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A shifted Jacobi Galerkin method is introduced to get a direct solution technique for solving the
third- and fifth-order differential equations with constant coefficients subject to initial conditions.
The key to the efficiency of these algorithms is to construct appropriate base functions, which
lead to systems with specially structured matrices that can be efficiently inverted. A quadrature
Galerkin method is introduced for the numerical solution of these problems with variable
coefficients. A new shifted Jacobi collocation method based on basis functions satisfying the initial
conditions is presented for solving nonlinear initial value problems. Through several numerical
examples, we evaluate the accuracy and performance of the proposed algorithms. The algorithms
are easy to implement and yield very accurate results.

1. Introduction

The spectral methods are preferable in numerical solutions of ordinary and partial differential
equations due to their high-order accuracy whenever they work [1–3]. Standard spectral and
collocation methods have been extensively investigated for solving second- and fourth-order
differential equations. In a sequence of papers [4–11], the authors have constructed efficient
spectral-Galerkin algorithms for second-, fourth-, and 2nth-order differential equations
subject to various boundary conditions.

The problem of approximating solutions of differential equations by Galerkin approx-
imations involves the projection onto the span of some appropriate set of basis functions.
The member of the basis may satisfy automatically the auxiliary conditions imposed on the
problem, such as initial, boundary, or more general conditions. Alternatively, these conditions
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may be imposed as constraints on the expansions coefficients, as in the Lanczos tau-method
[12–14].

It is of fundamental importance to know that the choice of the basis functions is
responsible for the superior approximation properties of spectral methods when compared
with the finite difference and finite element methods. The choice of different basis functions
lead to different spectral approximations; for instance, trigonometric polynomials for periodic
problems, Chebyshev, Legendre, ultraspherical, and Jacobi polynomials for nonperiodic
problems, Laguerre polynomials for problems on half line, and Hermite polynomials for
problems on the whole line.

The main aim of this paper is the design of appropriate shifted Jacobi basis (with
parameters α and β) that are well suited for the approximations of the third- and fifth-order
differential equations subject to initial conditions. In general, the use of Jacobi polynomials
(P (α,β)

n with α, β ∈ (−1,∞) and n is the polynomial degree) has the advantage of obtaining
the solutions of differential equations in terms of the Jacobi indexes α and β (see for instance,
[15–19]).

This paper is concerned with the systematic development of spectral basis functions
for the efficient solution of some odd-order differential equations. Starting from Jacobi
polynomials P (α,β)

n (x). Galerkin approximations to these problems are built. We derived some
interesting results, such as useful relationships between the representation of a polynomial
function in a given basis and those for its derivative in the same basis, or formulas to compute
discrete operator coefficients in closed form. In this paper, we present a direct solvers based
on the shifted Jacobi Galerkin (SJG) method for solving the third- and fifth-order differential
equations, the basis functions are constructed to satisfy the given initial conditions, and
each of these basis functions have been written as a compact combinations of shifted Jacobi
polynomials.

For the third- and fifth-order differential equations with variable coefficients, we
introduce the pseudospectral shifted Jacobi Galerkin (P-SJG) method. This method is bas-
ically formulated in the shifted Jacobi Galerkin spectral form with general indexes α, β > −1,
but the variable coefficients terms and the right hand side being treated by the shifted Jacobi
collocation method with the same indexes α, β > −1 so that the schemes can be implemented
at shifted Jacobi-Gauss points efficiently.

The last aim of this paper is to propose a suitable way to approximate the nonlinear
third- and fifth-order differential equations by convenient spectral collocation method-based
on shifted Jacobi basis functions (the member of the basis may satisfy automatically the
auxiliary initial conditions imposed on the problem) such that it can be implemented
efficiently at shifted Jacobi-Gauss points on the interval (0, L). We propose a new spectral
shifted Jacobi collocation (SJC) method to find the solution uN(x). The nonlinear ODE is
collocated at the (N + 1) points. For suitable collocation points, we use the (N + 1) nodes of
the shifted Jacobi-Gauss interpolation on (0, L). These equations generate (N + 1) nonlinear
algebraic equations which can be solved using Newton’s iterative method. Finally, the
accuracy of the proposed methods is demonstrated by test problems. Numerical results are
presented in which the usual exponential convergence behaviour of spectral approximations
is exhibited.

The remainder of this paper is organized as follows. Sections 2 and 3 are devoted to
the theoretical derivation of the SJG and P-SJG methods for third-order differential equations
with constant and variable coefficients subject to homogeneous and nonhomogeneous initial
conditions. In Section 4, we apply the SJC method-based on basis functions for solving
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nonlinear third-order differential equations. Section 5 gives the corresponding results for
those obtained in Sections 2, 3, and 4, but for the fifth-order differential equations. In
Section 6, we present some numerical results exhibiting the accuracy and efficiency of our
numerical algorithms.

2. SJG Method for Third-Order Differential Equations with
Constant Coefficients

Let w(α,β)(x) = (1 − x)α(1 + x)β, then we define the weighted space L2
w(α,β) (−1, 1) as usual,

equipped with the following inner product and norm,

(u, v)w(α,β) =
∫1

−1
u(x)v(x)w(α,β)(x)dx, ‖v‖w(α,β) = (v, v)1/2

w(α,β) . (2.1)

The set of Jacobi polynomials forms a complete L2
wα,β(−1, 1)-orthogonal system, and

∥∥∥P (α,β)
k

∥∥∥2

w(α,β)
= h

(α,β)
k

=
2α+β+1Γ(k + α + 1)Γ

(
k + β + 1

)
(
2k + α + β + 1

)
Γ(k + 1)Γ

(
k + α + β + 1

) . (2.2)

If we define the shifted Jacobi polynomial of degree k by P
(α,β)
L,k (x) = P

(α,β)
k (2x/L − 1),

L > 0, and in virtue of properties of Jacobi polynomials [14, 19], then it can be easily shown
that

P
(α,β)
L,k (0) = (−1)k Γ

(
k + β + 1

)
Γ
(
β + 1

)
k!

, (2.3)

DqP
(α,β)
L,k (0) =

(−1)k−qΓ(k + β + 1
)(
k + α + β + 1

)
q

LqΓ
(
k − q + 1

)
Γ
(
q + β + 1

) . (2.4)

Next, let w(α,β)
L (x) = (L − x)αxβ, then we define the weighted space L2

w
(α,β)
L

(0, L) in the

usual way, with the following inner product and norm,

(u, v)
w

(α,β)
L

=
∫L

0
u(x)v(x)w(α,β)

L (x)dx, ‖v‖
w

(α,β)
L

= (v, v)1/2
w

(α,β)
L

. (2.5)

The set of shifted Jacobi polynomials forms a complete L2
w

(α,β)
L

(0, L)-orthogonal system.

Moreover, and due to (2.2), we have

∥∥∥P (α,β)
L,k

∥∥∥2

w
(α,β)
L

=
(
L

2

)α+β+1

h
(α,β)
k = h

(α,β)
L,k . (2.6)
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The qth derivative of shifted Jacobi polynomial can be written in terms of the shifted
Jacobi polynomials themselves as

DqP
(α,β)
L,k (x) =

k−q∑
i=0

Cq

(
k, i, α, β

)
P
(α,β)
L,i (x), (2.7)

where

Cq

(
k, i, α, β

)
=

(k + λ)q
(
k + λ + q

)
i

(
i + α + q + 1

)
k−i−qΓ(i + λ)

Lq
(
k − i − q

)
!Γ(2i + λ)

× 3F2

⎛
⎝ −k + i + q, k + i + λ + q, i + α + 1

; 1
i + α + q + 1, 2i + λ + 1

⎞
⎠,

(2.8)

for the proof, see [20, 21] and for the general definition of a generalized hypergeometric series
and special 3F2, (see [22, pages 41, 103-104], resp.).

We are interested in using the SJG method to solve the third-order differential
equation:

u′′′ + γ1u
′′ + γ2u

′ + γ3u = f(x), in I = (0, L), (2.9)

subject to

u(0) = u′(0) = u′′(0) = 0, (2.10)

where γ1, γ2, and γ3 are constants, and f(x) is a given source function. Let us first introduce
some basic notation that will be used in the upcoming sections. We set

SN(0, L) = span
{
P
(α,β)
L,0 (x), P (α,β)

L,1 (x), . . . , P (α,β)
L,N (x)

}
,

WN =
{
vN ∈ SN(0, L) : u(0) = u′(0) = u′′(0) = 0

}
.

(2.11)

Then the shifted Jacobi-Galerkin approximation to (2.9) is, to find uN ∈ WN such that

(
u′′′
N, vN

)
w

(α,β)
L

+ γ1
(
u′′
N, vN

)
w

(α,β)
L

+ γ2
(
u′
N, vN

)
w

(α,β)
L

+ γ3(uN, vN)
w

(α,β)
L

=
(
f, vN

)
w

(α,β)
L

, ∀vN ∈ WN,
(2.12)

wherew(α,β)
L (x) = (L−x)αxβ and (u, v)

w
(α,β)
L

=
∫
I uvw

α,β

L dx is the inner product in the weighted

space L2
w

(α,β)
L

(I). The norm in L2
w

(α,β)
L

(I) will be denoted by ‖ · ‖
w

(α,β)
L

.
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We choose compact combinations of shifted Jacobi polynomials as basis functions
aiming to minimize the bandwidth and the condition number of the coefficient matrix corre-
sponding to (2.9). We choose the basis functions of expansion φk(x) to be of the form:

φk(x) = ξk
[
P
(α,β)
L,k (x) + εkP

(α,β)
L,k+1(x) + εkP

(α,β)
L,k+2(x) + ζkP

(α,β)
L,k+3(x)

]
, (2.13)

where ξk = k!Γ(α+1)/Γ(k+α+1), εk, εk, and ζk are the unique constants such that φk(x) ∈ WN ,
for all k = 0, 1, . . . ,N − 3. From the initial conditions; φk(0) = φ′

k(0) = φ′′
k(0) = 0 and making

use of (2.3) and (2.4), we have the following system:

−εk
(
k + β + 1

)
(k + 1)

+ εk

(
k + β + 1

)
2

(k + 1)2
− ζk

(
k + β + 1

)
3

(k + 1)3
= −1, (2.14)

εk
(k + λ + 1)

(
k + β + 1

)
k

− εk
(k + λ + 2)

(
k + β + 1

)
2

k(k + 1)

+ ζk
(k + λ + 3)

(
k + β + 1

)
3

k(k + 1)2
= (k + λ),

(2.15)

−εk
(k + λ + 1)2

(
k + β + 1

)
(k − 1)

+ εk
(k + λ + 2)2

(
k + β + 1

)
2

k(k − 1)

− ζk
(k + λ + 3)2

(
k + β + 1

)
3

(k + 1)k(k − 1)
= −(k + λ)2.

(2.16)

Hence εk, εk, and ζk can be uniquely determined to give

εk =
3(k + 1)(2k + λ + 2)(
k + β + 1

)
(2k + λ + 4)

,

εk =
3(k + 1)2(2k + λ + 1)(
k + β + 1

)
2(2k + λ + 5)

,

ζk =
(k + 1)3(2k + λ + 1)2(
k + β + 1

)
3(2k + λ + 4)2

.

(2.17)

It is clear that the basis functions φk(x) ∈ Wk+3, k = 0, 1, 2, . . . ,N−3, are linearly independent.
Therefore, by dimension argument and forN ≥ 3, we have

WN = span
{
φk(x) : k = 0, 1, 2, . . . ,N − 3

}
. (2.18)

Now, it is clear that the variational formulation of (2.12) is equivalent to

(
u′′′
N, φk(x)

)
w

(α,β)
L

+ γ1
(
u′′
N, φk(x)

)
w

(α,β)
L

+ γ2
(
u′
N, φk(x)

)
w

(α,β)
L

+ γ3
(
uN, φk(x)

)
w

(α,β)
L

=
(
f, φk(x)

)
w

(α,β)
T

, k = 0, 1, . . . ,N − 3.
(2.19)
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Let us denote

fk =
(
f, φk(x)

)
w

(α,β)
L

, f =
(
f0, f1, . . . , fN−3

)T
,

uN(x) =
N−3∑
n=0

anφn(x), a = (a0, a1, . . . , aN−3)T ,

A =
(
akj

)
, B =

(
bkj

)
, C =

(
ckj

)
, D =

(
dkj

)
, 0 ≤ k, j ≤ N − 3.

(2.20)

Then, equation (2.19) is equivalent to the following matrix equation:

(
A + γ1B + γ2C + γ3D

)
a = f, (2.21)

where the nonzero elements of the matrices A, B, C, and D are given explicitly in the
following theorem.

Theorem 2.1. If one takes φk(x) as defined in (2.13), and if we denote akj = (φ′′′
j (x), φk(x))w(α,β)

L

,

bkj = (φ′′
j (x), φk(x))w(α,β)

L

, ckj = (φ′
j(x), φk(x))w(α,β)

L

, and dkj = (φj(x), φk(x))w(α,β)
L

. Then the nonzero
elements akj , bkj , ckj , and dkj for 0 ≤ k, j ≤ N − 3 are given as follows:

akk =
Lα+β−2(2k + λ + 1)3(2k + λ + 1)2Γ(k + 4)(Γ(α + 1))2Γ

(
k + β + 1

)
(
k + β + 1

)
3Γ(k + α + 1)Γ(k + λ + 3)

,

akj = ξkξj
[
O3

(
j, k, α, β

)
h
(α,β)
L,k +O3

(
j, k + 1, α, β

)
εkh

(α,β)
L,k+1 +O3

(
j, k + 2, α, β

)
εkh

(α,β)
L,k+2

+ O3
(
j, k + 3, α, β

)
ζkh

(α,β)
L,k+3

]
, j = k + n, n ≥ 1,

bk+1,k = ξkξk+1ζkC2
(
k + 3, k + 1, α, β

)
h
(α,β)
L,k+1,

bkk = ξ2k

[(
εkC2

(
k + 2, k, α, β

)
+ ζkC2

(
k + 3, k, α, β

))
h
(α,β)
L,k

+ ζkεkC2
(
k + 3, k + 1, α, β

)
h
(α,β)
L,k+1

]
,

bkj = ξkξj
[
O2

(
j, k, α, β

)
h
(α,β)
L,k +O2

(
j, k + 1, α, β

)
εkh

(α,β)
L,k+1 +O2

(
j, k + 2, α, β

)
εkh

(α,β)
L,k+2

+ O2
(
j, k + 3, α, β

)
ζkh

(α,β)
L,k+3

]
, j = k + n, n ≥ 1,
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ck+2,k = ξkξk+2ζkC1
(
k + 3, k + 2, α, β

)
h
(α,β)
L,k+2,

ck+1,k = ξkξk+1
[(
εkC1

(
k + 2, k + 1, α, β

)
+ ζkC1

(
k + 3, k + 1, α, β

))
h
(α,β)
L,k+1

+ ζkεk+1C1
(
k + 3, k + 2, α, β

)
h
(α,β)
L,k+2

]
,

ckk = ξ2k

[(
εkC1

(
k + 1, k, α, β

)
+ εkC1

(
k + 2, k, α, β

)
+ ζkC1

(
k + 3, k, α, β

))
h
(α,β)
L,k

+ εk
(
εkC1

(
k + 2, k + 1, α, β

)
+ ζkC1

(
k + 3, k + 1, α, β

))
h
(α,β)
L,k+1

+ ζkεkC1
(
k + 3, k + 2, α, β

)
h
(α,β)
L,k+2

]
,

ckj = ξkξj
[
O1

(
j, k, α, β

)
h
(α,β)
L,k

+O1
(
j, k + 1, α, β

)
εkh

(α,β)
L,k+1 +O1

(
j, k + 2, α, β

)
εkh

(α,β)
L,k+2

+ O1
(
j, k + 3, α, β

)
ζkh

(α,β)
L,k+3

]
, j = k + n, n ≥ 1,

dkk = ξ2k

[
h
(α,β)
L,k + ε2kh

(α,β)
L,k+1 + ε2kh

(α,β)
L,k+2 + ζ2kh

(α,β)
L,k+3

]
,

dk+1,k = dk,k+1 = ξkξk+1
[
εkh

(α,β)
L,k+1 + εk+1εkh

(α,β)
L,k+2 + εk+1ζkh

(α,β)
L,k+3

]
,

dk+2,k = dk,k+2 = ξkξk+2
[
εkh

(α,β)
L,k+2 + εk+2ζkh

(α,β)
L,k+3

]
, dk+3,k = dk,k+3 = ξkξk+3ζkh

(α,β)
L,k+3,

(2.22)

where

Oi

(
j, k, α, β

)
= Ci

(
j, k, α, β

)
+ εjCi

(
j + 1, k, α, β

)
+ εjCi

(
j + 2, k, α, β

)
+ ζjCi

(
j + 3, k, α, β

)
.

(2.23)

Proof. The basis functions φk(x) are chosen such that φk(x) ∈ WN for k = 0, 1, . . . ,N − 3. On
the other hand, it is clear that {φk(x)} are linearly independent and the dimension of WN is
equal to (N − 2). The nonzero elements (akj) for 0 � k, j � N − 3 can be obtained by direct
computations using the properties of shifted Jacobi polynomials. It can be easily proved that
the diagonal elements of the matrix A take the form:

akk = ξ2kζkC3
(
k + 3, k, α, β

)
h
(α,β)
L,k

. (2.24)

It can be easily shown, that all other formulae can be obtained by direct computations using
the properties of shifted Jacobi polynomials.

All the formulae can be obtained by direct computations using the properties of shifted
Jacobi polynomials. In particular, the special cases for shifted Chebyshev basis of the first and
second kinds may be obtained directly by taking α = β = −1/2 and α = β = 1/2, respectively,
and for shifted Legendre basis by taking α = β = 0. These are given as corollaries to the
previous theorem as follows.
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Corollary 2.2. If α = β = 0, then the nonzero elements (akj), (bkj), (ckj), (dkj) for 0 ≤ k, j ≤ N − 3
are given as follows:

akk =
8(k + 1)(2k + 3)2

L2(k + 3)
,

akj =
8
(
2j + 3

)
(2k + 3)

L2
(
j + 3

)
(k + 3)

×
[
k4 + 8k3 +

(
17 − 8j − 2j2

)
k2 + 4

(
1 − 8j − 2j2

)
k +

(
j4 + 8j3 + 17j2 + 16

)]
,

j = k + n, n ≥ 1,

bk+1,k =
4(k + 1)(2k + 3)

L(k + 3)
, bkk =

48(k + 1)(k + 2)(2k + 3)
L(k + 3)(2k + 5)

,

bk,k+1 =
4(2k + 3)

(
17k2 + 85k + 104

)
L(k + 3)(k + 4)

,

bkj =
16
(
2j + 3

)(
j − k

)(
j + k + 4

)
(2k + 3)

L
(
j + 3

)
(k + 3)

, j = k + n, n ≥ 2,

ck+2,k =
2(k + 1)(2k + 3)
(k + 3)(2k + 5)

, ck+1,k =
12(k + 1)(2k + 5)
(k + 3)(2k + 7)

,

ckk =
8(2k + 3)2

(k + 3)2
, ck,k+1 =

4(2k + 5)
(
13k2 + 65k + 72

)
(k + 3)(k + 4)(2k + 7)

,

ck,k+2 =
2(2k + 3)

(
31k2 + 186k + 275

)
(k + 3)(k + 5)(2k + 5)

,

ckj =
16
(
2j + 3

)
(2k + 3)(

j + 3
)
(k + 3)

, j = k + n, n ≥ 3,

dkk =
40L(k + 1)(k + 2)(2k + 3)

(k + 3)(2k + 1)(2k + 5)(2k + 7)
, dk,k+1 = dk+1,k =

15L(k + 2)
(k + 4)(2k + 7)

,

dk,k+2 = dk+2,k =
12L(k + 1)

(2k + 5)(2k + 9)
, dk,k+3 = dk+3,k =

L(k + 1)(2k + 3)
(k + 3)(2k + 5)(2k + 7)

.

(2.25)

Corollary 2.3. If α = β = 1/2, then the nonzero elements (akj), (bkj), (ckj), and (dkj) for 0 ≤ k, j ≤
N − 3 are given as follows:

akk =
8(k + 2)2(2k + 3)π
L(k + 4)(2k + 7)

,



Abstract and Applied Analysis 9

akj =
4
(
2j + 3

)(
2j + 5

)
(k + 2)π

L
(
j + 1

)(
j + 3

)(
j + 4

)
(2k + 7)

×
[
k4 + 10k3 +

(
29 − 2j

(
j + 5

))
k2 − 10

(
j
(
j + 5

) − 2
)
k + j

(
j + 5

)(
j
(
j + 5

) − 2
)
+ 12

]
,

j = k + n, n ≥ 1,

bk+1,k =
2(k + 2)(2k + 3)π
(k + 4)(2k + 7)

, bkk =
12(k + 2)(2k + 3)π
(k + 4)(2k + 7)

,

bk,k+1 =
2(k + 2)(k + 3)(34k + 115)π

(k + 4)(k + 5)(2k + 7)
,

bkj =
4
(
2j + 3

)(
2j + 5

)
(k + 2)

(
2j2 + 10j − 2k2 − 10k − 3

)
π(

j + 1
)(
j + 3

)(
j + 4

)
(2k + 7)

, j = k + n, n ≥ 2,

ck+2,k =
L(k + 2)(2k + 3)π

2(k + 3)(k + 4)(2k + 7)
, ck+1,k =

3L(2k + 3)
(
2k2 + 13k + 22

)
π

2(k + 3)(k + 4)2(2k + 7)
,

ckk =
L
(
64k4 + 700k3 + 2860k2 + 5187k + 3564

)
π

2(k + 3)2(k + 4)(2k + 7)2
,

ck,k+1 =
L
(
52k4 + 560k3 + 2249k2 + 3985k + 2640

)
π

2(k + 2)(k + 3)(k + 4)(k + 5)(2k + 7)
,

ck,k+2 =
L(k + 2)

(
62k3 + 679k2 + 2451k + 2934

)
π

2(k + 3)2(k + 5)(k + 6)(2k + 7)
,

ckj =
8L

(
2j + 5

)(
2j + 7

)
(k + 2)π(

j + 2
)(
j + 4

)(
j + 5

)
(2k + 7)

, j = k + n, n ≥ 3,

dkk =
L2(20k6 + 300k5 + 1841k4 + 5910k3 + 10478k2 + 9765k + 3861

)
π

2(k + 1)2(k + 3)2(k + 4)2(2k + 7)2
,

dk,k+1 = dk+1,k =
3L2(20k4 + 240k3 + 1087k2 + 2202k + 1716

)
π

8(k + 2)(k + 3)(k + 4)2(2k + 7)(2k + 9)
,

dk,k+2 = dk+2,k =
3L2(2k + 3)

(
k2 + 7k + 13

)
π

4(k + 3)2(k + 4)(k + 5)(2k + 7)
,

dk,k+3 = dk+3,k =
L2(k + 2)(2k + 3)π

8(k + 3)(k + 4)2(2k + 7)
.

(2.26)

Corollary 2.4. If α = β = −1/2, then the nonzero elements (akj), (bkj), (ckj), and (dkj) for 0 ≤ k,
j ≤ N − 3 are given as follows:

akk =
32(k + 1)2(k + 3)(2k + 1)π

L3(2k + 5)
,
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akj =
16
(
2j + 1

)(
2j + 3

)
(k + 1)π

L3
(
j + 2

)
(2k + 5)

×
[
k4 + 6k3 +

(
7 − 2j

(
3 + j

))
k2 − 6

(
1 + j

(
3 + j

))
k +

(
2 + 3j + j2

)2
]
,

j := k + n, n ≥ 1,

bk+1,k =
8(k + 1)(k + 3)(2k + 1)π

L2(2k + 5)
, bkk =

24(k + 1)(2k + 1)
(
2k2 + 8k + 7

)
π

L2(k + 2)(2k + 5)
,

bk,k+1 =
8(k + 1)

(
34k3 + 225k2 + 482k + 333

)
π

L2(k + 3)(2k + 5)
,

bkj =
16
(
2j + 1

)(
2j + 3

)
(k + 1)

(
2j2 + 6j − 2k2 − 6k + 3

)
π

L2
(
j + 2

)
(2k + 5)

, j = k + n, n ≥ 2,

ck+2,k =
2(k + 1)(k + 3)(2k + 1)π

L(k + 2)(2k + 5)
, ck+1,k =

6(2k + 1)(2k + 3)π
L(2k + 5)

,

ckk =
2(k + 1)

(
64k3 + 324k2 + 476k + 189

)
π

L(k + 2)(2k + 5)2
,

ck,k+1 =
2(k + 1)(26k + 45)π

L(k + 3)
, ck,k+2 =

2(k + 1)
(
62k2 + 375k + 556

)
π

L(k + 4)(2k + 5)
,

ckj =
32
(
2j + 1

)(
2j + 3

)
(k + 1)π

L
(
j + 2

)
(2k + 5)

, j = k + n, n ≥ 3,

dkk =

(
40k4 + 240k3 + 526k2 + 498k + 181

)
π

(k + 2)2(2k + 5)2
,

dk,k+1 = dk+1,k =
3
(
20k4 + 160k3 + 451k2 + 524k + 198

)
π

2(k + 2)(k + 3)(2k + 5)(2k + 7)
,

dk,k+2 = dk+2,k =
3(2k + 1)

(
2k2 + 10k + 11

)
π

2(k + 2)(k + 4)(2k + 5)
,

dk,k+3 = dk+3,k =
(k + 1)(2k + 1)π
2(k + 2)(2k + 5)

.

(2.27)

In the following, we can always modify the right-hand side to take care of the nonhomogeneous
initial conditions. Let us consider for instance the one-dimensional third-order differential equation
(2.9) subject to the nonhomogeneous initial conditions:

u(0) = a+, u′(0) = a−, u′′(0) = ã+. (2.28)

We proceed as follows.
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Set

V (x) = u(x) + b0 + b1x + b2x
2, (2.29)

where

b0 = −a+, b1 = −a−, b2 =
−ã+

2
. (2.30)

The transformation (2.29) turns the nonhomogeneous initial conditions (2.28) into the homogeneous
initial conditions:

V (0) = V ′(0) = V ′′(0) = 0. (2.31)

Hence, it suffices to solve the following modified one-dimensional third-order differential equation:

V ′′′ + γ1V
′′ + γ2V

′ + γ3V = f ∗(x) in I = (0, L), (2.32)

subject to the homogeneous initial conditions (2.31), where V (x) is given by (2.29), and

f∗(x) = f(x) +
(
γ3b0 + γ2b1 + 2γ1b2

)
+
(
γ3b1 + 2γ2b2

)
x + γ3b2x

2. (2.33)

3. P-SJG Method for Third-Order Differential Equation with
Variable Coefficients

In this section, we use the pseudospectral-shifted Jacobi Galerkin method to numerically
solve the following third-order differential equation with variable coefficients:

u′′′ + γ1(x)u′′ + γ2(x)u′ + γ3(x)u = f(x), x ∈ I,

u(0) = u′(0) = u′′(0) = 0.
(3.1)

We denote by x
(α,β)
N,j , 0 � j � N, the nodes of the standard Jacobi-Gauss interpolation

on the interval (−1, 1). Their corresponding Christoffel numbers are �
(α,β)
N,j , 0 � j � N.

The nodes of the shifted Jacobi-Gauss interpolation on the interval (0, L) are the zeros of
P
(α,β)
L,N+1(x), which we denote by x

(α,β)
L,N,j , 0 � j � N. Clearly x

(α,β)
L,N,j = (L/2)(x(α,β)

N,j + 1), and their

corresponding Christoffel numbers are �(α,β)
L,N,j = (L/2)α+β+1�(α,β)

N,j , 0 � j � N. Let SN(0, L) be
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the set of polynomials of degree at most N. Thanks to the property of the standard Jacobi-
Gauss quadrature, it follows that for any φ ∈ S2N+1(0, L),

∫L

0
(L − x)αxβφ(x)dx =

(
L

2

)α+β+1 ∫1

−1
(1 − x)α(1 + x)βφ

(
L

2
(x + 1)

)
dx

=
(
L

2

)α+β+1 N∑
j=0

�
(α,β)
N,j φ

(
L

2

(
x
(α,β)
N,j + 1

))
=

N∑
j=0

�
(α,β)
L,N,jφ

(
x
(α,β)
L,N,j

)
.

(3.2)

We define the discrete inner product and norm as follows:

(u, v)
w

(α,β)
L ,N

=
N∑
j=0

u
(
x
(α,β)
L,N,j

)
v
(
x
(α,β)
L,N,j

)
�

(α,β)
L,N,j , ‖u‖

w
(α,β)
L ,N

=
√
(u, u)

w
(α,β)
L ,N

, (3.3)

where x
(α,β)
L,N,j and �

(α,β)
L,N,j are the nodes and the corresponding weights of the shifted Jacobi-

Gauss-quadrature formula on the interval (0, L), respectively.
Obviously, (see, e.g., formula (2.25) of [12])

(u, v)
w

(α,β)
L ,N

= (u, v)
w

(α,β)
L

, ∀u, v ∈ S2N−1. (3.4)

Thus, for any u ∈ SN(0, L), the norms ‖u‖
w

(α,β)
L ,N

and ‖u‖
w

(α,β)
L

coincide.

Associating with this quadrature rule, we denote by I
P
(α,β)
L

N the shifted Jacobi-Gauss
interpolation,

I
P
(α,β)
L

N u
(
x
(α,β)
L,N,j

)
= u

(
x
(α,β)
L,N,j

)
, 0 ≤ k ≤ N. (3.5)

The pseudospectral Galerkin method for (3.1) is to find uN ∈ WN such that

(
u′′′
N, vN

)
w

(α,β)
L

+
(
γ1(x)u′′

N, vN

)
w

(α,β)
L ,N

+
(
γ2(x)u′

N, vN

)
w

(α,β)
L ,N

+
(
γ3(x)uN, vN

)
w

(α,β)
L ,N

=
(
f, vN

)
w

(α,β)
L ,N

∀vN ∈ WN,
(3.6)

where (u, v)
w

(α,β)
L ,N

is the discrete inner product of u and v associated with the shifted Jacobi-
Gauss quadrature.
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Hence, by setting

uN =
N−3∑
k=0

ãkφk, a = (ã0, ã1, . . . , ãN−3)
T ,

f̃k =
(
f, φk

)
w

(α,β)
L ,N

, f =
(
f̃0, f̃1, . . . , f̃N−3

)T
,

b̃ij =
(
γ1(x)φ′′

j , φi

)
w

(α,β)
L ,N

, c̃ij =
(
γ2(x)φ′

j , φi

)
w

(α,β)
L ,N

,

d̃ij =
(
γ3(x)φj, φi

)
w

(α,β)
L ,N

,

B̃ =
(
b̃kj

)
, C̃ =

(
c̃kj

)
, D̃ =

(
d̃kj

)
, 0 ≤ k, j ≤ N − 3.

(3.7)

Then, the linear system (3.6) becomes

(
A + B̃ + C̃ + D̃

)
a = f, (3.8)

where A is given in Theorem 2.1.

4. SJC Method for Nonlinear Third-Order Differential Equations

In this section, we are interested in solving numerically the nonlinear third-order differential
equation:

u′′′(x) = F
(
x, u(x), u′(x), u′′(x)

)
, (4.1)

with initial conditions

u(0) = u′(0) = u′′(0) = 0. (4.2)

It is well known that one can convert (4.1) into third-order system of first-order initial-
value problems. Methods to solve systems of first-order differential equations are simply
generalizations of the methods for a single first-order equation, for example, the classical
Runge-Kutta of order four. Another alternative spectral method is to use the shifted Jacobi
collocation method to solve (4.1)

uN(x) =
N∑
j=0

bjφk(x). (4.3)
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then, making use of formula (2.7) enables one to express explicitly the derivatives u(i)(x),
(i = 0, 1, 2) in terms of the expansion coefficients bj . The criterion of spectral shifted Jacobi
collocation method for solving approximately (4.1) is to find uN(x) ∈ SN(0, L) such that

u′′′
N

(
x
(α,β)
L,N,k

)
= F

(
x
(α,β)
L,N,k

, uN

(
x
(α,β)
L,N,k

)
, u′

N

(
x
(α,β)
L,N,k

)
, u′′

N

(
x
(α,β)
L,N,k

))
, k = 0, 1, . . . ,N. (4.4)

is satisfied exactly at the collocation points x(α,β)
L,N,k

, k = 0, 1, . . . ,N. In other words, we have to

collocate (4.4) at the (N + 1) shifted Jacobi roots x(α,β)
L,N,k

, which immediately yields

N∑
j=0

bjφ
′′′
k (x) = F

⎛
⎝x,

N∑
j=0

bjφk(x),
N∑
j=0

bjφ
′
k(x),

N∑
j=0

bjφ
′′
k(x)

⎞
⎠. (4.5)

This constitutes a system of (N + 1) nonlinear algebraic equations in the unknown expansion
coefficients bj(j = 0, 1, . . . ,N), which can be solved by using any standard iteration technique,
like Newton’s iteration method.

5. Fifth-Order Differential Equations

In this section, we consider the fifth-order differential equation of the form:

u(v) + γ1u
(iv) + γ2u

′′′ + γ3u
′′ + γ4u

′ + γ5u = f(x), x ∈ I,

u(0) = u′(0) = u′′(0) = u′′′(0) = u(iv)(0) = 0.
(5.1)

We define

VN =
{
vN ∈ SN(0, L) : u(0) = u′(0) = u′′(0) = u′′′(0) = u(iv)(0) = 0

}
. (5.2)

The results for fifth-order differential equations will be given without proofs.

5.1. SJG Method for Constant Coefficients

For γ1, γ2, γ3, γ4, and γ5 are constants, we consider the following shifted Jacobi-Galerkin
procedure for (5.1): Find uN ∈ VN such that

(
u
(v)
N , vN

)
w

(α,β)
L

+ γ1
(
u
(iv)
N , vN

)
w

(α,β)
L

+ γ2
(
u′′′
N, vN

)
w

(α,β)
L

+ γ3
(
u′′
N, vN

)
w

(α,β)
L

+ γ4
(
u′
N, vN

)
w

(α,β)
L

+ γ5(uN, vN)
w

(α,β)
L

=
(
f, vN

)
w

(α,β)
L ,N

, ∀vN ∈ VN.

(5.3)
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Now, we choose the basis functions Φk(x) to be of the form:

Φk(x) = ξk
[
P
(α,β)
L,k (x) + ε̂kP

(α,β)
L,k+1(x) + ε̂kP

(α,β)
L,k+2(x) + ζ̂kP

(α,β)
L,k+3(x)

+μ̂kP
(α,β)
L,k+4(x) + υ̂kP

(α,β)
L,k+5(x)

]
, k = 0, 1, . . . ,N − 5,

(5.4)

It is not difficult to show that the basis functions Φk(x) ∈ Vk+5 are given by

Φk(x) = ξk

[
P
(α,β)
L,k (x) +

5(k + 1)(2k + λ + 2)(
k + β + 1

)
(2k + λ + 6)

P
(α,β)
L,k+1(x)

+
10(k + 1)2(2k + λ + 1)(2k + λ + 4)(

k + β + 1
)
2(2k + λ + 6)2

P
(α,β)
L,k+2(x)

+
10(k + 1)3(2k + λ + 1)2(
k + β + 1

)
3(2k + λ + 7)2

P
(α,β)
L,k+3(x)

+
5(k + 1)4(2k + λ + 1)3(

k + β + 1
)
4(2k + λ + 6)2(2k + λ + 9)

P
(α,β)
L,k+4(x)

+
(k + 1)5(2k + λ + 1)4(
k + β + 1

)
5(2k + λ + 6)5

P
(α,β)
L,k+5(x)

]
.

(5.5)

Therefore, for N ≥ 5, we have

VN = span{Φ0,Φ1, . . . ,ΦN−5}. (5.6)

It is clear that (5.3) is equivalent to

(
u
(v)
N ,Φk(x)

)
w

(α,β)
L

+ γ1
(
u
(iv)
N ,Φk(x)

)
w

(α,β)
L

+ γ2
(
u′′′
N,Φk(x)

)
w

(α,β)
L

+ γ3
(
u′′
N,Φk(x)

)
w

(α,β)
L

+ γ4
(
u′
N,Φk(x)

)
w

(α,β)
L

+ γ5(uN,Φk(x))w(α,β)
L

=
(
f,Φk(x)

)
w

(α,β)
L ,N

, k = 0, 1, . . . ,N − 5.

(5.7)
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Let us denote

fk =
(
f,Φk(x)

)
w

(α,β)
L ,N

, f =
(
f0, f1, . . . , fN−5

)T
,

uN(x) =
N−5∑
n=0

vnΦn(x), v = (v0, v1, . . . , vN−5)T .

rij =
(
Φ(v)

j ,Φi

)
w

(α,β)
L

, qij =
(
Φ(iv)

j ,Φi

)
w

(α,β)
L

,

yij =
(
Φ′′′

j ,Φi

)
w

(α,β)
L

, sij =
(
Φ′′

j ,Φi

)
w

(α,β)
L

,

tij =
(
Φ′

j ,Φi

)
w

(α,β)
L

, uij =
(
Φj ,Φi

)
w

(α,β)
L

,

(5.8)

then equation (5.7) is equivalent to the following matrix equation:

(
R + γ1Q + γ2Y + γ3S + γ4T + γ5U

)
v = f, (5.9)

where the nonzero elements of the matrices R, Q, Y , S, T , and U are given explicitly in the
following theorem.

Theorem 5.1. If one takes Φk(x) as defined in (5.4), and if one denotes pkj = (Φ(v)
j (x),Φk(x))w(α,β)

L

,

qkj = (Φ(iv)
j (x),Φk(x))w(α,β)

L

, ykj = (Φ′′′
j (x),Φk(x))w(α,β)

L

, skj = (Φ′′
j (x),Φk(x))w(α,β)

L

, tkj = (Φ′
j(x),

Φk(x))w(α,β)
L

, and ukj = (Φj(x),Φk(x))w(α,β)
L

. Then the nonzero elements (rkj), (qkj), (ykj), (skj), (tkj),
and (ukj) for 0 ≤ k, j ≤ N − 5 are given as follows:

rkk =
Lα+β−4(2k + λ + 1)5(2k + λ + 1)4Γ(k + 6)(Γ(α + 1))2Γ

(
k + β + 1

)
(
k + β + 1

)
5Γ(k + α + 1)Γ(k + λ + 5)

,

rkj = ξkξj
[
O5

(
j, k, α, β

)
h
(α,β)
L,k + O5

(
j, k + 1, α, β

)
ε̂kh

(α,β)
L,k+1 +O5

(
j, k + 2, α, β

)
ε̂kh

(α,β)
L,k+2

+O5
(
j, k + 3, α, β

)
ζ̂kh

(α,β)
L,k+3 +O5

(
j, k + 4, α, β

)
μ̂kh

(α,β)
L,k+4

+O5
(
j, k + 5, α, β

)
υ̂kh

(α,β)
L,k+5

]
, j = k + n, n ≥ 1,

qkj = ξkξj
[
O4

(
j, k, α, β

)
h
(α,β)
L,k

+O4
(
j, k + 1, α, β

)
ε̂kh

(α,β)
L,k+1 +O4

(
j, k + 2, α, β

)
ε̂k h

(α,β)
L,k+2

+O4
(
j, k + 3, α, β

)
ζ̂kh

(α,β)
L,k+3 +O4

(
j, k + 4, α, β

)
μ̂kh

(α,β)
L,k+4

+O4
(
j, k + 5, α, β

)
υ̂kh

(α,β)
L,k+5

]
, j = k + n − 1, n ≥ 0,
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ykj = ξkξj
[
O3

(
j, k, α, β

)
h
(α,β)
L,k +O3

(
j, k + 1, α, β

)
ε̂kh

(α,β)
L,k+1 +O3

(
j, k + 2, α, β

)
ε̂kh

(α,β)
L,k+2

+O3
(
j, k + 3, α, β

)
ζ̂kh

(α,β)
L,k+3 +O3

(
j, k + 4, α, β

)
μ̂kh

(α,β)
L,k+4

+O3
(
j, k + 5, α, β

)
υ̂kh

(α,β)
L,k+5

]
, j = k + n − 2, n ≥ 0,

skj = ξkξj
[
O2

(
j, k, α, β

)
h
(α,β)
L,k

+O2
(
j, k + 1, α, β

)
ε̂kh

(α,β)
L,k+1 +O2

(
j, k + 2, α, β

)
ε̂kh

(α,β)
L,k+2

+O2
(
j, k + 3, α, β

)
ζ̂kh

(α,β)
L,k+3 +O2

(
j, k + 4, α, β

)
μ̂kh

(α,β)
L,k+4

+ O2
(
j, k + 5, α, β

)
υ̂kh

(α,β)
L,k+5

]
, j = k + n − 3, n ≥ 0,

tkj = ξkξj
[
O1

(
j, k, α, β

)
h
(α,β)
L,k

+O1
(
j, k + 1, α, β

)
ε̂kh

(α,β)
L,k+1 +O1

(
j, k + 2, α, β

)
ε̂kh

(α,β)
L,k+2

+O1
(
j, k + 3, α, β

)
ζ̂kh

(α,β)
L,k+3 +O1

(
j, k + 4, α, β

)
μ̂kh

(α,β)
L,k+4

+ O1
(
j, k + 5, α, β

)
υ̂kh

(α,β)
L,k+5

]
, j = k + n − 4, n ≥ 0,

ukk = ξ2k

[
h
(α,β)
L,k + ε̂kε̂kh

(α,β)
L,k+1 + ε̂kε̂kh

(α,β)
L,k+2 + ζ̂kζ̂kh

(α,β)
L,k+3 + μ̂kμ̂kh

(α,β)
L,k+4 + υ̂kυ̂kh

(α,β)
L,k+5

]
,

uk+1,k = uk,k+1 = ξkξk+1
[
ε̂kh

(α,β)
L,k+1 + ε̂k+1ε̂kh

(α,β)
L,k+2 + ε̂k+1ζ̂kh

(α,β)
L,k+3 + ζ̂k+1μ̂kh

(α,β)
L,k+4 + μ̂k+1υ̂kh

(α,β)
L,k+5

]
,

uk+2,k = uk,k+2 = ξkξk+2
[
ε̂kh

(α,β)
L,k+2 + ε̂k+2ζ̂kh

(α,β)
L,k+3 + ε̂k+2μ̂kh

(α,β)
L,k+4 + ζ̂k+2υ̂kh

(α,β)
L,k+5

]
,

uk+3,k = uk,k+3 = ξkξk+3
[
ζ̂kh

(α,β)
L,k+3 + ε̂k+3μ̂kh

(α,β)
L,k+4 + ε̂k+3υ̂kh

(α,β)
L,k+5

]
,

uk+4,k = uk,k+4 = ξkξk+4
[
μ̂kh

(α,β)
L,k+4 + ε̂k+4υ̂kh

(α,β)
L,k+5

]
, uk+5,k = uk,k+5 = ξkξk+5υ̂kh

(α,β)
L,k+5,

(5.10)

where

Oi

(
j, k, α, β

)
= Ci

(
j, k, α, β

)
+ ε̂jCi

(
j + 1, k, α, β

)
+ ε̂jCi

(
j + 2, k, α, β

)

+ ζ̂jCi

(
j + 3, k, α, β

)
+ μ̂jCi

(
j + 4, k, α, β

)
+ υ̂jCi

(
j + 5, k, α, β

)
.

(5.11)

Proof. The proof of this theorem is not difficult, and it can be accomplished by following the
same procedure used in proving Theorem 2.1.
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In the following, we can always modify the right-hand side to take care of the non-
homogeneous initial conditions. Let us consider for instance the one-dimensional fifth-order
differential equation (5.1) subject to the nonhomogeneous initial conditions:

u(0) = a+, u′(0) = a−, u′′(0) = ã+,

u′′′(0) = ã−, u(iv)(0) = b+.
(5.12)

We proceed as follows.
Set

V (x) = u(x) + b0 + b1x + b2x
2 + b3x

3 + b4x
4, (5.13)

where

b0 = −a+, b1 = −a−, b2 =
−ã+

2
, b3 =

−ã−
6

, b4 =
−b+
24

. (5.14)

The transformation (5.13) turns the nonhomogeneous initial conditions (5.12) into the homo-
geneous initial conditions:

V (0) = V ′(0) = V ′′(0) = V ′′′(0) = V (iv)(0) = 0. (5.15)

Hence, it suffices to solve the following modified one-dimensional fifth-order equa-
tion:

V (v) + γ1V
(iv) + γ2V

′′′ + γ3V
′′ + γ4V

′ + γ5V = f∗(x) in I = (0, L), (5.16)

subject to the homogeneous initial conditions (5.15), where V (x) is given by (5.13), and

f∗(x) = f(x) − (
24γ1b4 + 6γ2b3 + 2γ3b2 + γ4b1 + γ5b0

) − (
24γ2b4 + 6γ3b3 + 2γ4b2 + γ5b1

)
x

− (
12γ3b4 + 3γ4b3 + γ5b2

)
x2 − (

4γ4b4 + γ5b3
)
x3 − γ5b4x

4.

(5.17)

5.2. Fifth-Order Equations with Variable Coefficients

Let us consider the fifth-order differential equation (5.1)with γ1, γ2, γ3, γ4, and γ5 are variables.
The pseudospectral Galerkin method for (5.1) is to find uN ∈ VN such that

(
u
(v)
N , vN

)
w

(α,β)
L

+
(
γ1(x)u

(iv)
N , vN

)
w

(α,β)
L ,N

+
(
γ2(x)u′′′

N, vN

)
w

(α,β)
L ,N

+
(
γ3(x)u′′

N, vN

)
w

(α,β)
L ,N

+
(
γ4(x)u′

N, vN

)
w

(α,β)
L ,N

+
(
γ5(x)uN, vN

)
w

(α,β)
L ,N

=
(
f, vN

)
w

(α,β)
L ,N

∀vN ∈ VN,

(5.18)
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where (u, v)
w

(α,β)
L ,N

is the discrete inner product of u and v associated with the shifted Jacobi-
Gauss quadrature (for details, see Section 3).

5.3. Nonlinear Fifth-Order Differential Equations

In this section, we are interested in solving numerically the nonlinear fifth-order differential
equation:

u(v)(x) = F
(
x, u(x), u′(x), u′′(x), u′′′(x), u(iv)(x)

)
, (5.19)

with initial conditions:

u(0) = u′(0) = u′′(0) = u′′′(0) = u(iv)(0) = 0. (5.20)

It is well known that one can convert (5.19) into fifth-order system of first-order initial-
value problems. Methods to solve systems of first-order differential equations are simply
generalizations of the methods for a single first-order equation, for example, the classical
Runge-Kutta of order four. Another alternative spectral method is to use the shifted Jacobi
collocation method to solve (5.19):

uN(x) =
N∑
j=0

bjΦk(x). (5.21)

Then, making use of formula (2.7) enables one to express explicitly the derivatives u(i)(x),
(i = 0, 1, 2, 3, 4) in terms of the expansion coefficients bj . The criterion of spectral shifted Jacobi
collocation method for solving approximately (5.19) is to find uN(x) ∈ SN(0, L) such that

u
(v)
N

(
x
(α,β)
L,N,k

)
= F

(
x
(α,β)
L,N,k

, uN

(
x
(α,β)
L,N,k

)
, u′

N

(
x
(α,β)
L,N,k

)
, u′′

N

(
x
(α,β)
L,N,k

)
, u′′′

N

(
x
(α,β)
L,N,k

)
, u

(iv)
N

(
x
(α,β)
L,N,k

))
,

k = 0, 1, . . . ,N,

(5.22)

is satisfied exactly at the collocation points x(α,β)
L,N,k, k = 0, 1, . . . ,N. In other words, we have to

collocate (5.22) at the (N + 1) shifted Jacobi roots x(α,β)
L,N,k, which immediately yields

N∑
j=0

bjΦ
(v)
k (x) = F

⎛
⎝x,

N∑
j=0

bjΦk(x),
N∑
j=0

bjΦ′
k(x),

N∑
j=0

bjΦ′′
k(x),

N∑
j=0

bjΦ′′′
k (x),

N∑
j=0

bjΦ
(iv)
k (x)

⎞
⎠.

(5.23)

This constitute a system of (N + 1) nonlinear algebraic equations in the unknown expansion
coefficients bj(j = 0, 1, . . . ,N), which can be solved by using any standard iteration technique,
like Newton’s iteration method.
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Table 1: Maximum pointwise error using SJG method for N = 8, 16, 24 for Example 6.1.

N α β SJG α β SJG
8 1.542 · 10−1 8.093 · 10−2
16

1
2

1
2

5.513 · 10−8 1
2

−1
2

1.642 · 10−8

24 1.598 · 10−14 4.707 · 10−14
8 2.581 · 10−1 1.417 · 10−1
16 −1

2
1
2

9.369 · 10−8 −1
2

−1
2

2.875 · 10−8

24 1.509 · 10−14 2.575 · 10−14

6. Numerical Results

To illustrate the effectiveness of the proposed methods in the present paper, several test
examples are carried out in this section. Comparisons of the results obtained by the present
methods with those obtained by other methods reveal that the present methods are very
efficient and more robust.

Example 6.1. Consider the linear third-order problem (see [23]):

u′′′(x) + 2u′′(x) − u′(x) − 2u(x) = f(x), x ∈ [0, 3], (6.1)

subject to the initial condition:

u(0) = 1, u′(0) = 2, u′′(0) = 0, (6.2)

where f is selected such that exact solution is

u(x) =
1
36

(6x − 5)ex − 4
9
e−2x +

1
4
e−x +

4
3
ex. (6.3)

Table 1 list the maximum pointwise error of u − uN using the SJG method with
various choices ofN. Numerical results of this problem show that the SJG method converges
exponentially.

Example 6.2. Consider the linear third-order problem with variable coefficients:

u′′′ − cos(4x)u′′ − e3xu′ +
(
sin(x) + x3

)
u = f(x), x ∈ [0, 3], (6.4)

subject to the initial condition:

u(0) = 1, u′(0) = 2, u′′(0) = 0, (6.5)

where f is selected such that exact solution is

u(x) =
1
36

(6x − 5)ex − 4
9
e−2x +

1
4
e−x +

4
3
ex. (6.6)
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Table 2: Maximum pointwise error using P-SJG method for N = 8, 16, 24 for Example 6.2.

N α β P-SJG α β P-SJG
8 7.346 · 10−4 6.848 · 10−4
16 1 1 3.173 · 10−11 1

2
1
2

2.659 · 10−11

24 1.533 · 10−12 1.056 · 10−12
8 6.366 · 10−4 4.459 · 10−4
16 0 0 1.363 · 10−11 −3

4
−3
4

5.574 · 10−12

24 2.318 · 10−12 2.626 · 10−12

Table 3: Maximum pointwise error using SJG method for N = 8, 16, 24 for Example 6.3.

N α β SJG α β SJG
8 3.742 · 10−2 2.782 · 10−2
16

1
2

1
2

9.629 · 10−11 1
2

−1
2

4.319 · 10−11

24 2.220 · 10−15 1.998 · 10−15
8 6.011 · 10−2 4.691 · 10−2
16 −1

2
1
2

1.755 · 10−10 −1
2

−1
2

8.095 · 10−11

24 1.443 · 10−15 1.443 · 10−15

Table 2 list the Maximum pointwise error, using the P-SJG method with various
choices of α, β, and N. Numerical results of third-order differential equation with variable
coefficients show that the P-SJG method converges exponentially.

Example 6.3. Consider the linear fifth-order problem (see [24]):

u(v)(x) − 32u(x) = f(x), x ∈ [0, 1], (6.7)

subject to the initial condition:

u(0) = 1, u′(0) = 3, u′′(0) = 4, u′′′(0) = 7, u(iv)(0) = 16, (6.8)

where f is selected such that exact solution is

u(x) = e2x + sinx. (6.9)

Table 3 list the maximum absolute error of u − uN using the SJG method with various
choices of α, β, and N. It is seen that for the given initial conditions, the maximum absolute
error in the He’s variational iteration method [24] with eight iterations is 5.579 · 10−4 (see,
Table 2 in [24]).

Example 6.4. Consider the linear fifth-order problem with variable coefficients:

u(v) − sin(3x)u(iv) − e2xu′′′ −
(
cos(x) + x2

)
u′′ − x sinxu′ + x2u = f(x), x ∈ [0, 2], (6.10)
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Table 4: Maximum pointwise error using P-SJG method for N = 8, 16, 24 for Example 6.4.

N α β P-SJG α β P-SJG
8 9.036 · 10−3 7.005 · 10−3
16

1
2

1
2

1.546 · 10−10 1
2

−1
2

1.694 · 10−10

24 2.673 · 10−13 1.687 · 10−13
8 1.350 · 10−2 1.100 · 10−2
16 −1

2
1
2

1.280 · 10−10 −1
2

−1
2

1.234 · 10−10

24 1.243 · 10−14 9.858 · 10−14

subject to the initial condition:

u(0) = 1, u′(0) = 1, u′′(0) = 0, u′′′(0) = 4, u(iv)(0) = −4, (6.11)

where f is selected such that exact solution is

u(x) = x2 sinx + ex cosx. (6.12)

Table 4 list the Maximum pointwise error, using the P-SJG method with various
choices of α, β, and N. Numerical results of fifth-order differential equation with variable
coefficients show that the P-SJG method converges exponentially.

Example 6.5. We consider in this example the third order nonlinear problem:

u(3)(x) +
2
x
u(2)(x) + u(x)2 =

(
14 − x2

)
cosx +

sinx
(
4 − 8x2 + x5 sinx

)
x

, x ∈ [0, 1],

(6.13)

with initial conditions given at three different points,

u(0) = u(1)(0) = u(2)(0) = 0. (6.14)

The exact solution of this problem is

u(x) = x2 sinx. (6.15)

In Table 5, we list the absolute errors obtained by the shifted Jacobi collocationmethod,
with different values of α, β and at N = 14.

Example 6.6. We consider in this example the fifth order nonlinear problem:

u(5)(x) + u(x)u(4)(x) = f(x), x ∈ [0, 1], (6.16)
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Table 5: Absolute error using SJC method forN = 14 Example 6.5.

x α = −1/2, β = 1/2 α = 0, β = 0 α = 1/2, β = −1/2
0.0 3.613 · 10−17 6.918 · 10−18 8.474 · 10−17
0.1 1.192 · 10−17 4.553 · 10−18 2.936 · 10−16
0.2 2.081 · 10−17 1.387 · 10−17 3.330 · 10−16
0.3 3.469 · 10−18 5.551 · 10−17 3.469 · 10−18
0.4 1.387 · 10−17 6.938 · 10−18 2.081 · 10−17
0.5 4.163 · 10−17 4.163 · 10−17 1.387 · 10−17
0.6 1.110 · 10−16 1.110 · 10−16 5.551 · 10−17
0.7 5.551 · 10−17 1.110 · 10−16 5.551 · 10−17
0.8 5.551 · 10−17 5.551 · 10−17 1.110 · 10−16
0.9 0 1.110 · 10−16 1.110 · 10−16
1.0 0 1.110 · 10−16 1.110 · 10−16

Table 6: Absolute error using SJC method forN = 18 Example 6.6.

x α = −1/2, β = 1/2 α = 0, β = 0 α = 1/2, β = −1/2
0.0 0 1.991 · 10−18 6.938 · 10−18
0.1 1.665 · 10−16 3.037 · 10−17 2.638 · 10−16
0.2 4.996 · 10−16 4.353 · 10−17 3.538 · 10−16
0.3 1.665 · 10−16 1.908 · 10−17 3.764 · 10−16
0.4 1.665 · 10−16 6.418 · 10−17 3.122 · 10−17
0.5 2.775 · 10−17 5.204 · 10−17 6.938 · 10−18
0.6 0 8.326 · 10−17 5.204 · 10−17
0.7 1.110 · 10−16 1.110 · 10−16 7.632 · 10−17
0.8 1.665 · 10−16 1.110 · 10−16 4.163 · 10−17
0.9 2.775 · 10−16 1.110 · 10−16 1.387 · 10−16
1.0 5.551 · 10−16 1.110 · 10−16 2.220 · 10−16

with initial conditions given at three different points,

u(0) = u(1)(0) = u(2)(0) = u(3)(0) = u(4)(0) = 0. (6.17)

The exact solution of this problem is

u(x) = x5 cosx. (6.18)

In Table 6, we list the absolute errors obtained by the shifted Jacobi collocationmethod,
with different values of α, β and at N = 18.

7. Concluding Remarks

In this paper, we described a shifted Jacobi Galerkin method for third- and fifth-order ODEs
with constant coefficients subject to homogeneous and nonhomogeneous initial conditions.
The initial boundary conditions are satisfied exactly by expanding the unknown variable
into a polynomial basis of functions which are built upon the shifted Jacobi polynomials.
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Because of the constant coefficients, thematrix elements of the discrete operators are provided
explicitly, and this in turn greatly simplifies the steps and the computational effort for
obtaining solutions. We have also presented some efficient direct solvers for the same
equations with variable coefficients using P-SJG method.

An efficient and accurate numerical scheme based on the SJC spectral method is
proposed for solving these equations. The problem is reduced to the solution of nonlinear
algebraic equations. Through several numerical examples, we evaluate the accuracy and
performance of the proposed algorithms. The algorithms are easy to implement and yield
very accurate results.
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