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By using the Lyapunov functions and the Razumikhin techniques, the exponential stability of
impulsive functional differential systems with delayed impulses is investigated. The obtained
results have shown that the system will stable if the impulses’ frequency and amplitude are
suitably related to the increase or decrease of the continuous flows, and they improve and
complement ones from some recent works. An example is provided to illustrate the effectiveness
and the advantages of the results obtained.

1. Introduction

There has been a growing interest in the theory of impulsive dynamical systems in the past
decades because of their applications to various problems arising in communications, control
technology, impact mechanics, electrical engineering, medicine, biology and so forth; see the
monographs [1, 2] and the papers [3–8] and the references therein. In particular, special
attention has been focused on stability and impulsive stabilization of impulsive functional
differential systems (IFDSs) (see, e.g., [9–26]).

However, in these previous works on stability of IFDSs, the authors always suppose
that the state variables on the impulses are only related to the present state variables. But in
most cases, it is more applicable that the state variables on the impulses that we add are also
related to the past ones. For example, it is more realistic in practice if the impulsive control
depends on a past state due to a time lag between the time when the observation of the state
is made and the time when the feedback control reaches the system.

In fact, there have been several attempts in the literature to study the stability and
control problems of a particular class of IFDSs with delayed impulses (see, e.g., [27–36]).
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Lian et al. [27] investigated the optimal control problem of linear continuous-time systems
possessing delayed discrete-time controllers in networked control systems. For nonlinear
impulsive systems, Khadra et al. studied the impulsive synchronization problem coupled by
linear delayed impulses in [28]. In addition, in [29–34], the authors investigate the uniform
asymptotic stability and global exponential stability of general IFDSs:

ẋ(t) = f(t, xt), t /= tk, t � t0,

Δx(tk) = Ik
(
tk, xt−

k

)
, k ∈ Z+.

(1.1)

But in these stability analyses, the effects of time delay on the impulses have been ignored.
For example in [31–34], the Lyapunov function was assumed to be satisfied V (tk, ϕ(0) +
Ik(tk, ϕ)) � (1 + dk)V (t−

k
, ϕ(0)).

Very recently, in [35], Zhang and Sun established some sufficient conditions for
uniform stability, uniform asymptotical stability, and practical stability of a particular class
of IFDSs with delayed impulses:

ẋ(t) = f(t, xt), t /= tk, t � t0,

Δx(tk) = Ik
(
x
(
t−k
))

+ Jk
(
x
(
t−k − τ

))
, k ∈ Z+.

(1.2)

However, their results are only valid for some specific systems due to the restrictive
requirements on the continuous flows and impulsive gain. Lin et al. [36] investigated the
exponential stability and uniform stability of the following more generalized IFDSs with
delayed impulses:

ẋ(t) = f(t, xt), t /= tk, t � t0,

Δx(tk) = Ik
(
x
(
t−k
))

+ Jk
(
xt−

k

)
, k ∈ Z+.

(1.3)

But those results can only been applied to the systems with stable discrete dynamics since
their results need the strong condition of impulsive gain dk + ek < 1.

Motivated by the above discussions, in this paper, we further study the exponential
stability of IFDSs with delayed impulses. Different from the previous works on exponential
stability of IFDSs with/without delayed impulses [18, 31, 34, 36], we will divide the systems
into two classes: the systemwith stable continuous dynamics and unstable discrete dynamics,
the systems with unstable continuous dynamics and stable discrete dynamics. The first class
of impulsive systems corresponds to the case when the continuous dynamics are subjected
to impulsive perturbations, while the second class of impulsive systems corresponds to the
case when impulses are employed to stabilize the unstable continuous dynamics. This idea
is enlightened in part by the works Chen and Zheng [37] about the uncertain impulsive
systems. By using the Lyapunov functions and the Razumikhin techniques, some global
exponential stability criteria are derived. The results obtained improve and complement some
recent works. It is worth mentioning that our results shown that the system will be stable if
the impulses’ frequency and amplitude are suitably related to the increase or decrease of the
continuous flows. Moreover, some results obtained can be applied to IFDSs with any time
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delay. In the end, an example is provided to illustrate the effectiveness and the advantages of
the results obtained.

2. Preliminaries

Let R denote the set of real numbers, R+ the set of nonnegative real numbers, Z+ the set of
positive integers, and R

n the n-dimensional real space equipped with the Euclidean norm
| · |. Let τ > 0 and PC([−τ, 0];Rn) = {ϕ : [−τ, 0] → R

n|ϕ(t+) = ϕ(t) for all t ∈ [−τ, 0),
ϕ(t−) exist and ϕ(t−) = ϕ(t) for all, but at most a finite number of points t ∈ (−τ, 0]} be with
the norm ‖ϕ‖ = sup−τ�θ�0|ϕ(θ)|, where ϕ(t+) and ϕ(t−) denote the right-hand and left-hand
limits of function ϕ(t) at t, respectively. Denote PC([t0 − τ, b];R+) = {ϕ : [t0 − τ, b] → R+ |
ϕ is piecewise continuous} for b > t0, and PC([t0−τ,∞);R+) = {ϕ|ϕ|[t0−τ,b] ∈ PC([t0−τ, b];R+)
for all b > t0 − τ}.

Consider the IFDS in which the state variables on the impulses are related to the time
delay:

ẋ(t) = f(t, xt), t /= tk, t � t0,

Δx(tk) = Ik
(
tk, x

(
t−k
))

+ Jk
(
tk, xt−

k

)
, k ∈ Z+

xt0 = φ(s), s ∈ [−τ, 0],

(2.1)

where x ∈ R
n, f : R+×C → R

n, Ik : R+×R
n → R

n, Jk : R+×C → R
n, φ ∈ PC([−τ, 0];Rn), C is

a open set in PC([−τ, 0];Rn). and The fixed moments of impulse times {tk, k ∈ Z+} satisfy 0 �
t0 < t1 < · · · < tk < · · · , tk → ∞ (as k → ∞), Δx(tk) = x(tk) − x(t−k); xt, xt− ∈ PC ([−τ, 0];Rn)
are defined by xt = x(t + θ), xt− = x(t− + θ) for θ ∈ [−τ, 0], respectively.

Throughout this paper, we assume that f, Ik, and Jk, k ∈ Z+, satisfy the necessary
conditions for the global existence and uniqueness of solutions for all t � t0, see [6, 30–
33]. Then for any φ ∈ PC ([−τ, 0];Rn), there exists a unique function satisfying system (2.1)
denoted by x(t; t0, φ), which is continuous on the right-hand side and limitable on the left-
hand side. Moreover, we assume that f(t, 0) ≡ 0, Ik(tk, 0) ≡ 0 and Jk(tk, 0) ≡ 0, k ∈ Z+, which
imply that x(t) ≡ 0 is a solution of (2.1), which is called the trivial solution.

At the end of this section, let us introduce the following definitions.

Definition 2.1. A function V : [t0 − τ,∞) × R
n → R+ belongs to class v0 if

(i) V is continuous on each of the sets [tk−1, tk) × R
n, and for each x ∈ R

n, t ∈ [tk−1, tk),
k ∈ Z+, lim(t,y)→ (t−

k
,x)V (t, y) = V (t−

k
, x) exists;

(ii) V (t, x) is locally Lipschitz in x ∈ R
n, and V (t, 0) ≡ 0 for all t � t0.

Definition 2.2. Given a function V ∈ v0, the upper right-handDini derivative of V with respect
to system (2.1) is defined by

D+V
(
t, ψ(0)

)
= lim sup

h→ 0+

1
h

[
V
(
t + h, ψ(0) + hf

(
t, ψ

)) − V (
t, ψ(0)

)]
, (2.2)

for (t, ψ) ∈ [t0,∞) × PC([−τ, 0];Rn).
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Definition 2.3. The trivial solution of system (2.1) or, simply, system (2.1) is said to be globally
exponentially stable if there exist positive constants α and C such that for any initial data
xt0 = φ ∈ PC([−τ, 0];Rn), the solution x(t; t0, φ) satisfies

∣∣x(t; t0, φ
)∣∣ � C

∥∥φ∥∥e−α(t−t0), t � t0. (2.3)

3. Main Results

In this section, we shall analyze the global exponential stability of system (2.1) by employing
the Razumikhin techniques and the Lyapunov functions.

Theorem 3.1. Assume that there exist functions V ∈ v0, c ∈ PC ([t0 − τ,∞);R+), several positive
constants c1, c2, c̃, p, q, and nonnegative constants ρ1, ρ2, ρ1 + ρ2 � 1 such that

(i) c1|x|p � V (t, x) � c2|x|p, for all (t, x) ∈ [t0 − τ,∞) × R
n;

(ii) V (tk, ϕ(0)) � ρ1(1+μk)V (t−k, ϕ(0))+ρ2(1+μk)supθ∈[−τ,0]V (t−k+θ, ϕ(θ)), for each k ∈ Z+

and ϕ ∈ PC([−τ, 0];Rn), where μk, k ∈ Z+, are nonnegative constants with Σ∞
k=1μk <∞;

(iii) D+V (t, ϕ(0)) � −c(t)V (t, ϕ(0)), for all t � t0, t /= tk, k ∈ Z+, ϕ ∈ PC ([−τ, 0];Rn),
whenever V (t + θ, ϕ) < qV (t, ϕ(0)), θ ∈ [−τ, 0];

(iv) ρ1 + ρ2ec̃τ < q < ec̃	, inft�t0c(t) � c̃, where 	 = infk∈Z+{tk − tk−1}.

Then the trivial solution of system (2.1) is globally exponentially stable and the convergence
rate should not be greater than (1/p)(c̃ − (ln q/	)).

Proof. Set L =
∏∞

k=1(1 + μk); from the condition Σ∞
k=1μk < ∞, we known that 1 � L < ∞. Fix

any initial data φ ∈ PC ([−τ, 0];Rn) and write x(t; t0, φ) = x(t), V (t, x(t)) = V (t) simply. From
condition (iv), we can choose a small enough constant γ > 0 such that

eγτ
(
ρ1 + ρ2ec̃τ

)
< q < e(c̃−γ)	, γ < c̃. (3.1)

Set q̃ = qe−γτ > 1, choose M > 0 such that q̃c2 < M. Define W(t) = eγ(t−t0)V (t). In the
following, we shall show that

W(t) � LM
∥∥φ∥∥p, t � t0. (3.2)

In order to do so, we first prove that

W(t) < M
∥∥φ∥∥p, t ∈ [t0 − τ, t1). (3.3)

It is noted that

W(t0 + θ) � c2
∥∥φ∥∥p < 1

q̃
M

∥∥φ∥∥p < M∥∥φ∥∥p, θ ∈ [−τ, 0]. (3.4)
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So it only needs to prove

W(t) < M
∥∥φ∥∥p, t ∈ (t0, t1). (3.5)

We assume, on the contrary, there exist some t ∈ (t0, t1) such thatW(t) � M‖φ‖p. Set

t∗ = inf
{
t ∈ [t0, t1) :W(t) � M

∥∥φ∥∥p}. (3.6)

Note thatW(t) is continuous on t ∈ [t0, t1), then t∗ ∈ (t0, t1) and

W(t∗) =M
∥∥φ∥∥p, W(t) < M

∥∥φ∥∥p, t ∈ [t0 − τ, t∗). (3.7)

Define

t∗∗ = sup
{
t ∈ [t0, t∗] :W(t) � 1

q̃
M

∥∥φ∥∥p
}
, (3.8)

then t∗∗ ∈ (t0, t∗) and

W(t∗∗) =
1
q̃
M

∥∥φ∥∥p, W(t) >
1
q̃
M

∥∥φ∥∥p, t ∈ (t∗∗, t∗]. (3.9)

Consequently, for all t ∈ [t∗∗, t∗],

W(t + θ) � M
∥∥φ∥∥p � q̃W(t), θ ∈ [−τ, 0], (3.10)

which implies that

V (t + θ) = e−γ(t+θ−t0)W(t + θ) � q̃e−γ(t+θ−t0)W(t) � q̃eγτV (t) = qV (t), θ ∈ [−τ, 0]. (3.11)

Then it follows from condition (iii) that one has that

D+W(t) = eγ(t−t0)
[
γV (t) +D+V (t)

]
�

(
γ − c(t))W(t), t ∈ [t∗∗, t∗], (3.12)

which leads to

W(t∗) � W(t∗∗)e
∫ t∗
t∗∗ (γ−c(s))ds � W(t∗∗)e(γ−c̃)(t

∗−t∗∗)

� 1
q̃
M

∥∥φ∥∥p < M∥∥φ∥∥p,
(3.13)

this is a contradiction. Thus (3.5) holds.
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Now we assume that for somem ∈ Z+, m � 1,

W(t) < Mm

∥∥φ∥∥p, t ∈ [t0 − τ, tm), (3.14)

whereM1 =M,Mm =M
∏

1�i�m−1(1 + μi) form � 2. We will prove that

W(t) < Mm+1
∥∥φ∥∥p, t ∈ [tm, tm+1). (3.15)

To do this, we first claim

W
(
t−m + θ

)
� e(c̃−γ)τ

q̃
Mm

∥∥φ∥∥p, θ ∈ [−τ, 0). (3.16)

Suppose not, then there exists θ̃ ∈ [−τ, 0) such thatW(t−m + θ̃) > (e(c̃−γ)τ/q̃)Mm‖φ‖p. Without
lose generality, we assume tm + θ̃ ∈ (tl−1, tl], l ∈ Z+, l � m.

There are two cases to be considered.
Case 1.W(t) > (e(c̃−γ)τ/q̃)Mm‖φ‖p over t ∈ [tl−1, tm + θ̃).

By assumption (3.14), for all t ∈ [tl−1, tm + θ̃), we get

W(t + θ) < Mm

∥∥φ∥∥p < e(c̃−γ)τMm

∥∥φ∥∥p < q̃W(t), θ ∈ [−τ, 0]. (3.17)

Thus, by conditions (iii)-(iv) and inequalities (3.10)–(3.13), we have

W
(
t−m + θ̃

)
� W(tl−1)e(γ−c̃)(t

−
m+θ̃−tl−1)

< Mm

∥∥φ∥∥pe(c̃−γ)τe(γ−c̃)(tm−tl−1)

� e(c̃−γ)τ

qm−l+1Mm

∥∥φ∥∥p

<
e(c̃−γ)τ

q̃
Mm

∥∥φ∥∥p.

(3.18)

This is a contradiction.
Case 2. There are some t ∈ [tl−1, tm + θ̃) such thatW(t) > (e(c̃−γ)τ/q̃)Mm‖φ‖p.

In this case, define

t = sup

{
t ∈

[
tl−1, tm + θ̃

)
:W(t) � e(c̃−γ)τ

q̃
Mm

∥∥φ∥∥p
}
. (3.19)

Then t ∈ [tl−1, tm + θ̃) and

W
(
t
)
=
e(c̃−γ)τ

q̃
Mm

∥∥φ∥∥p, W(t) >
e(c̃−γ)τ

q̃
Mm

∥∥φ∥∥p, t ∈
(
t, tm + θ̃

)
. (3.20)



Abstract and Applied Analysis 7

So from assumption (3.14), for any t ∈ [t, tm + θ̃), we have

W(t + θ) < Mm

∥∥φ∥∥p < e(c̃−γ)τMm

∥∥φ∥∥p � q̃W(t), θ ∈ [−τ, 0]. (3.21)

It follows from condition (iii) that

W
(
t−m + θ̃

)
� W

(
t
)
=
e(c̃−γ)τ

q̃
Mm

∥∥φ∥∥p. (3.22)

This is also a contradiction. Hence, inequality (3.16) holds.
Similarly, we can prove

W
(
t−m
)

� 1
q̃
Mm

∥∥φ∥∥p. (3.23)

Then it follows from (3.16), (3.23), and condition (ii) that we obtain

W(tm) � ρ1
(
1 + μm

)
W

(
t−m
)
+ ρ2

(
1 + μm

)
eγτ sup

θ∈[−τ,0]
W

(
t−m + θ

)

� ρ1 + ρ2ec̃τ

q̃
Mm+1

∥∥φ∥∥p < Mm+1
∥∥φ∥∥p.

(3.24)

Now we suppose that (3.15) is not true, let

t∗ = inf
{
t ∈ [tm, tm+1) :W(t) � Mm+1

∥∥φ∥∥p}. (3.25)

Then t∗ ∈ (tm, tm+1) and

W(t∗) =Mm+1
∥∥φ∥∥p, W(t) < Mm+1

∥∥φ∥∥p, t ∈ [tm, t∗). (3.26)

IfW(t) > (1/q̃)Mm+1‖φ‖p for all t ∈ [tm, t∗], set t∗∗ = tm; otherwise, let

t∗∗ = sup
{
t ∈ [tm, t∗] :W(t) � 1

q̃
Mm+1

∥∥φ∥∥p
}
. (3.27)

Thus for all t ∈ [t∗∗, t∗], we have

W(t + θ) � Mm+1
∥∥φ∥∥p � q̃W(t), θ ∈ [−τ, 0]. (3.28)

It follows from condition (iii) that

D+W(t) = eγ(t−t0)
[
γV (t) +D+V (t)

]
�

(
γ − c(t))W(t), t ∈ [t∗∗, t∗], (3.29)
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which implies

W(t∗) � W(t∗∗)e(γ−c̃)(t
∗−t∗∗) � W(t∗∗) < Mm+1

∥∥φ∥∥p. (3.30)

This is a contradiction. Therefore, (3.15) holds.
By mathematical induction, (3.15) holds for any m ∈ Z+. That is, (3.2) holds, which

implies that

|x(t)| � C
∥∥φ∥∥e(−γ/p)(t−t0), t � t0, (3.31)

where C = (LM/c1)
1/p. This completes the proof.

Remark 3.2. The parameters ρ1 and ρ2 in condition (ii) describe the influence of impulses on
the stability of the underlying continuous systems. When ρ1 + ρ2 � 1, the Lyapunov function
V may jump up along the state trajectories of system (2.1) at impulsive time instant tk. Thus
the impulses may be viewed as disturbances, that is, they potentially destroy the stability of
continuous system. In this case, it is required that the impulses do not occur too frequently.
Theorem 3.1 tells us to what extent we can relax the restriction on the impulses to keep the
exponential stability property of the original continuous system.

Theorem 3.3. Assume that there exist functions V ∈ v0, c ∈ PC ([t0 − τ,∞);R+), several positive
constants c1, c2, c̃, p, q, and nonnegative constants ρ1, ρ2, ρ1 + ρ2 < 1 such that

(i) c1|x|p � V (t, x) � c2|x|p, for all (x, t) ∈ R
n × [t0 − τ,∞);

(ii) V (tk, ϕ(0)) � ρ1(1+μk)V (t−k, ϕ(0))+ρ2(1+μk)supθ∈[−τ,0]V (t−k+θ, ϕ(θ)), for each k ∈ Z+

and ϕ ∈ P([−τ, 0];Rn), where μk, k ∈ Z+, are nonnegative constants with
∑∞

k=1 μk <∞;

(iii) D+V (t, ϕ(0)) � c(t)V (t, ϕ(0)), for all t � t0, t /= tk, k ∈ Z+, ϕ ∈ PC ([−τ, 0];Rn),
whenever V (t + θ, ϕ) < qV (t, ϕ(0)), θ ∈ [−τ, 0];

(iv) q > 1/(ρ1 + ρ2) > ec̃	, c̃	 � supt�t0

∫ t+	
t c(s)ds, where 	 = supk∈Z+

{tk − tk−1}.

Then the trivial solution of system (2.1) is globally exponentially stable for any time delay
τ ∈ (0,∞) and the convergence rate should not be greater than (1/p)((ln q/	) − c̃).

Proof . From condition (iv), we can choose a small enough constant γ > 0 such that

q >
eγτ

ρ1 + ρ2eγτ
>

1
ρ1 + ρ2eγτ

> e(c̃+γ)	, qe−γτ > 1. (3.32)

Set q̃ = qe−γτ . The following proof can be completed by using the similar arguments as in the
proof of Theorem 3.1, so it is omitted.

Remark 3.4. When ρ1 + ρ2 < 1, the Lyapunov function V may jump down along the state
trajectories of system (2.1) at impulsive time instant tk. Thus the impulses may be viewed
impulsive stabilizing, that is, they may be used to stabilize the continuous system if the
original continuous system is not stable. In this case, the impulses must be frequent and their
amplitude must be suitably related the growth rate of V .
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Remark 3.5. If c(t) ≡ c, then Theorem 3.3 becomes Theorem3.1 in [36] with dk = ρ1(1 + μk),
ek = ρ2(1 + μk), dk + ek < 1. Obviously, Theorem 3.3 in this paper has a wider adaptive range
than those in [36].

Let Jk ≡ 0 in system (2.1), then we have the following IFDS (see [9–23, 26]):

ẋ(t) = f(xt, t), t /= tk, t � t0,

Δx(tk) = Ik
(
x
(
t−k
)
, tk

)
, k ∈ Z+,

xt0 = φ(s), s ∈ [−τ, 0].
(3.33)

For system (3.33), we have the following results by Theorems 3.1 and 3.3, respectively.

Corollary 3.6. Assume that there exist functions V ∈ v0, c ∈ PC ([t0 − τ,∞);R+), and several
positive constants c1, c2, c̃, p, q, and a constant ρ � 1 such that

(i) c1|x|p � V (t, x) � c2|x|p, for all (x, t) ∈ R
n × [t0 − τ,∞);

(ii) V (tk, ϕ(0)) � ρ(1 + μk)V (t−k, ϕ(0)), for each k ∈ Z+ and ϕ ∈ P([−τ, 0];Rn), where μk,
k ∈ Z+, are nonnegative constants with

∑∞
k=1 μk <∞;

(iii) D+V (t, ϕ(0)) � −c(t)V (t, ϕ(0)), for all t � t0, t /= tk, k ∈ Z+, ϕ ∈ PC ([−τ, 0];Rn),
whenever V (t + θ, ϕ) < qV (t, ϕ(0)), θ ∈ [−τ, 0];

(iv) ρ < q < ec̃	, inft�t0c(t) � c̃, where 	 = infk∈Z+{tk − tk−1}.

Then the trivial solution of system (3.33) is globally exponentially stable for any time delay
τ ∈ (0,∞) and the convergence rate should not be greater than (1/p)(c̃ − (ln q/	)).

Corollary 3.7. Assume that there exist functions V ∈ v0, c ∈ PC ([t0 − τ,∞);R+) and several
positive constants c1, c2, c̃, p, q, and a constant ρ < 1 such that

(i) c1|x|p � V (t, x) � c2|x|p, for all (x, t) ∈ R
n × [t0 − τ,∞);

(ii) V (tk, ϕ(0)) � ρ(1 + μk)V (t−
k
, ϕ(0)), for each k ∈ Z+, ϕ ∈ P([−τ, 0];Rn), where μk,

k ∈ Z+, are nonnegative constants with
∑∞

k=1 μk <∞;

(iii) D+V (t, ϕ(0)) � c(t)V (t, ϕ(0)), for all t � t0, t /= tk, k ∈ Z+, ϕ ∈ PC ([−τ, 0];Rn),
whenever V (t + θ, ϕ) < qV (t, ϕ(0)), θ ∈ [−τ, 0];

(iv) q > 1/ρ > ec̃	, c̃	 � supt�t0

∫ t+	
t c(s)ds, where 	 = supk∈Z+

{tk − tk−1}.

Then the trivial solution of system (3.33) is globally exponentially stable for any time delay τ ∈ (0,∞)
and the convergence rate should not be greater than (1/p)((ln q/	) − c̃).

Remark 3.8. If c(t) ≡ c > 0, μk ≡ 0, k ∈ Z+, then Theorems 3.1 and 3.2 in [25] follow from
Corollaries 3.6 and 3.7, respectively.

4. Example

In this section, an example is given to show the effectiveness and advantages of our results.
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Example 4.1. Consider the following IFDS (see [35, 36]):

ẋ(t) = ax(t) + bx(t − τ), t /= tk, t > 0,

x(tk) = cx
(
t−k
)
+ dx

(
t−k − τ

)
, k ∈ Z+,

(4.1)

where x ∈ R, τ > 0.
In the following, we will divide the system (4.1) into two classes to consider.

Case 1. a � 0 and 0 < |c| + |d| < 1.

Property 1. The trivial solution of system (4.1) is globally exponentially stable with impulse
time sequences that satisfy

sup
k∈Z+

{tk − tk−1} < − (|c| + |d|) ln(|c| + |d|)
a(|c| + |d|) + |b| . (4.2)

Proof . From equality (4.2), one can choose a small enough constant h > 0 such that

|c| + |d| − h > 0,

sup
k∈Z+

{tk − tk−1} < − (|c| + |d| − h) ln(|c| + |d|)
a(|c| + |d| − h) + |b| .

(4.3)

Let V (t, x) = |x|. By calculation, we have

D+V
(
t, ϕ(0)

)
� a

∣∣ϕ(0)∣∣ + |b|∣∣ϕ(−τ)∣∣ = aV (
t, ϕ(0)

)
+ |b|V (

t, ϕ
)
, (4.4)

for all t /= tk, k ∈ Z+ and ϕ ∈ PC([−τ, 0];R). By taking p = 1, c1 = c2 = 1, ρ1 = |c|, ρ2 = |d|,
q = 1/(|c| + |d| − h), c̃ = c(t) ≡ a + (|b|/(|c| + |d| − h)), and μk ≡ 0, k ∈ Z+ in Theorem 3.3, it is
easy to obtain Property 1.

Remark 4.2. In this case, the impulses are used to stabilize the unstable original continuous
system. In [35], under assumption that a, b, c, d > 0, and c + d < 1, Zhang and Sun obtained
that system (4.1) is uniformly stable if the impulses’ instances satisfy

sup
k∈Z+

{tk − tk−1} < −2(c + d)2 ln(c + d)
(2a + b)(c + d)2 + b

; (4.5)

Lin et al. [36] derived that system (4.1) is exponentially stable if

sup
k∈Z+

{tk − tk−1} < −1
2
(c + d) ln(c + d)
a(c + d) + b

. (4.6)
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Obviously, under condition a, b, c, d > 0, and c + d < 1, we get

− (|c| + |d|) ln(|c| + |d|)
a(|c| + |d|) + |b| = − (c + d) ln(c + d)

a(c + d) + b
> −1

2
(c + d) ln(c + d)
a(c + d) + b

, (4.7)

and one can also verify that

− (c + d) ln(c + d)
a(c + d) + b

>
−2(c + d)2 ln(c + d)
(2a + b)(c + d)2 + b

. (4.8)

So our results are less conservative than those in [35, 36].
Case 2. a < 0 and |c| + |d| � 1.

Property 2. Suppose that system’s parameters a, b, c, d and time delay τ satisfy

(|c| + |d|)2e−2aτ < −2a + |b|
|b| . (4.9)

Then the trivial solution of system (4.1) is globally exponentially stable with impulse time
sequences that satisfy

inf
k∈Z+

{tk − tk−1} > 2aτ − 2 ln(|c| + |d|)
2a + |b| + |b|(|c| + |d|)2e−2aτ

. (4.10)

Proof. From equalities (4.9) and (4.10), we can choose a small enough constant h > 0 such
that

(|c| + |d|)2e−2aτ < (|c| + |d|)2e−2aτ + h < −2a + |b|
|b| ,

inf
k∈Z+

{tk − tk−1} > −
ln
[
(|c| + |d|)2e−2aτ + 2h

]

2a + |b| + |b|(|c| + |d|)2e−2aτ + h
.

(4.11)

Set q = (|c| + |d|)2e−2aτ + h, then one can conclude that

2a + |b| + q|b| < 0, (|c| + |d|)2e−(2a+|b|+q|b|)τ < q < −2a + |b|
|b| . (4.12)

Let V (t, x) = (1/2)x2. By calculation, we have

D+V
(
t, ϕ(0)

)
�

(
a +

1
2
|b|

)
ϕ2(0) +

1
2
|b|ϕ2(−τ) = (2a + |b|)V (

t, ϕ(0)
)
+ |b|V (

t, ϕ
)
, (4.13)

for all t /= tk, k ∈ Z+, and ϕ ∈ PC([−τ, 0];R). By taking p = 2, c1 = c2 = 2, ρ1 = |c|(|c| + |d|),
ρ2 = |d|(|c|+ |d|), c̃ = c(t) ≡ −(2a+ |b|+ q|b|), and μk ≡ 0, k ∈ Z+ in Theorem 3.3, we can obtain
Property 2.
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Remark 4.3. In this case, the underlying continuous system is stable, the impulses are
disturbances, which potentially destroy the stability of continuous system. So the existing
results in [35, 36] are invalid for this case.

5. Conclusions

This paper has studied the exponential stability of IFDSs in which the state variables on
the impulses are related to the time delay. By using the Razumikhin techniques and the
Lyapunov functions, some criteria on the global exponential stability are established. The
obtained results improve and complement some recent works. An example has been given to
illustrate the effectiveness and the advantages of the results obtained.
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