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The concept of practical synchronization is introduced and the chaos synchronization of master-
slave chaotic systems with uncertain input nonlinearities is investigated. Based on the differential
and integral inequalities (DII) approach, a simple linear control is proposed to realize practical
synchronization for master-slave chaotic systems with uncertain input nonlinearities. Besides, the
guaranteed exponential convergence rate can be prespecified. Applications of proposed master-
slave chaotic synchronization technique to secure communication as well as several numerical
simulations are given to demonstrate the feasibility and effectiveness of the obtained result.

1. Introduction

Chaotic system is a kind of nonlinear dynamic system with unpredictable and irregular
behavior. These characteristics may cause difficulties in controlling the system or may
deteriorate the system performance. Besides, chaotic systems are extremely sensitive to their
initial conditions, so that they are not readily synchronized. However, if these characteristics
can be applied skillfully, there are some merits that may be utilized, for instance, applying
the chaotic synchronization scheme to chaotic secure communications. On the other hand,
linear feedback controllers have the following advantages over nonlinear controllers: (i)
low implementation complexity; (ii) easily realized in hardware; (iii) reduced sensitivity
to parameter variations; (iv) improved reference tracking performance [1–4]. Consequently,
how to design a linear feedback controller instead of a complicated nonlinear controller is a
main issue in the field of chaos synchronization.
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In recent years, a wide variety of methodologies in the synchronization of chaotic
systems have been proposed, such as Lyapunov’s stability theory, adaptive control approach,
variable structure control (VSC) approach, H∞ control approach, adaptive sliding mode
control approach, backstepping control approach, projective synchronization approach, time-
domain approach, and others. For more detailed knowledge, one can refer to [5–12].

Over the past decades, generalized Lorenz systems, which are much more useful
than traditional Lorenz system in practical applications, have been received a great deal
of interest due to theoretical interests and successful applications in numerous areas; see,
for example, [6, 8, 10, 12–15]. In [8], by means of linearization and Lyapunov’s stability
theory, a linear state error feedback control has been presented to guarantee the uniform
chaos synchronization of master-slave identical generalized Lorenz systems without any
uncertainties. In [14, 15], two kinds of state observers for the generalized Lorenz chaotic
system have been developed to guarantee the global exponential stability of the resulting
error system. Besides, based on the adaptive sliding mode control approach, a single
nonlinear control has been proposed in [6] to ensure the synchronization of master-slave
identical generalized Lorenz systems without any uncertainties. In [10], using Lyapunov’s
stability theory, a linear feedback controller has been developed to realize the exponential
synchronization of master-slave identical generalized Lorenz systems without any uncertain
input nonlinearity. Meanwhile, some control strategies have been established in [12]
to guarantee the coexistence of antiphase and complete synchronization in master-slave
identical generalized Lorenz systems without any uncertainties. Besides, based on the time
domain approach, the upper solution bound and lower solution bound of the generalized
Lorenz chaotic system have been offered in [13].

Owing to unavoidable tolerances and uncontrollable and unpredictable environmen-
tal conditions, it seems to be difficult and impossible to maintain the parameter values
(e.g., resistors, inductors, and capacitors) of the controllers as fixed values. Therefore,
uncertain input nonlinearity always exists in dynamic control systems. Over the past decades,
researchers have been concerned with various uncertain input nonlinearities common in
nonlinear systems, such as deadzones, saturation, hysteresis, relays, and others; see, for
instance, [5, 7, 9, 16–20] and the references therein.

In this paper, motivated by the discussionmentioned above, the chaos synchronization
of master-slave identical generalized Lorenz systems with uncertain input nonlinearities will
be investigated. Using the DII methodology, a linear feedback control is proposed to realize
practical synchronization for such master-slave systems with any prespecified exponential
convergence rates. Applications of proposed master-slave chaotic synchronization technique
to secure communication as well as several numerical simulations are given to demonstrate
the feasibility and effectiveness of the obtained result.

This paper is organized as follows. The problem formulation and main result are
presented in Section 2. Several numerical simulations are given in Section 3 to illustrate the
main result. Finally, conclusion is made in Section 4. Note that throughout the remainder of
this paper, the notation AT is used to denote the transpose for a matrix A, and ‖x‖ :=

√
xT · x

denotes the Euclidean norm of the column vector x.

2. Problem Formulation and Main Result

In this paper, we consider the following master-slave chaotic systems with uncertain input
nonlinearities.
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Master system is as follows:

ẋ1(t) =
(
10 +

25
29

a

)
· [x2(t) − x1(t)], (2.1a)

ẋ2(t) =
(
28 − 35

29
a

)
x1(t) + (a − 1)x2(t) − x1(t)x3(t), (2.1b)

ẋ3(t) =
(
−8
3
− 1
87

a

)
x3(t) + x1(t)x2(t), (2.1c)

[x1(0) x2(0) x3(0)]T = [Δx10 Δx20 Δx30]T , (2.1d)

slave system is as follows:

ż1(t) =
(
10 +

25
29

a

)
· [z2(t) − z1(t)] + Δφ1(u1), (2.2a)

ż2(t) =
(
28 − 35

29
a

)
z1(t) + (k − 1)z2(t) − z1(t)z3(t) + Δφ2(u2), (2.2b)

ż3(t) =
(
−8
3
− 1
87

a

)
z3(t) + z1(t)z2(t) + Δφ3(u3), (2.2c)

[z1(0) z2(0) z3(0)]T = [Δz10 Δz20 Δz30]T , (2.2d)

where x(t) := [x1(t) x2(t) x3(t)]
T ∈ �3×1 and z(t) := [z1(t) z2(t) z3(t)]

T ∈ �3×1 are state
vectors, a is the system parameter with 0 ≤ a < 1, [Δx10 Δx20 Δx30]

T is the unknown initial
value satisfying ‖x(0)‖ ≤ R, where R ≥ 0 is given, u = [u1 u2 u3]

T ∈ �3 is the control
input, and Δφi(·) : � → � is the uncertain input nonlinearity for every i ∈ {1, 2, 3}. It is
noted that the system (2.1a)–(2.1d), displays chaotic behavior for each 0 ≤ a < 1 [21]. The
original Lorenz system is a special case of system (2.1a)–(2.1d), with a = 0. The objective of
this paper is to search a tracking control law u = [u1 u2 u3]

T ∈ �3 such that the states z1,
z2, and z3 of the slave system (2.2a)–(2.2d) track, respectively, the states x1, x2, and x3 of the
master system (2.1a)–(2.1d), with any desired exponential convergence rate.

Throughout this paper, the following assumption is made:

(A1) There exist positive numbers β1, β2, and β3 such that

βi · u2
i ≤ uiΔφ(ui), ∀ i ∈ {1, 2, 3}. (2.3)

Remark 2.1. Generally speaking, if the uncertain input nonlinearity satisfies

r1 · u2 ≤ uΔφ(u) ≤ r2 · u2, ∀u ∈ �, (2.4)

we often refer r2 as the gain margin and r1 as the gain reduction tolerance.
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For brevity, let us define the synchronous error vector as

e(t) := [e1(t) e2(t) e3(t)]T := z(t) − x(t). (2.5)

The precise definition of practical synchronization is given as follows.

Definition 2.2. Given any α > 0 and R ≥ 0, the slave system (2.2a)–(2.2d) practically
synchronizes the master system (2.1a)–(2.1d) provided that there exist a suitable control
u(e, α, R) and a positive number k1 such that the following conditions are satisfied:

(i) the synchronous error satisfies ‖e(t)‖ ≤ k1 · e−αt, ∀t ≥ 0;

(ii) the control law of u(e, α, R) is linear in the synchronous error e.

In this case, the positive number α is called the exponential convergence rate. In other words,
the practical synchronization means that there exists a linear control law such that the state
of the slave system can track the state of the master system with any desired exponential
convergence rate.

Now we present the main result for the practical synchronization between system
(2.1a)–(2.1d) and system (2.2a)–(2.2d).

Theorem 2.3. The uncertain slave system (2.2a)–(2.2d) practically synchronizes the master system
(2.1a)–(2.1d) with the exponential convergence rate α, under the linear feedback control

u(e, α, R) = −ke(t), (2.6)

where

k =

(
α +

(√
2/2

)
p
)

β
, (2.7)

p ≥ max{r1, r2}, (2.8)

β = min
{
β1, β2, β3

}
, (2.9)

r1 :=
((8/3) + (a/87)) · (19 − (5a/29))√

(1 − a) · (5/3 + 88a/87)
, (2.10)

r2 := R + 38 − 10a
29

. (2.11)

Proof. From Theorem 1 of [13], one has

min
{−r1,−√p2

} ≤ x2(t) ≤ max
{
r1,
√
p2
}
, ∀t ≥ 0,

min
{
−r1 + 38 − 10a

29
,−√p2 + 38 − 10a

29

}

≤ x3(t) ≤ max
{
r1 + 38 − 10a

29
,
√
p2 + 38 − 10a

29

}
, ∀t ≥ 0,

(2.12)
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with

p2 = Δx2
10 + Δx2

20 +
(
Δx30 − 38 +

10a
29

)2

. (2.13)

This implies that

|x2(t)| ≤ max{r1, r2} ≤ p, ∀t ≥ 0,
∣∣∣∣38 − 10k

29
− x3(t)

∣∣∣∣ ≤ max{r1, r2} ≤ p, ∀t ≥ 0,
(2.14)

in view of ‖x(0)‖ ≤ R and √
p2 ≤ p. From (2.1a)–(2.1d)–(2.5), we deduce that, for every t ≥ 0,

ė1 =
(
10 +

25
29

a

)
· (e2 − e1) + Δφ1(u1), (2.15a)

ė2(t) =
(
28 − 35

29
a

)
e1 + (a − 1)e2 − e1e3 − x1e3 − x3e1 + Δφ2(u2), (2.15b)

ė3 =
(
−8
3
− 1
87

a

)
e3 + e1e2 + x2e1 + x1e2 + Δφ3(u3). (2.15c)

Let

W(t) := e21(t) + e22(t) + e23(t). (2.16)

The time derivative of W(t) along the trajectories of the closed-loop system (2.15a)–(2.15c)
with (2.6)–(2.10) is given by

dW(t)
dt

= 2e1
(
10 +

25a
29

)
(e2 − e1) + 2e1Δφ2(u1)

+ 2e2
[(

28 − 35a
29

)
e1 + (a − 1)e2 − e1e3

]

+ 2e2
(−x1e3 − x3e1 + Δφ1(u2)

)
+ 2e3

[(−8
3

− a

87

)
e3 + e1e2

]

+ 2e3
(
x2e1 + x1e2 + Δφ3(u3)

)
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= − 2
(
10 +

25a
29

)
e21 − 2(1 − a)e22 − 2

(
8
3
+

a

87

)
e23

+ 2
(
38 − 10a

29
− x3

)
e1e2 + 2x2e1e3 −

3∑
i=1

2β(
α +

(√
2/2

)
p
)uiΔφi(ui)

≤ 2
(
10 +

25k
29

)
e21 − 2(1 − k)e22 − 2

(
8
3
+

k

87

)
e23

+ 2
(
38 − 10k

29
− x3

)
e1e2 + 2x2e1e3 −

3∑
i=1

2β(
α +

(√
2/2

)
p
)βiu2

i

= − 2
(
10 +

25a
29

)
e21 − 2(1 − a)e22 − 2

(
8
3
+

a

87

)
e23

+ 2
(
38 − 10a

29
− x3

)
e1e2 + 2x2e1e3 −

3∑
i=1

2βi
β

(
α +

√
2
2

p

)
e2i

≤ − 2
(
10 +

25a
29

)
e21 − 2(1 − a)e22 − 2

(
8
3
+

a

87

)
e23

+ 2
(
38 − 10a

29
− x3

)
e1e2 + 2x2e1e3 −

3∑
i=1

(
2α +

√
2p

)
e2i

≤ 2
∣∣∣∣38 − 10a

29
− x3

∣∣∣∣ · |e1| · |e2| + 2|x2||e1||e3| −
(
2α +

√
2p

)(
e21 + e22 + e23

)

≤ 2p · |e1| · |e2| + 2p|e1||e3| −
(
2α +

√
2p

)(
e21 + e22 + e23

)

≤
√
2
2

p · e21 +
√
2p · e22 +

√
2
2

p · e21 +
√
2p · e23 −

(
2α +

√
2p

)(
e21 + e22 + e23

)

= − 2αW(t), ∀t ≥ 0,

(2.17)

in view of (2.14). It is easy to deduce that

e2αt · Ẇ(t) + e2αt · 2αW(t) =
d

dt

[
e2αt ·W(t)

]
≤ 0, ∀t ≥ 0. (2.18)

It follows that

∫ t

0

d

dt

[
e2αt ·W(t)

]
dt = e2αt ·W(t) −W(0) ≤

∫ t

0
0dt = 0, ∀t ≥ 0. (2.19)

Thus, from (2.16) and (2.19), it can be readily obtained that

‖e(t)‖2 = W(t) ≤ e−2αtW(0), ∀t ≥ 0. (2.20)
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Consequently, we conclude that

‖e(t)‖ ≤ e−αt
√
W(0), ∀t ≥ 0. (2.21)

This completes the proof.

Remark 2.4. Based on the adaptive sliding mode control approach, a single nonlinear control
has been proposed in [6] to realize the synchronization of master-slave identical generalized
Lorenz systems without any uncertainties. It is seen that our designed control (2.6) is a simple
linear form which is much simpler than the nonlinear form proposed in [6]. Obviously, the
proposed linear feedback control form is much more simply implemented.

Remark 2.5. In this paper, the merits of DII approach can be stated as follows.

(i) Based on the DII approach, the proposed control law has certain intrinsic robustness
properties, in particular, infinite gain margin.

(ii) Based on the DII approach, the proposed feedback control can be easily
implemented owing to the linearity of (2.6).

(iii) Based on theDII approach, not only the exponential synchronization can be realized
but also the guaranteed exponential convergence rate can be prespecified.

Remark 2.6. In what follows, we present an algorithm to find the linear control law of (2.6)
stated in Theorem 2.3.

INPUT

The master-slave chaotic systems with uncertain input nonlinearities (2.1a)–(2.1d)-(2.2a)–
(2.2d) the parameters a, α, and R.

OUPUT

linear control of (2.6).

Step 1. Choose β1, β2, and β3 such that (A1) is satisfied.

Step 2. Determine β from (2.9).

Step 3. Determine r1 and r2 from (2.10) and (2.11).

Step 4. Determine p from (2.8).

Step 5. Determine k from (2.7).

Step 6. OUPUT u(e, α, R) = −ke(t).
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3. Numerical Examples and Simulations

In what follows, we provide two examples to illustrate the main results.

Example 3.1. Consider the uncertain master-slave systems (2.1a)–(2.1d), and (2.2a)–(2.2d)
with a = 0.4, R = 8, and uncertain input nonlinearities:

Δφ1(u1) = Δa1 · u1 + Δb1u
3
1 , Δφ2(u2) = (Δa2 + Δb2 sin t) · u2, Δφ3(u3) = Δa3 · u3.

(3.1a)

In addition, the uncertain parameters are bounded by

Δb1 ≥ 0, |Δb2| ≤ 1, 5 ≤ Δai, ∀i ∈ {1, 2, 3}. (3.1b)

Comparison of (3.1a) and (3.1b)with (A1) and (2.9) yields

β1 = β3 = 5, β2 = β = 4. (3.2)

From (2.8), (2.10), and (2.11), one has

r1 = 45.35, r2 = 45.86, p = 45.9 ≥ 45.86 = max{r1, r2}. (3.3)

Furthermore, from (2.7), it is easy to deduce that

k = 0.25α + 8.11. (3.4)

Thus, we obtain the design controller

u(e, α, R) = −(0.25α + 8.11) · e(t), (3.5)

in view of (2.6). Consequently, by Theorem 2.3, we conclude that the system (2.2a)–(2.2d)
with the linear control (3.5) practically synchronizes the generalized Lorenz chaotic system
(2.1a)–(2.1d), with the guaranteed exponential convergence rate α.

The typical state trajectories of the sytem (2.1a)–(2.1d) with a = 0.4, are depicted
in Figure 1. Furthermore, the synchronization errors of systems (2.1a)–(2.1d), and (2.2a)–
(2.2d) with the linear control (3.5) are depicted in Figure 2. From the foregoing simulation
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Figure 1: Typical state trajectories of the system (2.1a)–(2.1d) with a = 0.4.
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Figure 2: Synchronization errors of systems (2.1a)–(2.1d) and (2.2a)–(2.2d) with a = 0.4 and α = 1.

results, it is seen that the controlled uncertain master-slave systems (2.1a)–(2.1d) and (2.2a)–
(2.2d) realize the practical synchronization under the linear control (3.5). It is noted that [8]
has proposed a linear control to achieve the synchronization of the systems (2.1a)–(2.1d)
and (2.2a)–(2.2d) without any uncertain input nonlinearity, but the design control only
guarantees that the synchronization error system is asymptotically stable. The comparisons
of the error systems’ trajectories are shown in Figures 3 and 4.

Example 3.2. Consider the following secure communication system and the proposed scheme
is illustrated in Figure 5.
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Figure 3: Synchronization errors of systems (2.1a)–(2.1d) and (2.2a)–(2.2d) with a = 0.4 and Δφi(ui) =
ui, ∀i ∈ {1, 2, 3}, under the control of (2.6).
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Figure 4: Synchronization errors of systems (2.1a)–(2.1d) and (2.2a)–(2.2d), with a = 0.4 and Δφi(ui) =
ui, ∀i ∈ {1, 2, 3}, under the control proposed in [8].
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Figure 5: Secure communication system.
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Transmitter is as follows:

ẋ1(t) =
(
10 +

25
29

a

)
· [x2(t) − x1(t)], (3.6a)

ẋ2(t) =
(
28 − 35

29
a

)
x1(t) + (a − 1)x2(t) − x1(t)x3(t), (3.6b)

ẋ3(t) =
(
−8
3
− 1
87

a

)
x3(t) + x1(t)x2(t), (3.6c)

φx(t) = Cx(t), (3.6d)

φh(t) = Chx(t) + h(t), (3.6e)

[x1(0) x2(0) x3(0)]T = [Δx10 Δx20 Δx30]T , (3.6f)

Receiver is as follows:

ż1(t) =
(
10 +

25
29

a

)
· [z2(t) − z1(t)] + Δφ1(u1), (3.7a)

ż2(t) =
(
28 − 35

29
a

)
z1(t) + (k − 1)z2(t) − z1(t)z3(t) + Δφ2(u2), (3.7b)

ż3(t) =
(
−8
3
− 1
87

a

)
z3(t) + z1(t)z2(t) + Δφ3(u3), (3.7c)

h1(t) = φh(t) − Chz(t), (3.7d)

[z1(0) z2(0) z3(0)]T = [Δz10 Δz20 Δz30]T , (3.7e)

where u is designed as (2.6)–(2.11), x(t) := [x1(t) x2(t) x3(t)]
T ∈ �3×1,

z(t) := [z1(t) z2(t) z3(t)]
T ∈ �3×1, [Δx10 Δx20 Δx30]

T is the unknown initial value
satisfying ‖x(0)‖ ≤ 8, C ∈ �3×3 is a nonsingular matrix, h(t) ∈ �q×1 is the information vector,
Ch ∈ �q×3, h1(t) ∈ �q×1 is the signal recovered from h(t), and Δφi(·) : � → � is the uncertain
input nonlinearity satisfying (3.1a)-(3.1b), with the system parameter a = 0.4 and q ∈ N.
Setting the control u as (3.5), by Example 3.1, we have ‖e(t)‖ = ‖z(t) − x(t)‖ ≤ k1 · e−αt, ∀t ≥ 0.
Consequently, by (3.6a)–(3.6f) and (3.7a)–(3.7e), one can see that

‖h1(t) − h(t)‖ =
∥∥φh(t) − Chz(t) − φh(t) + Chx(t)

∥∥ ≤ ‖Ch‖ · ‖e(t)‖≤ k1‖Ch‖e−αt, ∀t ≥ 0.
(3.8)

This implies that one can recover themessage h(t) in the receiver system, with the guaranteed
exponential convergence rate α. In other words, the synchronization of signals h(t) and
h1(t) for the proposed secure communication (3.6a)–(3.6f) and (3.7a)–(3.7e) can always be
achieved with any prespecified convergence rate α.
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Figure 6: Real message of h(t) ∈ �2×1 described in the transmitter of (3.6a)–(3.6f).
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Figure 7: Recoverd message of h1(t) ∈ �2×1 described in in the receiver of (3.7a)–(3.7e).

With, for example, α = 6, the real message h(t), the recovered message h1(t), and the
error signal are depicted in Figures 6, 7, and 8, respectively, which clearly indicates that the
real message h(t) is recovered after 0.2 seconds.

4. Conclusion

In this paper, the notion of practical synchronization has been introduced and the chaos
synchronization of master-slave chaotic systems with uncertain input nonlinearities has
been investigated. Based on the DII approach, a simple linear control has been proposed
to realize the practical synchronization for the master-slave chaotic systems with uncertain
input nonlinearities. Furthermore, the guaranteed exponential convergence rate can be
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Figure 8: Error signal of h1(t) − h(t).

prespecified. Applications of proposed master-slave chaotic synchronization technique to
secure communication as well as several numerical simulations have also been given to
demonstrate the feasibility and effectiveness of the obtained result.
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