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A class of three-dimensional Gause-type predator-prey model with delay is considered. Firstly,
a group of sufficient conditions for the existence of Hopf bifurcation is obtained via employing
the polynomial theorem by analyzing the distribution of the roots of the associated characteristic
equation. Secondly, the direction of the Hopf bifurcation and the stability of the bifurcated periodic
solutions are determined by applying the normal form method and the center manifold theorem.
Finally, some numerical simulations are carried out to illustrate the obtained results.

1. Introduction

Multispecies predator-prey models arise frequently on various ecosystems [1–4]. They
usually exhibit more rich and complex dynamics as the number of species increases. Take
three-species models, for example. There might be a food chain, or two predators or preys,
whose relations might be cooperative or competitive. It has attracted extensive studies
on the dynamics of various multispecies predator-prey models. Cheng et al. [5] derived
some results to ensure the global stability of a predator-prey system with Holling’s type
III functional response. klebanoff and Hastings [6] investigated a three-species food chain
model. It showed that the system exhibits rich complexity features such as stable, periodic,
and chaotic dynamics. Hsu and Huang [7] deals with the question of global stability of the
positive locally asymptotically stable equilibrium in a class of predator-prey systems by using
the Dulac’s criterion and constructing Lyapunov functions. See [8–14].
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In 1977, Freedman and Waltman [12] investigated the following general Gause-type
predator-prey model:

dx(t)
dt

= xg(x) − yp(x),
dy(t)
dt

= y
[−h + ep(x)

] − zq(y),
dz(t)
dt

= z
[−s +mq(y)],

(1.1)

where x(t), y(t), and z(t) are the population densities of prey, predator, and top predator
at time t, respectively. g(x) is the intrinsic growth rate of prey; p(x) and q(y) are the specific
growth rates of predator and top predator; h, s > 0 are the death rates of y(t) and z(t); e,m > 0
are the conversion rates for prey and predator. They established the stability criteria and
argued that the unique interior equilibrium exists and is locally asymptotically stable. Ginoux
et al. [13] highlighted that this model has several Hopf bifurcations and a period-doubling
cascade generating a snail shell-shaped chaotic attractor. They compared the quantity and
property of the equilibria, bifurcation structure, and shape of attractors among this model
and the so-called Rosenzweig-MacArthur and Hastings-Powell models and also gave the
bifurcation analysis for each model. Hastings and Powell [14] discussed a continuous time
model of a food chain incorporating nonlinear functional responses, and the model exhibits
chaotic in long-term behavior when appropriate biologically reasonable parameter values
are chosen. They found that, for different values of the key parameter, the system exhibits
several types of asymptotic motions, namely, stable equilibrium point, limit cycles, change in
periodicity of these cycles, and the so called teacup chaos.

We know that the population outbreak may happen for the species with periodic
fluctuation. The outbreaks of pests and mice are famous. For example, Finerty discovered
in Canada the populations of polar rabbits, lynxs and Ondatrazibethicas have 10-year cycle
fluctuations, and the populations of lemmings and some murine experience 4-year cycle
fluctuations. When the peak arrived, the vegetation would be severely damaged. Some
cyclical fluctuations are consistent with the periodicity of intensity of certain infectious
diseases. Thus, it is of great significance to study periodic solutions of biological systems
for controlling insect. It is known that the delay differential equations (DDEs) will exhibit
much more complicated dynamics than ordinary differential equations (ODEs) such as the
existence of Bogdanov-Takens bifurcation and even chaos. See [15–17]. Many authors have
researched the different delays Gause-type predator-prey systems [18–22].

For two-dimensional Gause-type predator-prey model,

dx(t)
dt

= x(t)g(x(t)) − y(t)p(x(t)),
dy(t)
dt

= y(t)
[−d + μp(x(t))

]
,

(1.2)

the time delay can be incorporated into (1.2) at three different terms [4], including the prey
specific growth term g(x(t)), the predator response term p(x(t)), or the interaction term
y(t)p(x(t)). The detailed analysis on stability and bifurcation can be found in [23]. Because
the prey usually has a gestation or reaction time of predator, introducing time delay is
necessary and hence changes the model into a DDE. It is well known that delay could cause
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a stable equilibrium to be unstable and induce bifurcations as well as periodic oscillations.
Under the hypothesis that prey x(t) has a gestation in (1.1), we modify it to be the following
one:

dx(t)
dt

= xg(x) − yp(x − τ),
dy(t)
dt

= y
[−h + ep(x)

] − zq(y),
dz(t)
dt

= z
[−s +mq(y)],

(1.3)

where τ is the time of gestation.
The purpose of current work is to analyze the effect of delay on the dynamics for

(1.3), so we plan to employ bifurcation analysis approach with delay τ being the parameter.
In particular, we choose g(x) = α(1 − (x/K)), p(x) = βx/(1 + px), and q(y) = ry. So the
following delay model will be obtained:

dx(t)
dt

= αx
(
1 − x

k

)
− βyx(t − τ)
1 + px(t − τ) ,

dy(t)
dt

= y
[
−h +

eβx

1 + px

]
− rzy,

dz(t)
dt

= z
[−s +mry],

(1.4)

where α, β, k, p, h, e, r, s,m are all positive parameters.
Our results reveal that Hopf bifurcation can occur as the delay crosses some critical

values which leads to the existence of periodic solution that may conform to certain
phenomena in ecosystem system.

The rest of the paper is organized as follows. In Section 2, we first investigate the
stability of coexisting equilibrium and the existence of the Hopf bifurcation of (1.4) by
analyzing the characteristic equation of the associated linearized system. In Section 3, we
derive an explicit formula for determining the stability and the direction of bifurcating
periodic solutions by the normal form method and the center manifold theory. In Section 4,
we carry out some numerical simulations to illustrate the results obtained and forecast the
change of population quantity.

2. Stability and Hopf Bifurcation of Coexisting Equilibrium

For the sake of convenience, we nondimensionalized (1.4) with the following: scaling

x → x

k
, t → αt, y → y, z → z, (2.1)
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then (1.4) takes the form

dx(t)
dt

= x(1 − x) − ay x(t − τ)
x(t − τ) + b ,

dy(t)
dt

= y
(
−l + cx

x + b
− rz

)
,

dz(t)
dt

= z
(−s + dy),

(2.2)

where

a =
β

pkα
, b =

1
pk

, r =
h

α
, c =

eβ

pα
, d = mr. (2.3)

Obviously, the delay cannot change the number of equilibria and non-
dimensionalizations cannot change the properties of system. Through simple analysis,
we know (2.2) has four equilibria: E1(0, 0, 0), E2(1, 0, 0), E3(x0, y0, 0), and E(x∗, y∗, z∗) with

x0 =
bl

c − l ,

y0 =
(1 − x0)(x0 + b)

a
,

x∗ =
(1 − b) +

√
(1 − b)2 + 4b − (4as/d)

2
,

y∗ =
s

d
,

z∗ = − l
r
+

cx∗

r(x∗ + b)
.

(2.4)

There is no obvious biological significance for E1(0, 0, 0) and E2(1, 0, 0). In this paper,
we mainly study the change of stability of coexisting equilibrium E(x∗, y∗, z∗) with the
variation of time delay. If as/d ≤ b < 1, then E(x∗, y∗, z∗) is the uniqueness equilibrium
of (2.2). We consider the linearized system of (2.2) at E. The characteristic equation at E is
given by

∣∣∣∣∣∣

λ −m11 − n11e−λτ −m12 0
−m21 λ −m23

0 −m32 λ

∣∣∣∣∣∣
= 0, (2.5)

where

m11 = 1 − 2x∗, m12 = − ax∗

x∗ + b
< 0, m21 =

bcy∗

(x∗ + b)2
> 0,

m23 = −ry∗ < 0, m32 = dz∗ > 0, n11 = − aby∗

(x∗ + b)2
< 0.

(2.6)
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The eigenvalue λ satisfies the characteristic equation

D(λ, τ) = λ3 + a2λ2 + a1λ + a0 +
(
b2λ

2 + b0
)
e−λτ = 0, (2.7)

where a2 = −m11, a1 = −m12m21 − m32m23 > 0, a0 = m32m23m11, b2 = −n11 > 0, and b0 =
m32m23n11 > 0.

If m11 < 0, then all the eigenvalues of (2.7) have negative real parts when τ = 0 by the
Routh-Hurwitz criterion. So we have the Lemma 2.1.

Lemma 2.1. If as/d ≤ b < 1 and m11 < 0, then the coexisting equilibrium E(x∗, y∗, z∗) of (2.2) is
locally asymptotically stable.

It is known that E(x∗, y∗, z∗) is asymptotically stable if all roots of the corresponding
characteristic equation (2.7) have negative real parts. We shall study the distribution of the
roots of the (2.7) when τ /= 0. We assume that the equilibrium E(x∗, y∗, z∗) of the ODE model
is stable, then we derive some conditions to ensure that the steady state of the delay model is
still stable.

We compute the eigenvalues of the Jacobian matrix at the coexisting equilibrium
E(x∗, y∗, z∗). Substituting λ = iω into (2.7) yields,

(1) when ω = 0, D(0, τ) = a0 + b0 = m23m32(n11 +m11)/= 0,

(2) when ω/= 0,D(iω, τ) = (iω)3 + a2(iω)
2 + a1iω + a0 + (b0 − b2ω2)e−iωτ = 0. Separating

the real and imaginary parts, we get

−a2ω2 + a0 +
(
b0 − b2ω2

)
cosωτ = 0,

−ω3 + a1ω −
(
b0 − b2ω2

)
sinωτ = 0.

(2.8)

Consequently, we get

ω6 +
(
a22 − 2a1 − b22

)
ω4 +

(
a21 − 2a0a2 + 2b0b2

)
ω2 + a20 − b20 = 0. (2.9)

Let ω2 = l, A = a22 − 2a1 − b22, B = a21 − 2a0a2 + 2b0b2 and C = a20 − b20, then (2.9) becomes

l3 +Al2 + Bl + C = 0. (2.10)

From Ruan andWei [24] or Li andWei [25], we have the following results on the distribution
of roots of (2.10).

Lemma 2.2. Denote

l1 =
−A +

√
Δ

3
, l2 =

−A −
√
Δ

3
, Δ = A2 − 3B, h(l) = l3 +Al2 + Bl + C. (2.11)



6 Abstract and Applied Analysis

(1) If C ≥ 0, then (2.10) has at least one positive root.

(2) If C ≥ 0 and Δ < 0, then (2.10) has no positive root.

(3) If C ≥ 0, then (2.10) has positive roots ⇔ if l1 > 0 and h′(l1) ≤ 0.

Suppose (2.10) has root with positive real part. Without loss of generality, we assume
that it has three positive roots, denoted by l1, l2, l3, respectively. Then, (2.10) has three positive
roots ωi =

√
li (i = 1, 2, 3). Let τ (0)k be the unique root of (2.8) such that τ (0)k ωk ∈ [0, 2π). Also

denote by

τ
(j)
k

= τ (0)
k

+
2jπ
ωk

, (2.12)

for k = 1, 2, 3.
So (±ωk, τ

(j)
k
) is the solution of (2.7). Clearly,

lim τ
(j)
k

= ∞, k = 1, 2, 3. (2.13)

We can define

τ0 = τk0 = min τ (0)k , ω0 = ωk0 , (2.14)

that is, ±iω0 is the purely imaginary roots of (2.7) for τ = τ0. So we have the following.

Lemma 2.3. τ0 is defined by (2.14), then
(1) if one of the following holds (i) C < 0; (ii) C ≥ 0, Δ ≥ 0; (iii) C ≥ 0, l1 > 0; h′(l1) > 0,

then all roots of (2.7) have negative real parts for τ ∈ [0, τ0);
(2) if none of the conditions (i)–(iii) are satisfied, then all toots of (2.7) have negative real parts

for all τ ≥ 0.

So we have the following theorem.

Theorem 2.4. Supposed that

(a) as/d ≤ b < 1 andm11 < 0,

(b) either C ≥ 0, A2 − 3B < 0, or C ≥ 0, B > 0,

then the equilibrium E(x∗, y∗, z∗) of the delay model (2.2) is absolutely stable; that is, E(x∗, y∗, z∗) is
asymptotically stable for all τ ≥ 0.

Denoting λ(τ) = α(τ)+β(τ) to be the root of (2.7) satisfying α(τ0) = 0, ω(τ0) = ω0, then
we have the following Lemma 2.5.

Lemma 2.5. Suppose A2 − 3B < 0,

(a) ±iω0 is a pair of simple purely imaginary roots of (2.7) when τ = τ0,

(b) [d Reλ(τ)/dτ]|τ=τ0 > 0.
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Proof. If iω0 is not simple, then ω0 must satisfy

d

dτ

[
λ3 + a2λ2 + a1λ + a0 +

(
b2λ

2 + b0
)
e−λτ

]
|λ=iω0 = 0, (2.15)

that is, ω0 and τ0 must satisfy

τ
(
b2ω

2 − b0
)
cosωτ + 2b2ω sinωτ = 3ω2 − a1,

τ
(
b2ω

2 − b0
)
sinωτ − 2b2ω cosωτ = 2a2ω.

(2.16)

Eliminating τ , we have

(
a1 − 3ω2

)
sinωτ + 2a2ω cosωτ = −2b2ω, (2.17)

substituting sinωτ , cosωτ from (2.8) into (2.17). We have

3ω4 + 2
(
a22 − 2a1 − b22

)
ω2 +

(
a21 − 2a2a0 + 2b2b0

)
= 0. (2.18)

Recall ω2
0 = l0, which implies

3l20 + 2Al0 + B = 0. (2.19)

However if A2 − 3B < 0, we have

h′(l0) = 3l20 + 2Al0 + B > 0, (2.20)

a contradiction. So ±iω0 is a pair of simple purely imaginary roots of (2.7).
Note that

M =
(
a1 − 3ω2

0

)
cosω0τ0 − 2a2ω0 sinω0τ0 +

(
b2ω

2
0 − b0

)
τ0,

N =
(
a1 − 3ω2

0

)
sinω0τ0 + 2a2ω0 cosω0τ0 + 2b2ω0,

Q = b0ω0 − b2ω3
0.

(2.21)
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So

dλ(τ)
dτ

=
iQ

M + iN
=
NQ + iMQ

M2 +N2
. (2.22)

Then,

dReλ(τ0)
dτ

=
NQ

M2 +N2
(2.23)

has the same sign as that ofNQ.
Now,

NQ =
[(
a1 − 3ω2

0

)
sinω0τ0 + 2a2ω0 cosω0τ0 + 2b2ω0

](
b0ω − b2ω3

)

= ω2
0

[
3ω4

0 + 2
(
a22 − 2a1 − b22

)
ω2

0 +
(
a21 − 2a2a0 + 2b2b0

)]

= ω2
0

[
3ω4

0 + 2Aω2
0 + B

]
.

(2.24)

When A2 − 3B < 0,NQ is greater than zero, that is [d Reλ(τ)/dτ]|τ=τ0 > 0.

By Lemma 2.5, we have the Theorem 2.6.

Theorem 2.6. Supposed that Lemma 2.3 is right, then, when A2 − 3B < 0, the equilibrium
E(x∗, y∗, z∗) of the delay model (2.2) is asymptotically stable when τ < τ0 and unstable when τ > τ0,
where τ0 is defined by (2.14). When τ = τ0, a Hopf bifurcation occurs.

3. Direction and Stability of Hopf Bifurcation

Let x1(t) = x(t) − x∗, x2(t) = y(t) − y∗, x3(t) = z(t) − z∗, Xi(t) = xi(τt) (i = 1, 2, 3), τ = τ0 + μ,
μ ∈ R, and

B =

⎛

⎝
m11 m12 0
m21 0 m23

0 m32 0

⎞

⎠, C =

⎛

⎝
n11 0 0
0 0 0
0 0 0

⎞

⎠. (3.1)

The system (1.4) is transformed into a functional differential equation (FDE) in C =
C([−1, 0],R3), defining

Lμ
(
φ
)
=
(
τ0 + μ

)
Bφ(0) +

(
τ0 + μ

)
Cφ(−1), (3.2)
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Figure 1: E is asymptotically stable for all τ > 0.

where φ = (φ1, φ2, φ3)
T ∈ C([−1, 0],R3), and the nonlinear term is

h
(
μ, φ

)
=
(
τ0 + μ

)

⎛

⎜⎜⎜⎜⎜
⎝

−2φ2
1(0) −

2ab

(x∗ + b)2
φ2(0)φ1(−1)

−2bcy∗

(b + x∗)3
φ2
1(0) +

2bc

(b + x∗)2
φ1(0)φ2(0) − 2rφ2(0)φ3(0)

2drφ2(0)φ3(0)

⎞

⎟⎟⎟⎟⎟
⎠
. (3.3)

So μ = 0 is Hopf bifurcation point.
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Figure 2: E(0.9977, 0.6954, 0.4432) with initial value (0.985, 0.135, 0.4) is asymptotically stable when τ =
8.6017 < τ0 = 12.6774.

By the Riesz representation theorem, there exists a 3 × 3 matrix η(θ, μ) (−1 ≤ θ ≤ 0),
whose elements are of bounded variation functions such that

Lμ
(
φ
)
=
∫0

−1

[
dη

(
θ, μ

)]
φ(θ), for φ ∈ C

(
[−1, 0], R

3
)
. (3.4)

In fact, we can choose

η
(
θ, μ

)
=

⎧
⎪⎪⎨

⎪⎪⎩

(
τ0 + μ

)
B, θ = 0,

0, θ ∈ (−1, 0),
(
τ0 + μ

)
C, θ = −1.

(3.5)
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Figure 3: A stable periodic orbit of system (2.2) when initial value is (0.985, 0.135, 0.4) and τ = 20.7288 >
τ0 = 12.6774.

Then, (3.4) is satisfied. For φ ∈ C1([−1, 0],R3), we define

A
(
μ
)
φ(θ) =

⎧
⎪⎪⎨

⎪⎪⎩

dφ(θ)
dθ

, θ ∈ [−1, 0),
∫0

−1

[
dη

(
ξ, μ

)]
φ(ξ), θ = 0,

R
(
μ
)
φ(θ) =

{
0, θ ∈ [−1, 0),
h
(
μ, φ

)
, θ = 0.

(3.6)

So (3.4) is equivalent to the following abstract equation:

ẋt = A
(
μ
)
xt + R

(
μ
)
xt, (3.7)

where x = (x1, x2, x3)
T , xt = x(t + θ), for θ ∈ [−1, 0].
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Figure 4: The stable periodic orbits of system (2.2) when τ = 200.7288 and τ = 400.8768 with parameters
given by (3).

For ψ ∈ C1([0, 1],R3∗), we define

A∗ψ(s) =

⎧
⎪⎪⎨

⎪⎪⎩

−dψ(s)
ds

, s ∈ (0, 1],
∫0

−1
ψ(−ξ)dη(ξ, 0), s = 0,

(3.8)

and a bilinear form

〈
ψ(s), φ(θ)

〉
= ψ(0)φ(0) −

∫0

−1

∫θ

ξ=0
ψ(ξ − θ)dη(θ)φ(ξ)dξ, (3.9)

where η(θ) = η(θ, 0). Then, A(0) and A∗ are adjoint operators. We know that ±iω0τ0 are
eigenvalues of A(0), and, therefore, they are also eigenvalues of A∗(0). The vector q(θ) =
(q1, 1, q3)

Teiω0τ0θ(θ ∈ [−1, 0]) and q∗(s) = D(q∗1, 1, q
∗
3)e

iω0τ0s(s ∈ [0, 1]) are the eigenvectors
of A(0) and A∗ corresponding to the eigenvalue iω0τ0 and −iω0τ0, respectively, satisfying
〈q∗(s), q(θ)〉 = 1, 〈q∗(s), q(θ)〉 = 0 with q1 = m12/(iω0 − n11e−iω0 − m11), q3 = m32/iω0, q∗1 =
m21/(−iω0−n11eiω0 −m11),q∗3 = m23/iω0, andD = 1/(q∗1q1+1+q

∗
3q3+q1q

∗
1n11e

−iω0τ0). Following
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the same algorithms as Hassard et al. [26], we can obtain the coefficients which will be used
to determine the important quantities:

g02 = 2Dτ0

[

−q12q∗1 −
ab

(b + x∗)2
q1q

∗
1e

iω0τ0 − bcy∗

(b + x∗)2
q1 − rq3 + dq3q∗3

]

,

g20 = 2Dτ0

[

−q21q∗1 −
abq1q

∗
1

(b + x∗)2
e−iω0τ0 − bcy∗

(b + x∗)3
q21 +

bc

(b + x∗)2
q1 − rq3 + dq3q∗3

]

,

g11 = 2Dτ0

[

−2q1q1q∗1 −
ab

(b + x∗)2
(
2Re

{
q1e

−iω0τ0
})

− 2bcy∗

(b + x∗)3
q1q1 +

2bc

(b + x∗)2
Re
{
q1
}

−2rRe{q3
}
+ 2dRe

{
q3q

∗
3

}]

,

g21 = 2Dτ0

[(

−4q1q∗1 −
4bc

(b + x∗)3
q1 +

2bc

(b + x∗)2

)

W1
11(0) +

(
2bc

(b + x∗)2
q1 − 2ab

(b + x∗)2
q1q

∗
1e

−iω0τ0

+2dq3q∗3 − 2rq3
)
W2

11(0) +
(
2dq∗3 − 2r

)
W3

11(0) −
2abq∗1

(b + x∗)2
W1

11(−1)

+

(

−4q∗1q1 −
2bc

(b + x∗)3
q1 +

bc

(b + x∗)2

)

W1
20(0) +

(

− abq∗1
(b + x∗)2

q1e
iω0τ0 +

bc

(b + x∗)2
q1

+dq∗3q3 − rq3
)
W2

20(0) +
(
dq∗3 − r

)
W3

20(0) −
abq∗1

(b + x∗)2
W1

20(−1)
]

.

(3.10)

Since there areW20(θ) andW11(θ) in g21, we still need to compute them. From [25], we have

W20(θ) =
ig20
ω0τ0

q(θ) +
ig02

3ω0τ0
q(θ) + E1e

2iω0τ0θ. (3.11)

According to

[

2iω0τ0I −
∫0

−1
dη(θ)e2iω0θ

]

E1 = hz2 , (3.12)

where

hz2 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

(

−2 + 2aby∗

(b + x∗)3

)

q21 −
2ab

(b + x∗)2
q1

−2rq3 + bc

(b + x∗)2
q1e

−iω0τ0 − 4bcy∗

(b + x∗)3
q21e

−2iω0τ0

2dq3e−iω0τ0

⎞

⎟⎟⎟⎟⎟⎟
⎠

, (3.13)
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we have E1 = (E(1)
1 , E

(2)
1 , E

(3)
1 )T , where E(i)

1 = 2Δ(i)
1 /Δ1 (i = 1, 2, 3), with

Δ1 =
(
−4ω2

0τ
2
0 −m23m32 −m12m21

)
(2iω0τ0) +

(
4ω2

0τ
2
0 +m23m32

)(
n11e

−2iω0τ0 +m11

)
,

Δ(1)
1 =

(
4ω2

0τ
2
0 +m23m32

)(

2q21 +
2ab

(b + x∗)2
q1e

−iω0τ0

)

+ 2m12iω0τ0

[

− 2bcy∗

(b + x∗)3
q21 +

2bc

(b + x∗)2
q1 − 2rq3

]

+ 2m12m23dq3,

Δ(2)
1 = 2m21iω0τ0

[

−2q21 −
2ab

(b + x∗)2
q1e

−iω0τ0

]

+ 2iω0τ0
(
2iω0τ0 − n11e−iω0τ0 −m11

)[

− 2bcy∗

(b + x∗)3
q21 +

2bc

(b + x∗)2
q1 − 2rq3

]

+ 2m23

(
2iω0τ0 − n11e−2iω0τ0 −m11

)
dq3,

Δ(3)
1 = m21m32

[

−2q21 −
2ab

(b + x∗)2
q1e

−iω0τ0

]

+m32

(
2iω0τ0 − n11e−iω0τ0 −m11

)[

− 2bcy∗

(b + x∗)3
q21 +

2bc

(b + x∗)2
q1 − 2rq3

]

+ 2
[
2iω0τ0

(
2iω0τ0 − n11e−iω0τ0 −m11

)
−m12m21

]
dq3.

(3.14)

And, similarly,

W11(θ) = − ig11
ω0τ0

q(θ) +
ig11

ω0τ0
q(θ) + E2. (3.15)

According to

(∫0

−1
dη(θ)

)

E2 = −hzz, (3.16)

where

hzz =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

(

−2 + 2aby∗

(b + x∗)3

)

q1q1 − 2ab

(b + x∗)2
(
q1 + q1

)

−r(q3 + q3
)
+

bc

(b + x∗)2
(
q1e

iω0τ0 + q1e−iω0τ0
) − 4bcy∗

(b + x∗)3
q1q1

d
(
q3q

∗
3e

iω0τ0 + q3q∗3e
−iω0τ0

)

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

, (3.17)
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we have E2 = (E(1)
2 , E

(2)
2 , E

(3)
2 )T , where E(i)

2 = 2Δ(i)
2 /Δ2 (i = 1, 2, 3), with

Δ2 = m23m32(m11 + n11),

Δ(1)
2 = −m23m32

(

−4q1q1 − 2ab

(b + x∗)2
(
2Re

{
q1e

−iω0τ0
}))

+ 2m12m23d
(
2Re

{
q3
})
,

Δ(2)
2 = −2m23(m11 + n11)d

(
2Re

{
q3
})
,

Δ(3)
2 = m21m32

(

−4q1q1 − 2ab

(b + x∗)2
(
2Re

{
q1e

−iω0τ0
}))

−m32(m11 + n11)

[
−4bcy∗

(b + x∗)3
q1q1 +

2bc

(b + x∗)2
(
2Re

{
q1
})
]

− 2m12m21d
(
2Re

{
q3
})
.

(3.18)

Consequently, gij can be expressed explicitly by the parameters and delay. Thus, we
can compute the following values:

c1(0) =
i

2ω0τ0

(

g11g20 − 2
∣∣g11

∣∣2 −
∣∣g02

∣∣2

3

)

+
g21
2
,

μ2 = − Re(c1(0))
Re(λ′(τ0))

,

T2 = −Imc1(0) + μ2Imλ
′(τ0)

ω0τ0
,

β2 = 2Re(c1(0)),

(3.19)

which determine the properties of bifurcating periodic solutions at the critical value τ0. That
is, μ2 determines the direction of Hopf bifurcation: if μ2 > 0 (μ2 < 0), then Hopf bifurcation at
τ0 is forward (or backward); β2 determines the stability of bifurcating periodic solutions: the
bifurcating periodic solutions on the center manifold are stable (unstable) if β2 < 0 (β2 > 0); T2
determines the period of the bifurcating periodic solutions: the period increases (decreases)
if T2 > 0 (T2 < 0).

4. Numerical Simulations and Discussions

In this part, we perform some numerical simulations. The results not only support our
previous parts but also predict the existence of global Hopf bifurcations periodic solutions.
However, to prove this observation theoretically is of great challenge.

We choose the parameters as follows:
(1) a = 0.321, b = 0.860, c = 0.532, r = 0.12, s = 0.312, d = 0.415, l = 0.13,
(2) a = 0.432, b = 0.677, c = 0.321, r = 0.12, s = 0.235, d = 0.332, l = 0.013.
Thus, all the conditions in Theorem 2.4 are satisfied.E(0.855, 0.7519, 1.1272)with initial

value (0.812, 0.702, 0.925) for (1) and E(0.7915, 0.7078, 1.3339)with initial value (0.607, 0.602,
0.895) for (2) are asymptotically stable for all τ > 0 (see Figure 1). From a biological sense,
the prey, predator, and top predator will have a short-term fluctuation in the initial stage as
the effect of τ . But the population would tend to a steady level after a long period of time.
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We choose another set of parameters which satisfy the assumptions in Theorem 2.6:

(3) τ = 8.6017, a = 0.036, s = 0.0160, d = 0.296, b = 0.1347, r = 0.9200, l = 0.1500,
c = 0.6330.

Through (2.14), we have τ0 = 12.6774, ω0 = 14.7193, and c1(0) = −0.4617 +
i0.6024. Utilizing Theorem 2.6, we know that the equilibrium of the delay model (2.2) is
asymptotically stable when τ < τ0 (see Figure 2).

Hopf bifurcation occurs when τ = τ0, and the bifurcating periodic solution is orbitally
asymptotically for τ > τ0 (see Figure 3).

In addition, the periodic solution of system (2.2) still exists when τ is large and its
amplitude is larger compared with the solution in Figure 4. The numerical results of Figure 4
show the global existence of periodic solutions generated by the Hopf bifurcation. How to
explain the phenomenon theoretically needs further researches.

5. Conclusion

In this paper, we analyze the dynamics of the equilibria coexistence for a class of three-
dimensional Gause-type predator-prey model. We obtain the stability of this equilibrium and
also claim that the introduced delay changes its stability while a Hopf bifurcation occurs. The
existence of the bifurcation periodic solutions for sufficiently large delay has been shown by
numerical simulations.
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