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We determine the conditions for some matrix transformations from n(φ), where the sequence
space n(φ), which is related to the �p spaces, was introduced by Sargent (1960). We also obtain
estimates for the norms of the bounded linear operators defined by these matrix transformations
and find conditions to obtain the corresponding subclasses of compact matrix operators by using
the Hausdorffmeasure of noncompactness.

1. Introduction and Preliminaries

We shall write w for the set of all complex sequences x = (xk)
∞
k=0. Let ϕ, �∞, c, and c0 denote

the sets of all finite, bounded, convergent, and null sequences, respectively. We write �p :=
{x ∈ w :

∑∞
k=0 |xk|p < ∞} for 1 ≤ p < ∞. By e and e(n)(n ∈ N), we denote the sequences such

that ek = 1 for k = 0, 1, . . ., and e
(n)
n = 1 and e

(n)
k

= 0 (k /=n). For any sequence x = (xk)
∞
k=0,

let x[n] =
∑n

k=0 xke
(k) be its n-section. Moreover, we write bs and cs for the sets of sequences

with bounded and convergent partial sums, respectively.
A sequence (b(n))∞n=0 in a linearmetric spaceX is called Schauder basis if for every x ∈ X,

there is a unique sequence (λn)
∞
n=0 of scalars such that x =

∑∞
n=0 λnb

(n). A sequence space
X with a linear topology is called a K-space if each of the maps pi : X → C defined by
pi(x) = xi is continuous for all i ∈ N. A K-space is called an FK-space if X is complete
linear metric space; a BK-space is a normed FK-space. An FK-space X ⊃ φ is said to have
AK if every sequence x = (xk)

∞
k=0 ∈ X has a unique representation x =

∑∞
k=0 xke

(k), that is,
x[n] =

∑n
k=0 xke

(k) → x as n → ∞.
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The spaces c0, c and �p(1 ≤ p < ∞) all have Schauder bases but the space �∞ has no
Schauder basis. Among the other classical sequence spaces, the spaces c0 and �p(1 ≤ p < ∞)
have AK.

Let (X, ‖ · ‖) be a normed space. Then the unit sphere and closed unit ball in X are
denoted by SX : = {x ∈ X : ‖x‖ = 1} and BX : = {x ∈ X : ‖x‖ ≤ 1}. If X ⊃ ϕ is a BK-space
and a = (ak) ∈ w, then we define

‖a‖∗X = sup
x∈SX

∣
∣
∣
∣
∣

∞∑

k=0

akxk

∣
∣
∣
∣
∣

(1.1)

provided the expression on the right-hand side exists and is finite.
The α-, β-, and γ-duals of a subset X of w are, respectively, defined by

Xα = {a = (ak) ∈ w : ax = (akxk) ∈ �1 ∀ x = (xk) ∈ X},
Xβ = {a = (ak) ∈ w : ax = (akxk) ∈ cs ∀ x = (xk) ∈ X},
Xγ = {a = (ak) ∈ w : ax = (akxk) ∈ bs ∀ x = (xk) ∈ X}.

(1.2)

Throughout this paper, the matrices are infinite matrices of complex numbers. If A is
an infinite matrix with complex entries ank(n, k ∈ N), then we write A = (ank) instead of
A = (ank)

∞
n,k=0. Also, we write An for the sequence in the nth row of A, that is, An = (ank)

∞
n,k=0

for every n ∈ N. In addition, if x = (xk) ∈ w, then we define the A-transform of x as the
sequence Ax = (An(x))

∞
n=0, where

An(x) =
∞∑

k=0

ankxk; (n ∈ N) (1.3)

provided the series on the right converges for each n ∈ N.
Let X and Y be subsets of w and A = (ank) an infinite matrix. Then, we say that A

defines a matrix mapping from X into Y , and we denote it by writing A : X → Y if Ax exists
and is in Y for all x ∈ X. By (X,Y ), we denote the class of all infinite matrices that mapX into
Y . Thus A ∈ (X,Y ) if and only if An ∈ Xβ for all n ∈ N and Ax ∈ Y for all x ∈ X.

Lemma 1.1 (see[1]). Let † denote any of the symbols α, β, or γ . Then, we have c†0 = c† = �†∞ = �1,
�†1 = �∞ and �†p = �q, where 1 < p < ∞ and q = p/(p − 1).

Lemma 1.2 (see[1, 2]). Let X be any of the spaces c0, c, �∞, or �p(1 ≤ p < ∞). Then, we have
‖ · ‖∗X = ‖ · ‖Xβ on Xβ, where ‖ · ‖Xβ denotes the natural norm on the dual space Xβ.

Lemma 1.3 (see[1, 2]). Let X ⊃ ϕ and Y be BK-spaces. Then, we have

(a) (X,Y ) ⊂ B(X,Y ), that is, every matrix A ∈ (X,Y ) defines an operator LA ∈ B(X,Y ) by
LA(x) = Ax for all x ∈ X;

(b) if X has AK, then B(X,Y ) ⊂ (X,Y ), that is, for every operator L ∈ B(X,Y ) there exists a
matrix A ∈ (X,Y ) such that L(x) = Ax for all x ∈ X.

Furthermore, we have the following results on the operator norms.
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Lemma 1.4 (see[2]). Let X ⊃ ϕ be a BK-space and Y any of the spaces c0, c, or �∞. If A ∈ (X,Y ),
then

‖LA‖ = ‖A‖(X,�∞) = sup
n

‖An‖∗X < ∞, (1.4)

where ‖A‖(X,�∞) denotes the operator norm for the matrix A ∈ (X, �∞).

Sargent [3] defined the following sequence spaces.
Let C denote the space whose elements are finite sets of distinct positive integers.

Given any element σ of C, we denote by c(σ) the sequence {cn(σ)} such that cn(σ) = 1
for n ∈ σ and cn(σ) = 0 otherwise. Further

Cs =

{

σ ∈ C :
∞∑

n=1

cn(σ) ≤ s

}

, (1.5)

that is, Cs is the set of those σ whose support has cardinality at most s, and we get

Φ =
{
φ =

(
φk

) ∈ w : 0 < φ1 ≤ φn ≤ φn+1 and (n + 1)φn ≥ nφn+1
}
. (1.6)

For φ ∈ Φ, the following sequence spaces were introduced by Sargent [3] and further
studied in [4]

m
(
φ
)
=

{

x = (xk) ∈ w : ‖x‖m(φ) = sup
s≥1

sup
σ∈Cs

(
1
φs

∑

k∈σ
|xk|

)

< ∞
}

,

n
(
φ
)
=

{

x = (xk) ∈ w : ‖x‖n(φ) = sup
u∈S(x)

( ∞∑

k=1

|uk|Δφk

)

< ∞
}

,

(1.7)

whereΔφk = φk −φk−1 and S(x) denotes the set of all sequences that are rearrangements of x.

Remark 1.5 ([3]). (i) The spacesm(φ) and n(φ) are BK spaces with their respective norms. (ii)
If φn = 1 for all n ∈ N, then m(φ) = �1, n(φ) = �∞; if φn = n for all n ∈ N, then m(φ) = �∞,
n(φ) = �1. (iii) �1 ⊆ m(φ) ⊆ �∞[�∞ ⊇ n(φ) ⊇ �1] for all φ of Φ.(iv) (m(φ))† = n(φ) and
(n(φ))† = m(φ) , where † is any of the symbols α, β, or γ .

Recently, Makowsky and Mursaleen [5] have characterized the classes of compact
operators on some BK-spaces, namely, C(m(φ), �p) (1 ≤ p ≤ ∞), C(n(φ), �p)(1 ≤ p <
∞), C(�p,m(φ))(1 < p ≤ ∞), and C(�p, n(φ))(1 ≤ p ≤ ∞). In this paper, we
determine the conditions for the classes of matrix transformations (n(φ), c0), (n(φ), c),
and (n(φ), �∞), and establish estimates for the norms of the bounded linear operators
defined by these matrix transformations. Further, we obtain the necessary and sufficient
(or only sufficient) conditions for the corresponding subclasses of compact matrix operators
C(n(φ), c0) , C(n(φ), c), andC(n(φ), �∞) by using theHausdorffmeasure of noncompactness.
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2. The Hausdorff Measure of Noncompactness

Let (X, ‖ · ‖) be a normed space. Then the unit sphere and closed unit ball in X are denoted
by SX := {x ∈ X : ‖x‖ = 1} and BX := {x ∈ X : ‖x‖ ≤ 1}. If X and Y are Banach spaces
then B(X,Y ) is the set of all bounded linear operators L : X → Y ;B(X,Y ) is a Banach space
with the operator norm given by ‖L‖ = supx∈SX

‖L(x)‖ for all L ∈ B(X,Y ). A linear operator
L : X → Y is said to be compact if the domain of L is all ofX, and for every bounded sequence
(xn) in X, the sequence (L(xn)) has a subsequence which converges in Y . We denote the class
of all compact operators in B(X,Y ) by C(X,Y ). An operator L ∈ B(X,Y ) is said to be of
finite rank if dimR(L) < ∞, where R(L) is the range space of L. An operator of finite rank is
clearly compact. In particular, if Y = C then we write X∗ for the set of all continuous linear
functionals on X with the norm ‖f‖ = supx∈SX

|f(x)|.
The Hausdorff measure of noncompactness was defined by Goldenštein et al. in 1957

[6].
Let S and M be subsets of a metric space (X, d) and ε > 0. Then, S is called an ε-net of

M in X if for every x ∈ M there exists s ∈ S such that d(x, s) < ε. Further, if the set S is finite,
then the ε-net S ofM is called a finite ε-net ofM, and we say thatM has a finite ε-net in X. A
subset of a metric space is said to be totally bounded if it has a finite ε-net for every ε > 0.

By MX , we denote the collection of all bounded subsets of a metric space (X, d). If
Q ∈ MX , then theHausdorffmeasure of noncompactness of the setQ, denoted by χ(Q), is defined
by

χ(Q) := inf
{
ε > 0 : Q ⊂ ∪n

i=1B(xi, ri), xi ∈ X, ri < ε(i = 1, 2, . . .), n ∈ N
}
. (2.1)

The function χ : MX → [0,∞) is called the Hausdorff measure of noncompactness.
The basic properties of the Hausdorff measure of noncompactness can be found in

[2, 7–9] and for recent developments, see [10–18]. If Q, Q1, and Q2 are bounded subsets of a
metric space (X, d), then

χ(Q) = 0 iff Q is totally bounded,

Q1 ⊂ Q2 implies χ(Q1) ≤ χ(Q2).
(2.2)

Further, if X is a normed space, then the function χ has some additional properties
connected with the linear structure, for example,

χ(Q1 +Q2) ≤ χ(Q1) + χ(Q2),

χ(αQ) = |α|χ(Q) ∀α ∈ C.
(2.3)

Let X and Y be Banach spaces and χ1 and χ2 the Hausdorff measures of
noncompactness on X and Y , respectively. An operator L : X → Y is said to be (χ1,χ2)-
bounded if L(Q) ∈ MY for all Q ∈ MX and there exist a constant C ≥ 0 such that
χ2(L(Q)) ≤ Cχ1(Q) for all Q ∈ MX . If an operator L is (χ1,χ2)-bounded, then the number
‖L‖(χ1,χ2) := inf{C ≥ 0 : χ2(L(Q)) ≤ Cχ1(Q) for all Q ∈ MX} is called the (χ1, χ2)-measure
of noncompactness ofL. If χ1 = χ2 = χ, then we write ‖L‖(χ1,χ2) = ‖L‖χ.
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The most effective way in the characterization of compact operators between the
Banach spaces is by applying the Hausdorff measure of noncompactness. This can be
achieved as follows: Let X and Y be Banach spaces and L ∈ B(X,Y ). Then, the Hausdorff
measure of noncompactness of L, denoted by ‖L‖χ, can be determined by

‖L‖χ = χ(L(SX)), (2.4)

and we have that L is compact if and only if

‖L‖χ = 0. (2.5)

Now, the following result gives an estimate for the Hausdorffmeasure of noncompact-
ness in Banach spaces with Schauder bases. It is known that if (bk)

∞
k=0 is a Schauder basis for

a Banach space X, then every element x ∈ X has a unique representation x =
∑∞

k=0 αk(x) bk,
where αk(k ∈ N) are called the basis functionals. Moreover, for each n ∈ N, the operator
Pn : X → X defined by Pn(x) =

∑n
k=0 αk(x) bk(x ∈ X) is called the projector onto the linear

span of {b0, b1, . . . , bn}. Besides, all operators Pn and I −Pn are equibounded, where I denotes
the identity operator on X.

Theorem 2.1 (see[7]). Let X be a Banach space with a Schauder basis (bk)
∞
k=0, Q ∈ MX , and

Pn : X → X(n ∈ N) the projector onto the linear span of {b0, b1, . . . , bn}. Then, we have

1
a
· lim
n→∞

sup

(

sup
x∈Q

‖(I − Pn)(x)‖
)

≤ χ(Q) ≤ lim
n→∞

sup

(

sup
x∈Q

‖(I − Pn)(x)‖
)

, (2.6)

where a = lim supn→∞‖I − Pn‖ .

In particular, the following result shows how to compute the Hausdorff measure of
noncompactness in the spaces c0 and �p(1 ≤ p < ∞), which are BK-spaces with AK.

Theorem 2.2 (see[7]). LetQ be a bounded subset of the normed spaceX, whereX is �p for 1 ≤ p < ∞
or c0. If Pn : X → X(n ∈ N) is the operator defined by Pn(x) = x[n] = (x0, x1, . . . , xn, 0, 0, . . .) for
all x = (xk)

∞
k=0 ∈ X, then we have

χ(Q) = lim
n→∞

(

sup
x∈Q

‖(I − Pn)(x)‖
)

. (2.7)

The Haudorff measure of noncompactness for n(φ) has recently been determined in
[19] as follows.

Theorem 2.3. Let Q be a bounded subset of n(φ). Then

χ(Q) = lim
k→∞

sup
x∈Q

(

sup
u∈S(x)

( ∞∑

n=k

|un|Δφn

))

. (2.8)



6 Abstract and Applied Analysis

3. Main Results

First we prove the following basic lemma.

Lemma 3.1. If A ∈ (n(φ), c), then the following hold

αk = lim
n→∞

ank exists for every k ∈ N, (3.1)

α = (αk) ∈ m
(
φ
)
, (3.2)

sup
n

‖An − α‖∗
n(φ)

< ∞, (3.3)

lim
n→∞

An(x) =
∞∑

k=0

αkxk ∀x = (xk) ∈ n
(
φ
)
. (3.4)

Proof. We write ‖x‖ = ‖x‖n(φ), for short. Since A ∈ (n(φ), c), we have

‖LA‖ = sup
n

‖An‖∗n(φ) < ∞. (∗)

Further, since e(k) ∈ n(φ) and henceAe(k) ∈ c for all k ∈ N. Consequently, the limits αk in
(3.1) exist for all k ∈ N.

Now, let x ∈ n(φ) be given. Then there is a positive constantK such that ‖x[p]‖ ≤ K ‖x‖
for all p ∈ N. Thus we have

∣
∣
∣
∣
∣

p∑

k=0

ankxk

∣
∣
∣
∣
∣
=
∣
∣
∣An

(
x[p]

)∣
∣
∣ ≤

∥
∥
∥Ax[p]

∥
∥
∥
l∞

=
∥
∥
∥LA(x[p])

∥
∥
∥
l∞

≤ K‖LA‖‖x‖ (3.5)

for all p, n ∈ N. Hence, we obtain from (3.1) that

∣
∣
∣
∣
∣

p∑

k=0

αkxk

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

p∑

k=0

ankxk

∣
∣
∣
∣
∣
≤ K ‖LA‖‖x‖;

(
p ∈ N

)
. (3.6)

This implies that αx = (αkxk) ∈ bs, and since x ∈ X was arbitrary, we deduce that
α ∈ n(φ)γ . But n(φ)γ = n(φ)β and hence (3.2) holds. Moreover, since n(φ) ⊃ ϕ is a BK space,
(3.2) implies ‖α‖∗

n(φ) < ∞ by (Wilansky [19, Theorem 7.2.9]). Therefore, we get (3.3) from (15)
by using (1.3).

Now, define the matrix B = (bnk) by bnk = ank −αk for all n, k ∈ N. Then, it is obvious that
Bn ∈ n(φ)β = m(φ) for all n ∈ N. Also, it follows by (3.3) that

sup
n

‖Bn‖∗n(φ) = sup
n

‖An − α‖∗n(φ) < ∞. (3.7)

Furthermore, we have from (3.1) that

lim
n→∞

Bn

(
e(k)

)
= lim

n→∞
bnk = 0 (k ∈ N), (3.8)
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that is, Be(k) ∈ c0 for all k ∈ N. This leads us to the consequence that B ∈ (n(φ), c0) by
(Malkowsky-Rakocevic [2, Theorem 1.23(c)]). Hence, limn→∞Bn(x) = 0 for all x ∈ n(φ),
which yields (3.4).

This completes the proof of the lemma.

Theorem 3.2. (a) If A ∈ (n(φ), c0), then

‖LA‖χ = lim
r→∞

(

sup
n>r

‖An‖∗n(φ)
)

(3.9)

(b) If A ∈ (n(φ), c), then

1
2
· lim
r→∞

(

sup
n≥r

‖An − α‖∗
n(φ)

)

≤ ‖LA‖χ ≤ lim
r→∞

(

sup
n≥r

‖An − α‖∗n(φ)
)

, (3.10)

where α = (αk) with αk = lim
r→∞

ank for all k ∈ N.

(c) If A ∈ (n(φ), �∞), then

0 ≤ ‖LA‖χ ≤ lim
r→∞

(

sup
n≥r

‖An‖∗n(φ)
)

. (3.11)

Proof. We write S = Sn(φ), for short. Then, we have by (2.4) and Lemma 1.3 (a) that

‖LA‖χ = χ(AS). (3.12)

For (a), we have AS ∈ Mc0 . Thus, it follows by Theorem 2.2 that

‖LA‖χ = χ(AS) = lim
r→∞

(

sup
x∈S

‖(I − Pr)(Ax)‖�∞
)

, (3.13)

where Pr : c0 → c0(r ∈ N) is the operator defined by Pr(x) = (x0, x1, . . . , xr , 0, 0, . . .) for all
x = (xk) ∈ c0. This yields that ‖(I − Pr)(Ax)‖�∞ = supn>r |An(x)| for all x ∈ n(φ) and every
r ∈ N. Thus, by combining (1.1) and (1.3), we have for every r ∈ N that

sup
x∈S

‖(I − Pr)(Ax)‖�∞ = sup
n>r

‖An‖∗n(φ). (3.14)

Hence, by (3.13)we get (3.9).
To prove (b), we have AS ∈ Mc. Thus, we are going to apply Theorem 2.1 to get an

estimate for the value of χ(AS) in (3.12). For this, we know that every z = (zn) ∈ c has a
unique representation z = ze +

∑∞
n=0(zn − z)e(n), where z = limn→∞zn. Thus, we define the
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projectors Pr : c → c(r ∈ N) by P0(z) = ze and Pr(z) = ze +
∑r−1

n=0(zn − z) e(n) for r ≥ 1. Then,
we have for every r ∈ N that (I − Pr)(z) =

∑∞
n=r(zn − z)e(n) and hence

‖(I − Pr)(z)‖�∞ = sup
n>r

|zn − z| (3.15)

for all z ∈ c and every r ∈ N. Obviously ‖(I − Pr)(z)‖�∞ ≤ 2‖z‖�∞ , hence ‖I − Pr‖ ≤ 2 for all
r ∈ N. Further, for each r ∈ N, we define the sequence z(r) = (z(r)n ) ∈ c by z

(r)
r = −1 and z

(r)
n = 1

for n/= r. Then ‖z(r)‖�∞ = 1 and limn→∞z
(r)
n = 1. Therefore, ‖I − Pr‖ ≥ ‖(I − Pr)(z(r))‖�∞ = 2

by (3.15). Consequently, we have ‖I − Pr‖ = 2 for all r ∈ N. Hence, from (3.12) we obtain by
applying Theorem 2.1 that

1
2
· μ(A) ≤ ‖LA‖χ ≤ μ(A), (3.16)

where

μ(A) = lim
r→∞

sup

(

sup
x∈S

‖(I − Pr)(Ax)‖�∞
)

. (3.17)

Now, it is given that A ∈ (n(φ), c). Thus, it follows from Lemma 3.1 that the limits αk =
limn→∞ank exist for all k, α = (αk) ∈ n(φ)β = m(φ) and

lim
n→∞

An(x) =
∞∑

k=0

αkxk (3.18)

for all x = (xk) ∈ n(φ). Therefore, we derive from (3.15) that

‖(I − Pr)(Ax)‖�∞ = sup
n≥r

|An(x) −
∞∑

k=0

αkxk|

= sup
n≥r

|
∞∑

k=0

(ank − αk)xk|
(3.19)

for all x = (xk) ∈ n(φ) and every r ∈ N. Consequently, we obtain by (1.3) that

sup
x∈S

‖(I − Pr)(Ax)‖�∞ = sup
n≥r

‖An − α‖∗
n(φ) (r ∈ N). (3.20)

Hence, we get (3.10) from (3.16).
Finally, to prove (c) we define Pr : �∞ → �∞(r ∈ N) as in the proof of part (a) for all

x = (xk) ∈ �∞.
Then, it is clear that

AS ⊂ Pr(AS) + (I − Pr)(AS) (r ∈ N). (3.21)
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Thus, it follows by the elementary properties of the function χ that

0 ≤ χ(AS) ≤ χ(Pr(AS)) + χ((I − Pr)(AS))

= χ((I − Pr)(AS))

≤ supx∈S‖(I − Pr)(Ax)‖�∞
= sup

n>r
‖An‖∗n(φ)

(3.22)

for all r ∈ N. This and (3.12) together imply (3.11). This completes the proof of the theorem.

As an immediate consequence of Theorem 3.2 and (2.5), we have the following.

Corollary 3.3. (a) If A ∈ (n(φ), c0), then

LA is compact iff lim
r→∞

(

sup
n>r

‖An‖∗n(φ)
)

= 0. (3.23)

(b) If A ∈ (n(φ), c), then

LA is compact iff lim
r→∞

(

sup
n≥r

‖An − α‖∗
n(φ)

)

= 0, (3.24)

where α = (αk) with αk = limn→∞ankfor all k ∈ N.
(c) If A ∈ (n(φ), �∞), then

LA is compact if lim
r→∞

(

sup
n>r

‖An‖∗n(φ)
)

= 0. (3.25)

Remark 3.4. It is worth mentioning that the condition in (3.25) is only a sufficient condition
for the operator LA to be compact, where A ∈ (n(φ), �∞). In the following example, we show
that it is possible for LA to be compact while limr→∞(supn>r‖An‖∗n(φ)) /= 0.

Choose a fixed m ∈ N such that x′
m /= 0 for some x′ = (x′

k) ∈ Sn(φ). Now, we define the
matrixA = (ank) by anm = 1 and ank = 0 for all k /=m (n ∈ N). Then, we haveAx = xme for all
x = (xk) ∈ w, hence A ∈ (w, �∞) ⊂ (n(φ), �∞). Also, since LA is of finite rank, LA is compact.
On the other hand, we have An = e(m) and hence ‖An‖∗n(φ) = supx∈Sn(φ)

|xm| for all n ∈ N by
(1.3). This implies that

lim
r→∞

(

sup
n>r

‖An‖∗n(φ)
)

= syp
x∈Sn(φ)

|xm| ≥
∣
∣x′

m

∣
∣ > 0. (3.26)
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