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This paper investigates dynamical behaviors of stochastic Cohen-Grossberg neural network with
delays and reaction diffusion. By employing Lyapunov method, Poincaré inequality and matrix
technique, some sufficient criteria on ultimate boundedness, weak attractor, and asymptotic stabi-
lity are obtained. Finally, a numerical example is given to illustrate the correctness and effective-
ness of our theoretical results.

1. Introduction

Cohen and Grossberg proposed and investigated Cohen-Grossberg neural networks in 1983
[1]. Hopfield neural networks, recurrent neural networks, cellular neural networks, and bidi-
rectional associative memory neural networks are special cases of this model. Since then,
the Cohen-Grossberg neural networks have been widely studied in the literature, see for
example, [2–12] and references therein.

Strictly speaking, diffusion effects cannot be avoided in the neural networks when
electrons are moving in asymmetric electromagnetic fields. Therefore, we must consider that
the activations vary in space as well as in time. In [13–19], the authors gave some stability
conditions of reaction-diffusion neural networks, but these conditions were independent of
diffusion effects.

On the other hand, it has been well recognized that stochastic disturbances are
ubiquitous and inevitable in various systems, ranging from electronic implementations to
biochemical systems, which are mainly caused by thermal noise, environmental fluctuations,



2 Abstract and Applied Analysis

as well as different orders of ongoing events in the overall systems [20, 21]. Therefore, con-
siderable attention has been paid to investigate the dynamics of stochastic neural networks,
and many results on stability of stochastic neural networks have been reported in the liter-
ature, see for example, [22–38] and references therein.

The above references mainly considered the stability of equilibrium point of neural
networks. What do we study when the equilibrium point does not exist? Except for stabi-
lity property, boundedness and attractor are also foundational concepts of dynamical sys-
tems, which play an important role in investigating the uniqueness of equilibrium, global
asymptotic stability, global exponential stability, the existence of periodic solution, and so on
[39, 40]. Recently, ultimate boundedness and attractor of several classes of neural networks
with time delays have been reported. In [41], the globally robust ultimate boundedness of
integrodifferential neural networks with uncertainties and varying delays was studied. Some
sufficient criteria on the ultimate boundedness of deterministic neural networks with both
varying and unbounded delays were derived in [42]. In [43, 44], a series of criteria on the
boundedness, global exponential stability, and the existence of periodic solution for nonau-
tonomous recurrent neural networks were established. In [45, 46], some criteria on ultimate
boundedness and attractor of stochastic neural networks were derived. To the best of our
knowledge, there are few results on the ultimate boundedness and attractor of stochastic
reaction-diffusion neural networks.

Therefore, the arising questions about the ultimate boundedness, attractor and stabi-
lity for the stochastic reaction-diffusion Cohen-Grossberg neural networks with time-varying
delays are important yet meaningful.

The rest of the paper is organized as follows: some preliminaries are in Section 2, main
results are presented in Section 3, a numerical example and conclusions will be drawn in
Sections 4 and 5, respectively.

2. Model Description and Assumptions

Consider the following stochastic Cohen-Grossberg neural networks with delays and diffu-
sion terms:

dyi(t, x) =
l∑

k=1

∂

∂xk

(
Dik

∂yi(t, x)
∂xk

)
dt − di

(
yi(t, x)

)

×
⎛

⎝ci
(
yi(t, x)

) −
n∑

j=1

aijfj
(
yj(t, x)

) −
n∑

j=1

bijgj
(
yj

(
t − τj(t), x

)) − Ji

⎞

⎠dt

+
m∑

j=1

σij

(
yj(t, x), yj

(
t − τj(t), x

))
dwj(t), x ∈ X,

∂yi

∂v
:=
(
∂yi

∂x1
, . . . ,

∂yi

∂xl

)T

= 0, x ∈ ∂X,

yi(s, x) = ξi(s, x), −τ ≤ s ≤ 0, x ∈ X,

(2.1)

for 1 ≤ i ≤ n and t ≥ 0. In the above model, n ≥ 2 is the number of neurons in the network;
xi is space variable; yi(t, x) is the state variable of the ith neuron at time t and in space x;
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fj(yj(t, x)) and gj(yj(t, x)) denote the activation functions of the jth unit at time t and in
space x; constant Dik ≥ 0; di(yi(t, x)) presents an amplification function; ci(yi(t, x)) is an
appropriately behavior function; aij and bij denote the connection strengths of the jth unit on
the ith unit, respectively; τj(t) corresponds to the transmission delay and satisfies 0 ≤ τj(t) ≤
τ ; Ji denotes the external bias on the ith unit; σij(·, ·, x) is the diffusion function;X is a compact
set with smooth boundary ∂X and measure mesX > 0 in Rl; ξi(s, x) is the initial boundary
value; w(t) = (w1(t), . . . , wm(t))

T is m-dimensional Brownian motion defined on a complete
probability space (Ω,F,P) with a natural filtration {Ft}t≥0 generated by {w(s) : 0 ≤ s ≤ t},
where we associate Ω with the canonical space generated by all {wi(t)} and denote by F the
associated σ-algebra generated by {w(t)}with the probability measure P.

System (2.1) has the following matrix form:

dy(t, x) = col

{
l∑

k=1

∂

∂xk

(
Dik

∂yi(t, x)
∂xk

)}
dt − d

(
y(t, x)

)

× [c(y(t, x)) −Af
(
y(t, x)

) − Bg
(
y(t − τ(t), x)

) − J
]
dt

+ σ
(
y(t, x), y(t − τ(t), x)

)
dw(t), x ∈ X,

(2.2)

where

col

{
l∑

k=1

∂

∂xk

(
Dik

∂yi(t, x)
∂xk

)}
=

(
l∑

k=1

∂

∂xk

(
D1k

∂y1(t, x)
∂xk

)
, . . . ,

l∑

k=1

∂

∂xk

(
Dnk

∂yn(t, x)
∂xk

))T

,

A =
(
aij

)
n×n, B =

(
bij
)
n×n, f

(
y(t, x)

)
=
(
f1
(
y1(t, x)

)
, . . . , fn

(
yn(t, x)

))T
,

J = (J1, . . . , Jn)T ,

g
(
y(t − τ(t), x)

)
= diag

(
g1
(
y1(t − τ1(t), x)

)
, . . . , gn

(
yn(t − τn(t), x)

))
,

d
(
y(t, x)

)
= diag

(
d1
(
y1(t, x)

)
, . . . , dn

(
yn(t, x)

))
,

c
(
y(t, x)

)
= diag

(
c1
(
y1(t, x)

)
, . . . , cn

(
yn(t, x)

))
,

σ
(
y(t, x), y(t − τ(t), x), x

)
=
(
σij

(
yj(t, x), yj

(
t − τj(t), x

)
, x
))

n×m.
(2.3)

Let L2(X) be the space of real Lebesgue measurable functions onX and a Banach space
for the L2-norm

‖u(t)‖22 =
∫

X

u2(t, x)dx. (2.4)

Note that ξ = {(ξ1(s, x), . . . , ξn(s, x))T : − τ ≤ s ≤ 0} is C([−τ, 0] × Rl;Rn)-valued function and
F0-measurable Rn-valued random variable, where F0 = Fs on [−τ, 0], C([−τ, 0] × Rl;Rn) is
the space of all continuous Rn-valued functions defined on [−τ, 0] ×Rl with a norm ‖ξi(t)‖22 =∫
X ξ2i (t, x)dx.

The following assumptions and lemmas will be used in establishing our main results.
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(A1) There exist constants l−i , l
+
i ,m

−
i and m+

i such that

l−i ≤ fi(u) − fi(v)
u − v

≤ l+i , m−
i ≤ gi(u) − gi(v)

u − v
≤ m+

i , ∀u, v ∈ R, u/=v, i = 1, . . . , n. (2.5)

(A2) There exist constants μ and γi > 0 such that

τ̇i(t) ≤ μ, yi(t, x)ci
(
yi(t, x)

) ≥ γiy
2
i (t, x), x ∈ X, i = 1, . . . , n. (2.6)

(A3) di is bounded, positive, and continuous, that is, there exist constants di, di such that

0 < di ≤ di(u) ≤ di, for u ∈ R, i = 1, 2, . . . , n.

Lemma 2.1 (Poincaré inequality, [47]). Assume that a real-valued function w(x) : X → R
satisfies w(x) ∈ D = {w(x) ∈ L2(X), (∂w/∂xi) ∈ L2(X) (1 ≤ i ≤ l), (∂w(x)/∂v)|∂X = 0},
where X is a bounded domain of Rl with a smooth boundary ∂X. Then,

λ1

∫

X

|w(x)|2dx ≤
∫

X

|∇w(x)|2dx, (2.7)

which λ1 is the lowest positive eigenvalue of the Neumann boundary problem:

−Δu(x) = λu(x),
∂u(x)
∂v

∣∣∣∣
∂X

= 0, x ∈ X, (2.8)

∇ = (∂/∂x1, . . . , ∂/∂xm) is the gradient operator, Δ =
∑m

k=1(∂
2/∂x2

k
) is the Laplace operator.

Remark 2.2. Assumption (A1) is less conservative than that in [26, 28], since the constants
l−i , l+i , m−

i , and m+
i are allowed to be positive, negative, or zero, that is to say, the

activation function in (A1) is assumed to be neither monotonic, differentiable, nor bounded.
Assumption (A2) is weaker than those given in [23, 27, 30] since μ is not required to be zero
or smaller than 1 and is allowed to take any value.

Remark 2.3. According to the eigenvalue theory of elliptic operators, the lowest eigenvalue λ1
is only determined byX [47]. For example, ifX = [0, L], then λ1 = (π/L)2; ifX = (0, a)×(0, b),
then λ1 = min{(π/a)2, (π/b)2}.

The notation A > 0 (resp., A ≥ 0) means that matrix A is symmetric-
positive definite (resp., positive semidefinite). AT denotes the transpose of the matrix A.
λmin(A) represents the minimum eigenvalue of matrix A. ‖y(t)‖2 =

∫
X yT (t, x)y(t, x)dx =∑n

i=1 ‖yi(t)‖22.

3. Main Results

Theorem 3.1. Suppose that assumptions (A1)–(A3) hold and there exist some matrices P =
diag(p1, . . . , pn) > 0, Qi ≥ 0, σi > 0, Vi = diag(vi1, . . . , vin) ≥ 0 (i = 1, 2), Uj = diag(uj1, . . . ,
ujn) ≥ 0 (j = 1, 2, 3), and σ3 such that the following linear matrix inequality hold:
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(A4)

Σ =

⎛
⎜⎜⎜⎜⎜⎝

Σ1 σ3 L2U1 M2U3 0
∗ Σ2 0 0 M2U2

∗ ∗ Σ3 0 0
∗ ∗ ∗ Σ4 0

∗ ∗ ∗ Σ5

⎞
⎟⎟⎟⎟⎟⎠

< 0,

trace
[
σT(y(t, x), y(t − τ(t), x)

)
Pσ

(
y(t, x), y(t − τ(t), x)

)]

≤ yT (t, x)σ1y(t, x) + yT (t − τ(t), x)σ2y(t − τ(t), x) + 2yT (t, x)σ3y(t − τ(t), x),

(3.1)

where x ∈ X, ∗ means the symmetric term,

Σ1 = −2λ1PD − 2γdP + 3d
2
P +M3V1M3 + σ1 +Q1 − 2L1U1 − 2M1U3,

Σ2 = M3V2M3 + σ2 −
(
1 − μ

)
Q1 − 2M1U2,

Σ3 = ATPA − 2U1, Σ4 = Q2 − V1 − 2U3,

Σ5 = BTPB − (1 − μ
)
Q2 − V2 − 2U2,

D = diag(D1, . . . , Dn), Di = min
1≤k≤l

{Dik}, γ = diag
(
γ1, . . . , γn

)
,

d = diag
(
d1, . . . , dn

)
, d = diag

(
d1, . . . , dn

)
,

L1 = diag
(
l−1 l

+
1 , . . . , l

−
nl

+
n

)
, L2 = diag

(
l−1 + l+1 , . . . , l

−
n + l+n

)
,

M1 = diag
(
m−

1m
+
1 , . . . , m

−
nm

+
n

)
, M2 = diag

(
m−

1 +m+
1 , . . . , m

−
n +m+

n

)
,

M3 = diag
(
max

{∣∣m−
1

∣∣,
∣∣m+

1

∣∣}, . . . ,max
{∣∣m−

n

∣∣, |m+
n|
})

.

(3.2)

Then system (2.1) is stochastically ultimately bounded, that is, if for any ε ∈ (0, 1), there is a
positive constant C = C(ε) such that the solution y(t, x) of system (2.1) satisfies

lim sup
t→∞

P
{∥∥y(t)

∥∥ ≤ C
} ≥ 1 − ε. (3.3)

Proof. If μ ≤ 1, then it follows from (A4) that there exists a sufficiently small λ > 0 such that

Δ =

⎛
⎜⎜⎜⎜⎜⎝

Δ1 σ3 L2U1 M2U3 0
∗ Δ2 0 0 M2U2

∗ ∗ Δ3 0 0
∗ ∗ ∗ Δ4 0

∗ ∗ ∗ Δ5

⎞
⎟⎟⎟⎟⎟⎠

< 0, (3.4)
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where

Δ1 = −2λ1PD − 2γdP + λP + 3d
2
P + 2λI +M3V1M3 + σ1 +Q1 − 2L1U1 − 2M1U3,

Δ2 = λI +M3V2M3 + σ2 −
(
1 − μ

)
e−λτQ1 − 2M1U2,

Δ3 = λI +ATPA − 2U1, Δ4 = λI +Q2 − V1,

Δ5 = λI + BTPB − (1 − μ
)
e−λτQ2 − V2 − 2U2.

(3.5)

If μ > 1, then it follows from (A4) that there exists a sufficiently small λ > 0 such that

Δ =

⎛
⎜⎜⎜⎜⎜⎝

Δ1 σ3 L2U1 M2U3 0
∗ Δ2 0 0 M2U2

∗ ∗ Δ3 0 0
∗ ∗ ∗ Δ4 0

∗ ∗ ∗ Δ5

⎞
⎟⎟⎟⎟⎟⎠

< 0, (3.6)

where Δ1, Δ3, and Δ4 are the same as in (3.4),

Δ2 = λI +M3V2M3 + σ2 −
(
1 − μ

)
Q1 − 2M1U2,

Δ5 = λI + BTPB − (1 − μ
)
Q2 − V2 − 2U2.

(3.7)

Consider the following Lyapunov functional:

V
(
y(t)

)
=
∫

X

eλtyT (t, x)Py(t, x)dx

+
∫

X

∫ t

t−τ(t)
eλs

[
yT (s, x)Q1y(s, x) + gT(y(s, x)

)
Q2g

(
y(s, x)

)]
dsdx.

(3.8)

Applying Itô formula in [48] to V (y(t)) along (2.2), one obtains

dV
(
y(t)

)
=
∫

X

λeλtyT (t, x)Py(t, x)dx dt

+ 2
n∑

i=1

pie
λt

∫

X

yi(t, x)
l∑

k=1

∂

∂xk

(
Dik

∂yi

∂xk

)
dx dt

− 2eλt
∫

X

yT (t, x)Pd
(
y(t, x)

)[
c
(
y(t, x)

)−Af
(
y(t, x)

)−Bg(y(t−τ(t), x))−J]dx dt

+ eλt
∫

X

trace
[
σT(y(t, x), y(t − τ(t), x), x

)
Pσ

(
y(t, x), y(t − τ(t), x), x

)]
dx dt

+ 2eλt
∫

X

yT (t, x)Pσ
(
y(t, x), y(t − τ(t), x), x

)
dx dw(t)
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+
∫

X

eλt
[
yT (t, x)Q1y(t, x) + gT(y(t, x)

)
Q2g

(
y(t, x)

)]
dx dt

− (1 − τ̇(t))eλ(t−τ(t))
[
yT (t − τ(t), x)Q1y(t − τ(t), x)

+gT(y(t − τ(t), x)
)
Q2g

(
y(t − τ(t), x)

)]
dx dt.

(3.9)

From assumptions (A1)–(A4), one obtains

2
∫

X

yT (t, x)Pd
(
y(t, x)

)
c
(
y(t, x)

)
dx ≥ 2

∫

X

yT (t, x)Pdγy(t, x)dx,

2
∫

X

yT (t, x)Pd
(
y(t, x)

)
Af

(
y(t, x)

)
dx

= 2
∫

X

yT (t, x)d
(
y(t, x)

)
PAf

(
y(t, x)

)
dx

≤
∫

X

yT (t, x)d2(y(t, x)
)
Py(t, x) + fT(y(t, x)

)
ATPAf

(
y(t, x)

)
dx

≤
∫

X

yT (t, x)d
2
Py(t, x) + fT(y(t, x)

)
ATPAf

(
y(t, x)

)
dx,

2
∫

X

yT (t, x)Pd
(
y(t, x)

)
Bg

(
y(t − τ(t), x)

)
dx

≤
∫

X

yT (t, x)d
2
Py(t, x) + gT(y(t − τ(t), x)

)
BTPBg

(
y(t − τ(t), x)

)
dx,

2
∫

X

yT (t, x)Pd
(
y(t, x)

)
Jdx ≤

∫

X

yT (t, x)d
2
Py(t, x) + JTPJdx.

(3.10)

From the boundary condition and Lemma 2.1, one obtains

l∑

k=1

∫

X

yi
∂

∂xk

(
Dik

∂yi

∂xk

)
dx

=
∫

X

yi∇ ·
(
Dik

∂yi

∂xk

)l

k=1
dx

=
∫

X

∇ ·
(
yiDik

∂yi

∂xk

)l

k=1
dx −

∫

X

(
Dik

∂yi

∂xk

)l

k=1
· ∇yidx

=
l∑

k=1

∫

∂X

(
yiDik

∂yi

∂xk

)l

k=1
· ds −

l∑

k=1

∫

X

Dik

(
∂yi

∂xk

)2

dx
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= −
l∑

k=1

∫

X

Dik

(
∂yi

∂xk

)2

dx ≤
l∑

k=1

∫

X

Di

(
∂yi

∂xk

)2

dx

= −Di

∫

X

∣∣∇yi

∣∣2dx ≤ −λ1Di

∫

X

∣∣yi

∣∣2dx = −λ1Di

∥∥yi

∥∥2
2,

(3.11)

where “·” is inner product, Di = min1≤k≤l{Dik},

(
Dik

∂yi

∂xk

)l

k=1
=
((

Di1
∂yi

∂x1

)
, . . . ,

(
Dil

∂yi

∂xl

))T

. (3.12)

Combining (3.10) and (3.11) into (3.9), we have

dV
(
y(t)

) ≤
∫

X

eλtyT (t, x)
[
λP − 2λ1PD − 2Pdγ + 3d

2
P

]
y(t, x)dx dt

+
∫

X

eλt
[
fT(y(t, x)

)
ATPAf

(
y(t, x)

)
+gT(y(t−τ(t), x))BTPBg

(
y(t−τ(t), x))

]
dx dt

+
∫

X

eλtJTPJdx +
∫

X

eλt
[
yT (t, x)σ1y(t, x) + yT (t − τ(t), x)σ2y(t − τ(t), x)

+2yT (t, x)σ3y(t − τ(t), x)
]
dx dt

+
∫

X

2eλtyT (t, x)Pσ
(
y(t, x), y(t − τ(t), x), x

)
dx dw(t)

+
∫

X

{
eλt
[
yT (t, x)Q1y(t, x) + gT(y(t, x)

)
Q2g

(
y(t, x)

)] − (1 − μ
)
h
(
μ
)
eλt

×
[
yT(t−τ(t), x)Q1y(t−τ(t), x)+gT(y(t−τ(t), x))Q2g

(
y(t−τ(t), x))

]}
dx dt,

(3.13)

where h(μ) = e−λτ (μ ≤ 1) or 1 (μ > 1).
In addition, it follows from (A1) that

yT (t, x)M3V1M3y(t, x) − gT(y(t, x)
)
V1g

(
y(t, x)

) ≥ 0,

yT (t − τ(t), x)M3V2M3y(t − τ(t), x) − gT(y(t − τ(t), x)
)
V2g

(
y(t − τ(t), x)

) ≥ 0,
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0 ≤ − 2
n∑

i=1

u1i
[
fi
(
yi(t, x)

) − fi(0) − l+i yi(t, x)
][
fi
(
yi(t, x)

) − fi(0) − l−i yi(t, x)
]

= − 2
n∑

i=1

u1i
[
fi
(
yi(t, x)

) − l+i yi(t, x)
][
fi
(
yi(t, x)

) − l−i yi(t, x)
]

− 2
n∑

i=1

u1if
2
i (0) + 2

n∑

i=1

u1ifi(0)
[
2fi

(
yi(t, x)

) − (l+i + l−i
)
yi(t, x)

]

≤ − 2
n∑

i=1

u1i
[
fi
(
yi(t, x)

) − l+i yi(t, x)
][
fi
(
yi(t, x)

) − l−i yi(t, x)
]

+
n∑

i=1

[
λf2

i

(
yi(t, x)

)
+ 4λ−1f2

i (0)u
2
1i + λy2

i (t, x) + λ−1f2
i (0)u

2
1i

(
l+i + l−i

)2]
.

(3.14)

Similarly, one obtains

0 ≤ − 2
n∑

i=1

u2i
[
gi
(
yi(t − τi(t), x)

) − gi(0) −m+
i yi(t − τi(t), x)

]

× [gi
(
yi(t − τi(t), x)

) − gi(0) −m−
i yi(t − τi(t), x)

]

≤ − 2
n∑

i=1

u2i
[
gi
(
yi(t − τi(t), x)

) −m+
i yi(t − τi(t), x)

]

× [gi
(
yi(t − τi(t), x)

) −m−
i yi(t − τi(t), x)

]

+
n∑

i=1

[
λg2

i

(
yi(t − τi(t), x)

)
+ 4λ−1g2

i (0)u
2
2i + λy2

i (t − τi(t), x) + λ−1g2
i (0)u

2
2i

(
m+

i +m−
i

)2]
,

0 ≤ − 2
n∑

i=1

u3i
[
gi
(
yi(t, x)

) − gi(0) −m+
i yi(t, x)

][
gi
(
yi(t, x)

) − gi(0) −m−
i yi(t, x)

]

≤ − 2
n∑

i=1

u3i
[
gi
(
yi(t, x)

) −m+
i yi(t, x)

][
gi
(
yi(t, x)

) −m−
i yi(t, x)

]

+
n∑

i=1

[
λg2

i

(
yi(t, x)

)
+ 4λ−1g2

i (0)u
2
3i + λy2

i (t, x) + λ−1g2
i (0)u

2
3i
(
m+

i +m−
i

)2]
.

(3.15)

From (3.13)–(3.15), one derives

dV
(
y(t)

) ≤
∫

X

2eλtyT (t, x)Pσ
(
y(t, x), y(t − τ(t), x), x

)
dx dw(t)

+
∫

X

eλtηT (t, x)Δη(t, x)dx + eλtC1,

(3.16)
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or

dV
(
y(t)

) ≤
∫

X

2eλtyT (t, x)Pσ
(
y(t, x), y(t − τ(t), x), x

)
dx dw(t)

+
∫

X

eλtηT (t, x)Δη(t, x)dx + eλtC1,

(3.17)

where η(t, x) = (yT (t, x), yT (t − τ(t), x), fT (y(t, x)), gT (y(t, x)), gT (y(t − τ(t), x)))T ,

C1 =
∫

X

{
JTPJ +

n∑

i=1

[
4λ−1f2

i (0)u
2
1i + λ−1f2

i (0)u
2
1i

(
l+i + l−i

)2

+4λ−1g2
i (0)

(
u2
2i + u2

3i

)
+ λ−1g2

i (0)
(
u2
2i + u2

3i

)(
m+

i +m−
i

)2]
}
dx.

(3.18)

Thus, one obtains

λmin(P)eλtE
∥∥y(t)

∥∥2 ≤ EV
(
y(t)

) ≤ EV
(
y(0)

)
+ λ−1eλtC1, (3.19)

E
∥∥y(t)

∥∥2 ≤ e−λtEV
(
y(0)

)
+ λ−1C1

λmin(P)
. (3.20)

For any ε > 0, set C =
√
λ−1C1/λmin(P)ε. By Chebyshev’s inequality and (3.20), we

obtain

lim sup
t→∞

P
{∥∥y(t)

∥∥ > C
} ≤ lim supt→∞E

∥∥y(t)
∥∥2

C2
= ε, (3.21)

which implies

lim sup
t→∞

P
{∥∥y(t)

∥∥ ≤ C
} ≥ 1 − ε. (3.22)

The proof is completed.

Theorem 3.1 shows that there exists t0 > 0 such that for any t ≥ t0, P{‖y(t)‖ ≤ C} ≥
1 − ε. Let BC be denoted by

BC =
{
y | ∥∥y(t)∥∥ ≤ C, t ≥ t0

}
. (3.23)

Clearly, BC is closed, bounded, and invariant. Moreover,

lim sup
t→∞

inf
z∈BC

∥∥y(t) − z
∥∥ = 0 (3.24)



Abstract and Applied Analysis 11

with no less than probability 1− ε, which means that BC attracts the solutions infinitely many
times with no less than probability 1 − ε, so we may say that BC is a weak attractor for the
solutions.

Theorem 3.2. Suppose that all conditions of Theorem 3.1 hold. Then there exists a weak attractor BC

for the solutions of system (2.1).

Theorem 3.3. Suppose that all conditions of Theorem 3.1 hold and c(0) = f(0) = g(0) = J = 0.
Then zero solution of system (2.1) is mean square exponential stability.

Remark 3.4. Assumption (A4) depends on λ1 and μ, so the criteria on the stability, ultimate
boundedness, and weak attractor depend on diffusion effects and the derivative of the delays
and are independent of the magnitude of the delays.

4. An Example

In this section, a numerical example is presented to demonstrate the validity and effectiveness
of our theoretical results.

Example 4.1. Consider the following system

dy(t, x) = col

{
l∑

k=1

∂

∂xk

(
Dik

∂yi(t, x)
∂xk

)}
dt − d

(
y(t, x)

)

× [c(y(t, x)) −Af
(
y(t, x)

) − Bg
(
y(t − τ(t), x)

) − J
]
dt

+
[
Gy(t, x) +Hy(t − τ(t), x)

]
dw(t), x ∈ X,

(4.1)

where n = 2, l = m = 1, X = [0, π], D11 = D21 = 0.5, d1(y1(t)) = 0.3 + 0.1 cosy1(t), d2(y2(t)) =
0.3 + 0.1 siny2(t), c(y(t)) = γy(t), f(y) = g(y) = 0.1 tanh(y),

A =
(−0.5 0.4

0.2 −0.5
)
, B =

(
0.4 −0.7
−0.8 0.4

)
, γ =

(
1 0
0 1

)
,

J =
(
0.01
0.01

)
, G = H =

(
0.2 0.1
0.1 0.2

)
,

(4.2)

w(t) is one-dimensional Brownian motion. Then we compute that λ1 = 1, D = diag(0.5, 0.5),
L1 = M1 = 0, L2 = M2 = M3 = diag(0.1, 0.1), d = diag(0.2, 0.2), d = diag(0.4, 0.4),
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σ1 = GTPG, σ2 = HTPH, and σ3 = GTPH. By using the Matlab LMI Toolbox, for μ = 0.1,
based on Theorem 3.1, such system is stochastically ultimately bounded when

P =
(
23.9409 0

0 24.5531

)
, U1 =

(
13.8701 0

0 15.0659

)
,

U2 =
(
7.5901 0

0 6.4378

)
, U3 =

(
11.8008 0

0 11.6500

)

Q1 =
(
13.7292 −0.0345
−0.0345 13.9274

)
, Q2 =

(
16.9580 −4.6635
−4.6635 16.5060

)
,

V1 =
(
15.1844 0

0 15.1109

)
, V2 =

(
13.0777 0

0 12.4917

)
.

(4.3)

5. Conclusion

In this paper, new results and sufficient criteria on the ultimate boundedness, weak attractor,
and stability are established for stochastic reaction-diffusion Cohen-Grossberg neural net-
works with delays by using Lyapunov method, Poincaré inequality and matrix technique.
The criteria depend on diffusion effect and derivative of the delays and are independent of
the magnitude of the delays.
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