

)
+G

(
Cz, gy, gy

)
,

G
(
Cz, fx, fx

)
+G(Ax, hz, hz)

⎫
⎬

⎭
. (2.45)

Case 1. If x, y, z ∈ [0, 1/2], then

G
(
fx, gy, hz

)
= G

(
1,

10
11
,
9
10

)
=

1
5
,

G
(
Ax, gy, gy

)
+G

(
By, fx, fx

)
= G

(
x,

10
11
,
10
11

)
+G(1, 1, 1) = 2

∣∣∣∣x − 10
11

∣∣∣∣ ≥
9
11
.

(2.46)

Thus, we have

G
(
fx, gy, hz

)
=

1
5
<

5
16

· 9
11

≤ k(G(Ax, gy, gy) +G(By, fx, fx)) ≤ kM(
x, y, z

)
. (2.47)
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Case 2. If x, y ∈ [0, 1/2], z ∈ (1/2, 1], then

G
(
fx, gy, hz

)
= G

(
1,

10
11
,
7
8

)
=

1
4
,

G
(
Ax, gy, gy

)
+G

(
By, fx, fx

)
= G

(
x,

10
11
,
10
11

)
+G(1, 1, 1) = 2

∣
∣
∣
∣x − 10

11

∣
∣
∣
∣ ≥

9
11
.

(2.48)

Therefore, we get

G
(
fx, gy, hz

)
=

1
4
<

5
16

· 9
11

≤ k(G(Ax, gy, gy) +G(By, fx, fx)) ≤ kM(
x, y, z

)
. (2.49)

Case 3. If x, z ∈ [0, 1/2], y ∈ (1/2, 1], then

G
(
fx, gy, hz

)
= G

(
1,

7
8
,
9
10

)
=

1
4
,

G
(
Cz, fx, fx

)
+G(Ax, hz, hz) = G(1, 1, 1) +G

(
x,

9
10
,
9
10

)
= 2

∣∣∣∣x − 9
10

∣∣∣∣ ≥
4
5
.

(2.50)

Hence, we have

G
(
fx, gy, hz

)
=

1
4
=

5
16

· 4
5
≤ k(G(Cz, fx, fx) +G(Ax, hz, hz)) ≤ kM(

x, y, z
)
. (2.51)

Case 4. If y, z ∈ [0, 1/2], x ∈ (1/2, 1], then

G
(
fx, gy, hz

)
= G

(
7
8
,
10
11
,
9
10

)
=

3
44
,

G
(
By, hz, hz

)
+G

(
Cz, gy, gy

)
= G

(
1,

9
10
,
9
10

)
+G

(
1,

10
11
,
10
11

)
=

21
55
.

(2.52)

So we get

G
(
fx, gy, hz

)
=

3
44

<
5
16

· 21
55

≤ k(G(By, hz, hz) +G(Cz, gy, gy)) ≤ kM(
x, y, z

)
. (2.53)

Case 5. If x ∈ [0, 1/2], y, z ∈ (1/2, 1], then

G
(
fx, gy, hz

)
= G

(
1,

7
8
,
7
8

)
=

1
4
. (2.54)

If y ∈ (1/2, 1), then

G
(
Ax, gy, gy

)
+G

(
By, fx, fx

)
= G

(
x,

7
8
,
7
8

)
+G

(
7
8
, 1, 1

)
= 2

∣∣∣∣x − 7
8

∣∣∣∣ +
1
4
≥ 3

4
+
1
4
= 1.

(2.55)
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If y = 1, then

G
(
Ax, gy, gy

)
+G

(
By, fx, fx

)
= G

(
x,

7
8
,
7
8

)
+G(0, 1, 1) = 2

∣
∣
∣
∣x − 7

8

∣
∣
∣
∣ + 2 ≥ 3

4
+ 2 =

11
4
.

(2.56)

And so we have

G
(
Ax, gy, gy

)
+G

(
By, fx, fx

) ≥ 1 (2.57)

for all y ∈ (1/2, 1]. Hence we have

G
(
fx, gy, hz

)
=

1
4
<

5
16

· 1 ≤ k(G(Ax, gy, gy) +G(By, fx, fx)) ≤ kM(
x, y, z

)
. (2.58)

Case 6. If y ∈ [0, 1/2], x, z ∈ (1/2, 1], then

G
(
fx, gy, hz

)
= G

(
7
8
,
10
11
,
7
8

)
=

3
44
,

G
(
Ax, gy, gy

)
+G

(
By, fx, fx

)
= G

(
x,

10
11
,
10
11

)
+G

(
1,

7
8
,
7
8

)
= 2

∣∣∣∣x − 10
11

∣∣∣∣ +
1
4
≥ 1

4
.

(2.59)

Thus, we have

G
(
fx, gy, hz

)
=

3
44

<
5
16

· 1
4
≤ k(G(Ax, gy, gy) +G(By, fx, fx)) ≤ kM(

x, y, z
)
. (2.60)

Case 7. If z ∈ [0, 1/2], x, y ∈ (1/2, 1], then

G
(
fx, gy, hz

)
= G

(
7
8
,
7
8
,
9
10

)
=

1
20
. (2.61)

If y ∈ (1/2, 1), then

G
(
By, hz, hz

)
+G

(
Cz, gy, gy

)
= G

(
7
8
,
9
10
,
9
10

)
+G

(
1,

7
8
,
7
8

)
=

3
10
. (2.62)

If y = 1, then

G
(
By, hz, hz

)
+G

(
Cz, gy, gy

)
= G

(
0,

9
10
,
9
10

)
+G

(
1,

7
8
,
7
8

)
=

41
20
. (2.63)
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And so we have

G
(
By, hz, hz

)
+G

(
Cz, gy, gy

) ≥ 3
10

(2.64)

for all y ∈ (1/2, 1]. Hence we have

G
(
fx, gy, hz

)
=

1
20

<
5
16

· 3
10

≤ k(G(By, hz, hz) +G(Cz, gy, gy)) ≤ kM(
x, y, z

)
. (2.65)

Case 8. If x, y, z ∈ (1/2, 1], then

G
(
fx, gy, hz

)
= G

(
7
8
,
7
8
,
7
8

)
= 0 ≤ 5

16
M

(
x, y, z

)
= kM

(
x, y, z

)
. (2.66)

Then in all the above cases, the mappings f , g, h, A, B, and C are satisfying the condition
(2.1) of Theorem 2.1 with k = 5/16 so that all the conditions of Theorem 2.1 are satisfied.
Moreover, 7/8 is the unique common fixed point for all of the mappings f , g, h, A, B, and C.

In Theorem 2.1, if we take A = B = C = I (I is identity mapping, the same as below),
then we have the following corollary.

Corollary 2.3 (see [2, Theorem 2.4]). Let (X,G) be a complete G-metric space, and let f , g, and h
be three mappings of X into itself satisfying the following conditions:

G
(
fx, gy, hz

) ≤ kmax

⎧
⎨

⎩

G
(
x, gy, gy

)
+G

(
y, fx, fx

)
,

G
(
y, hz, hz

)
+G

(
z, gy, gy

)
,

G
(
z, fx, fx

)
+G(x, hz, hz)

⎫
⎬

⎭
(2.67)

or

G
(
fx, gy, hz

) ≤ kmax

⎧
⎨

⎩

G
(
x, x, gy

)
+G

(
y, y, fx

)
,

G
(
y, y, hz

)
+G

(
z, z, gy

)
,

G
(
z, z, fx

)
+G(x, x, hz)

⎫
⎬

⎭
(2.68)

for all x, y, z ∈ X, where k ∈ [0, 1/3). Then f , g, and h have a unique common fixed point in X.

Also, if we take f = g = h andA = B = C = I in Theorem 2.1, thenwe get the following.

Corollary 2.4 (see [3, Theorem 2.4]). Let (X,G) be a complete G-metric space, and let f be a
mapping of X into itself satisfying the following conditions:

G
(
fx, fy, fz

) ≤ kmax

⎧
⎨

⎩

G
(
x, fy, fy

)
+G

(
y, fx, fx

)
,

G
(
y, fz, fz

)
+G

(
z, fy, fy

)
,

G
(
z, fx, fx

)
+G

(
x, fz, fz

)

⎫
⎬

⎭
(2.69)
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or

G
(
fx, fy, fz

) ≤ kmax

⎧
⎨

⎩

G
(
x, x, fy

)
+G

(
y, y, fx

)
,

G
(
y, y, fz

)
+G

(
z, z, fy

)
,

G
(
z, z, fx

)
+G

(
x, x, fz

)

⎫
⎬

⎭
, (2.70)

for all x, y, z ∈ X, where k ∈ [0, 1/3). Then, f has a unique fixed point in X.

Remark 2.5. Theorem 2.1 and Corollaries 2.3 and 2.4 generalize and extend the corresponding
results of Abbas and Rhoades [5] and Mustafa et al. [6].

Remark 2.6. In Theorem 2.1, if we take: (1) f = g = h; (2) A = B = C; (3) g = h and B = C; (4)
g = h, B = C = I, several new results can be obtained.

Theorem 2.7. Let (X,G) be a complete G-metric space, and let f , g, h, A, B, and C be six mappings
of X into itself satisfying the following conditions:

(i) f(X) ⊂ B(X), g(X) ⊂ C(X), h(X) ⊂ A(X);

(ii) the pairs (f,A), (g, B), and (h,C) are commutative mappings;

(iii) for all x, y, z ∈ X,

G
(
fmx, gmy, hmz

) ≤ kmax

⎧
⎨

⎩

G
(
Ax, gmy, gmy

)
+G

(
By, fmx, fmx

)
,

G
(
By, hmz, hmz

)
+G

(
Cz, gmy, gmy

)
,

G
(
Cz, fmx, fmx

)
+G(Ax, hmz, hmz)

⎫
⎬

⎭
(2.71)

or

G
(
fmx, gmy, hmz

) ≤ kmax

⎧
⎨

⎩

G
(
Ax,Ax, gmy

)
+G

(
By, By, fmx

)
,

G
(
By, By, hmz

)
+G

(
Cz,Cz, gmy

)
,

G
(
Cz,Cz, fmx

)
+G(Ax,Ax, hmz)

⎫
⎬

⎭
, (2.72)

where k ∈ [0, 1/2), m ∈ N, then f , g, h, A, B, and C have a unique common fixed point in X.

Proof. Suppose that mappings f , g, h, A, B, and C satisfy the condition (2.71). Since fmX ⊂
fm−1X ⊂ · · · ⊂ fX, fX ⊂ BX so that fmX ⊂ BX. Similarly, we can show that gmX ⊂ CX and
hmX ⊂ AX. From the the Theorem 2.1, we see that fm, gm, hm, A, B, and C have a unique
common fixed point u.

Since fu = f(fmu) = fm+1u = fm(fu), so that

G
(
fmfu, gmu, hmu

) ≤ kmax

⎧
⎨

⎩

G
(
Afu, gmu, gmu

)
+G

(
Bu, fmfu, fmfu

)
,

G(Bu, hmu, hmu) +G
(
Cu, gmu, gmu

)
,

G
(
Cu, fmfu, fmfu

)
+G

(
Afu, hmu, hmu

)

⎫
⎬

⎭
, (2.73)
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note that Afu = fAu = fu and the Proposition 1.12(iii), we obtain

G
(
fu, u, u

) ≤ kmax

⎧
⎨

⎩

G
(
fu, u, u

)
+G

(
u, fu, fu

)
,

G(u, u, u) +G(u, u, u),
G
(
u, fu, fu

)
+G

(
fu, u, u

)

⎫
⎬

⎭

= k
[
G
(
u, fu, fu

)
+G

(
fu, u, u

)]

≤ 3kG
(
fu, u, u

)
.

(2.74)

Since k ∈ [0, 1/3), hence G(fu, u, u) = 0 and so fu = u.
By the same argument, we can prove that gu = u and hu = u. Thus, we have u = fu =

gu = hu = Au = Bu = Cu so that f , g, h, A, B, and C have a common fixed point u in X. Let v
be any other common fixed point of f , g, h, A, B, and C, then by using condition (2.71), we
have

G(u, u, v) = G
(
fmu, gmu, hmv

)

≤ kmax

⎧
⎨

⎩

G
(
Au, gmu, gmu

)
+G

(
Bu, fmu, fmu

)
,

G(Bu, hmv, hmv) +G
(
Cv, gmu, gmu

)
,

G
(
Cv, fmu, fmu

)
+G(Au, hmv, hmv)

⎫
⎬

⎭

= kmax

⎧
⎨

⎩

G(u, u, u) +G(u, u, u),
G(u, v, v) +G(v, u, u),
G(v, u, u) +G(u, v, v)

⎫
⎬

⎭

= k[G(u, v, v) +G(v, u, u)]

≤ 3kG(u, u, v).

(2.75)

Hence, G(u, u, v) = 0 and so u = v, since 0 ≤ k < 1/3. Thus, common fixed point is unique.
The proof using (2.72) is similar. This completes the proof.

In Theorem 2.7, if we take A = B = C = I, then we have the following corollary.

Corollary 2.8 (see [2, Corollary 2.5]). Let (X,G) be a complete G-metric space, and let f , g, and h
be three mappings of X into itself satisfying the following conditions:

G
(
fmx, gmy, hmz

) ≤ kmax

⎧
⎨

⎩

G
(
x, gmy, gmy

)
+G

(
y, fmx, fmx

)
,

G
(
y, hmz, hmz

)
+G

(
z, gmy, gmy

)
,

G
(
z, fmx, fmx

)
+G(x, hmz, hmz)

⎫
⎬

⎭
(2.76)

or

G
(
fmx, gmy, hmz

) ≤ kmax

⎧
⎨

⎩

G
(
x, x, gmy

)
+G

(
y, y, fmx

)
,

G
(
y, y, hmz

)
+G

(
z, z, gmy

)
,

G
(
z, z, fmx

)
+G(x, x, hmz)

⎫
⎬

⎭
(2.77)
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for all x, y, z ∈ X, where k ∈ [0, 1/3), m ∈ N; then f , g, and h have a unique common fixed
point in X.

Also, if we take f = g = h andA = B = C = I in Theorem 2.7, thenwe get the following.

Corollary 2.9 (see [3, Corollary 2.5]). Let (X,G) be a complete G-metric space, and let f be a
mapping of X into itself satisfying the following conditions:

G
(
fmx, fmy, fmz

) ≤ kmax

⎧
⎨

⎩

G
(
x, fmy, fmy

)
+G

(
y, fmx, fmx

)
,

G
(
y, fmz, fmz

)
+G

(
z, fmy, fmy

)
,

G
(
z, fmx, fmx

)
+G

(
x, fmz, fmz

)

⎫
⎬

⎭
(2.78)

or

G
(
fmx, fmy, fmz

) ≤ kmax

⎧
⎨

⎩

G
(
x, x, fmy

)
+G

(
y, y, fmx

)
,

G
(
y, y, fmz

)
+G

(
z, z, fmy

)
,

G
(
z, z, fmx

)
+G

(
x, x, fmz

)

⎫
⎬

⎭
(2.79)

for all x, y, z ∈ X, where k ∈ [0, 1/3), m ∈ N; then f has a unique fixed point in X.

Remark 2.10. In Theorem 2.7, if we take: (1) f = g = h; (2) g = h and B = C; (3) g = h,
B = C = I, several new results can be obtained.

Corollary 2.11. Let (X,G) be a completeG-metric space, and let f , g, h,A, B, andC be six mappings
of X into itself satisfying the following conditions:

(i) f(X) ⊂ B(X), g(X) ⊂ C(X), h(X) ⊂ A(X);

(ii) for all x, y, z ∈ X,

G
(
fx, gy, hz

) ≤ a
{
G
(
Ax, gy, gy

)
+G

(
By, fx, fx

)}

+ b
{
G
(
By, hz, hz

)
+G

(
Cz, gy, gy

)}

+ c
{
G
(
Cz, fx, fx

)
+G(Ax, hz, hz)

}
(2.80)

or

G
(
fx, gy, hz

) ≤ a
{
G
(
Ax,Ax, gy

)
+G

(
By, By, fx

)}

+ b
{
G
(
By, By, hz

)
+G

(
Cz,Cz, gy

)}

+ c
{
G
(
Cz,Cz, fx

)
+G(Ax,Ax, hz)

}
,

(2.81)

where 0 ≤ a+b+c < 1/3. Then one of the pairs (f,A), (g, B), and (h,C) has a coincidence
point in X. Further, if one of the following conditions is satisfied, then the mappings f , g,
h, A, B, and C have a unique common fixed point in X.

(a) Either f or A is G-continuous, the pair (f,A) is weakly commutative, the pairs (g, B) and
(h,C) are weakly compatible;
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(b) Either g or B is G-continuous, the pair (g, B) is weakly commutative, the pairs (f,A) and
(h,C) are weakly compatible;

(c) Either h or C is G-continuous, the pair (h,C) is weakly commutative, the pairs (f,A) and
(g, B) are weakly compatible.

Proof. Suppose that mappings f , g, h,A, B, and C satisfy the condition (2.80). For x, y, z ∈ X,
let

M
(
x, y, z

)
= max

⎧
⎨

⎩

G
(
Ax, gy, gy

)
+G

(
By, fx, fx

)
,

G
(
By, hz, hz

)
+G

(
Cz, gy, gy

)
,

G
(
Cz, fx, fx

)
+G(Ax, hz, hz)

⎫
⎬

⎭
. (2.82)

Then

a
{
G
(
Ax, gy, gy

)
+G

(
By, fx, fx

)}
+ b

{
G
(
By, hz, hz

)
+G

(
Cz, gy, gy

)}

+c
{
G
(
Cz, fx, fx

)
+G(Ax, hz, hz)

}

≤ (a + b + c)M
(
x, y, z

)
.

(2.83)

So, if

G
(
fx, gy, hz

) ≤ a
{
G
(
Ax, gy, gy

)
+G

(
By, fx, fx

)}

+ b
{
G
(
By, hz, hz

)
+G

(
Cz, gy, gy

)}

+ c
{
G
(
Cz, fx, fx

)
+G(Ax, hz, hz)

}
,

(2.84)

then G(fx, gy, hz) ≤ (a+ b + c)M(x, y, z). Taking k = a+ b + c in Theorem 2.1, the conclusion
of Corollary 2.11 can be obtained from Theorem 2.1 immediately.

The proof using (2.81) is similar. This completes the proof.

Corollary 2.12. Let (X,G) be a completeG-metric space, and let f , g, h,A, B, andC be six mappings
of X into itself satisfying the following conditions:

(i) f(X) ⊂ B(X), g(X) ⊂ C(X), h(X) ⊂ A(X);

(ii) the pairs (f,A), (g, B) and (h,C) are commutative mappings;

(iii) for all x, y, z ∈ X,

G
(
fmx, gmy, hmz

) ≤ a
{
G
(
Ax, gmy, gmy

)
+G

(
By, fmx, fmx

)}

+ b
{
G
(
By, hmz, hmz

)
+G

(
Cz, gmy, gmy

)}

+ c
{
G
(
Cz, fmx, fmx

)
+G(Ax, hmz, hmz)

}
(2.85)
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or

G
(
fmx, gmy, hmz

) ≤ a
{
G
(
Ax,Ax, gmy

)
+G

(
By, By, fmx

)}

+ b
{
G
(
By, By, hmz

)
+G

(
Cz,Cz, gmy

)}

+ c
{
G
(
Cz,Cz, fmx

)
+G(Ax,Ax, hmz)

}
,

(2.86)

where 0 ≤ a + b + c < 1/3,m ∈ N; then f , g, h, A, B, and C have a unique common fixed
point in X.

Proof. The proof follows from Corollary 2.11, and from an argument similar to that used in
Theorem 2.7.

Remark 2.13. In Corollaries 2.11 and 2.12, if we take: (1) A = B = C = I; (2) f = g = h; (3)
A = B = C; (4) g = h and B = C; (5) g = h, B = C = I, several new results can be obtained.
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[10] M. Abbas, T. Nazir, and S. Radenović, “Some periodic point results in generalized metric spaces,”
Applied Mathematics and Computation, vol. 217, no. 8, pp. 4094–4099, 2010.

[11] Z. Mustafa, F. Awawdeh, and W. Shatanawi, “Fixed point theorem for expansive mappings in G-
metric spaces,” International Journal of Contemporary Mathematical Sciences, vol. 5, no. 49–52, pp. 2463–
2472, 2010.

[12] H. Obiedat and Z. Mustafa, “Fixed point results on a nonsymmetric G-metric spaces,” Jordan Journal
of Mathematics and Statistics, vol. 3, no. 2, pp. 65–79, 2010.



20 Abstract and Applied Analysis

[13] Z. Mustafa and H. Obiedat, “A fixed point theorem of Reich in G-metric spaces,” CUBO Mathematics
Journal, vol. 12, no. 1, pp. 83–93, 2010.

[14] M. Abbas, S. H. Khan, and T. Nazir, “Common fixed points of R-weakly commuting maps in
generalized metric spaces,” Fixed Point Theory and Applications, vol. 2011, article 41, no. 1, 11 pages,
2011.

[15] H. Aydi, W. Shatanawi, and C. Vetro, “On generalized weak G-contraction mapping in G-metric
spaces,” Computers & Mathematics with Applications, vol. 62, no. 11, pp. 4223–4229, 2011.

[16] M. Abbas, A. R. Khan, and T. Nazir, “Coupled common fixed point results in two generalized metric
spaces,” Applied Mathematics and Computation, vol. 217, no. 13, pp. 6328–6336, 2011.

[17] W. Shatanawi,M. Abbas, and T. Nazir, “Common coupled coincidence and coupled fixed point results
in two generalized metric spaces,” Fixed Point Theory and Applications, vol. 2011, article 80, 2011.

[18] R. K. Vats, S. Kumar, and V. Sihag, “Some common fixed point theorems for compatible mappings of
type(A) in complete G-metric space,” Advances in Fuzzy Mathematics, vol. 6, no. 1, pp. 27–38, 2011.

[19] H. Aydi, “A fixed point result involving a generalized weakly contractive condition in G-metric
spaces,” Bulletin of Mathematical Analysis and Applications, vol. 3, no. 4, pp. 180–188, 2011.

[20] Z. Mustafa, M. Khandagji, and W. Shatanawi, “Fixed point results on complete G-metric spaces,”
Studia Scientiarum Mathematicarum Hungarica, vol. 48, no. 3, pp. 304–319, 2011.

[21] W. Shatanawi, “Coupled fixed point theorems in generalized metric spaces,” Hacettepe Journal of
Mathematics and Statistics, vol. 40, no. 3, pp. 441–447, 2011.

[22] M. Abbas, T. Nazir, and P. Vetro, “Common fixed point results for three maps in G-metric spaces,”
Filomat, vol. 25, no. 4, pp. 1–17, 2011.
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