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We investigate the value distributions of difference polynomials Δf(z) − af(z)n and f(z)nf(z + c)
which related to two well-known differential polynomials, where f(z) is a meromorphic function.

1. Introduction and Main Results

In this paper, we will assume that the reader is familiar with the fundamental results
and the standard notation of the Nevanlinna value distribution theory of meromorphic
functions (see [1, 2]). The term “meromorphic function”will meanmeromorphic in thewhole
complex plane C. In addition, we will use notations ρ(f) to denote the order of growth
of a meromorphic function f(z), λ(f) to denote the exponents of convergence of the zero-
sequence of a meromorphic function f(z), λ(1/f) to denote the exponents of convergence of
the sequence of distinct poles of f(z).

Hayman [3] proved the following famous result.

Theorem A. If f(z) is a transcendental meromorphic function, n ≥ 5 is an integer, and a(/= 0) is a
constant, then f ′(z) − af(z)n assumes all finite values infinitely often.

He also conjectured in [1] that the same result holds for n = 3 and 4. However, Mues
[4] proved that the conjecture is not true for n = 4 by providing a counterexample and proved
that f ′ − af4 has infinitely many zeros. If f(z) is a transcendental entire function, n ≥ 3 holds
in Theorem A.

Recently, many papers have focused on complex difference, giving many difference
analogues in value distribution theory of meromorphic functions.
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It is well known that Δf(z) = f(z+ c)− f(z), where c ∈ C \ {0} is a constant satisfying
f(z + c) − f(z)/≡ 0) which is regarded as the difference counterpart of f ′(z), so that Δf(z) −
af(z)n is regarded as the difference counterpart f ′(z) − af(z)n, where a ∈ C \ {0}.

In 2011, Chen [5] considered the difference counterpart of Theorem A under the
condition that f is transcendental entire.

Theorem B. If f(z) is a transcendental entire function of finite order, and let a, c ∈ C \ {0} be
constants, with c such that f(z + c)/≡ f(z). Set Ψn(z) = Δf(z) − af(z)n and n ≥ 3 is an integer.
ThenΨn(z) assumes all finite values infinitely often, and for every b ∈ C one has λ(Ψn(z)−b) = ρ(f).

Theorem C. If f(z) is a transcendental entire function of finite order with a Borel exceptional values
0. Let a, c ∈ C \ {0} be constants, with c such that f(z + c)/≡ f(z). Then Ψ2(z) assumes the value b
infinitely often, and λ(Ψn(z) − b) = ρ(f).

Theorem D. If f(z) is a transcendental entire function of finite order with a nonzero Borel
exceptional values d. Let a, c ∈ C \ {0} be constants, with c such that f(z + c)/≡ f(z). Then for
b ∈ C with b /= − ad2, Ψ2(z) assumes the value b infinitely often, and λ(Ψn(z) − b) = ρ(f).

In this paper, we will extend and improve the above results from entire functions to
meromorphic functions.

Theorem 1.1. If f(z) is a transcendental meromorphic function with exponent of convergence of
poles λ(1/f) < ρ(f) < +∞, and let a, c ∈ C \ {0} be constants, with c such that f(z + c)/≡ f(z).
Set Ψn(z) = Δf(z) − af(z)n and n ≥ 3 is an integer. Then Ψn(z) assumes all finite values infinitely
often, and for every b ∈ C one has λ(Ψn(z) − b) = ρ(f).

Remark 1.2. Compared with Theorem 1.2 in [6], our result not only gives a Picard type result
but also gives an estimate of numbers of b-points, namely, λ(Ψn(z)−b) = ρ(f) for every b ∈ C.
Our method bases on [5], which is different from the method in [6, 7].

In the same paper, Chen gave the following example to show the Borel exceptional
value may arise in Theorem D.

Example 1.3. For f(z) = exp{z} + 1, c = log 3, a = 1, we have Ψ2(z) = Δf(z) − af(z)2 =
− exp{2z} − 1. Here Ψ2(z)/= − 1, which shows that the Borel exceptional value −ad2(= −1)
may arise.

Naturally, it is an interesting question to find the conditions which can remove the
Borel exceptional value of Ψ2(z) when d /= 0.

Example 1.4. For f(z) = exp{z} + 1, c = πi, a = 1, we have Ψ2(z) = Δf(z) − af(z)2 =
−(ez + 2)2 + 3, which assumes all finite values infinitely often. This is, Ψ2(z) has no Borel
exceptional value.

Theorem 1.5. If f(z) is a transcendental meromorphic function of finite order with two Borel
exceptional values d,∞. Let a, c ∈ C \ {0} be constants, with c such that f(z + c)/≡ f(z). Then
for b ∈ C with b /= − ad2, Ψ2(z) assumes the value b infinitely often, and λ(Ψn(z) − b) = ρ(f).

Moreover, if f(z) satisfies f(z + c)/≡ (2ad + 1)f(z) − 2ad2, we can remove the condition
b /= − ad2.
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Remark 1.6. By the simple calculation, we can see f(z+c)/≡ (2ad+1)f(z)−2ad2 in Example 1.4,
Ψ2(z) has no finite Borel exceptional value. Hence, the conclusion of Theorem 1.5 is sharp.

From the proof of Theorem 1.5, we can obtain the following.

Corollary 1.7. If f(z) is a transcendental meromorphic function of finite order with two Borel
exceptional values 0,∞. Let a, c ∈ C \ {0} be constants, with c such that f(z + c)/≡ f(z). Then
Ψ2(z) assumes every value b infinitely often, and λ(Ψn(z) − b) = ρ(f).

Example 1.8. For f(z) = (ez − 1)/(ez + 1), c = πi, a = −1, it is easy to see 0,∞ are not Borel
exceptional values, and

Ψ2(z) − 1 = Δf(z) − af(z)2 − 1 =
8ez

(ez + 1)2(ez − 1)
(1.1)

has no zeros. Thus our condition in Corollary 1.7 is sharp.

Remark 1.9. In fact, by the definition of Borel exceptional value, we know the condition f(z)
is a transcendental meromorphic function of finite order with two Borel exceptional values
0,∞ equivalent to λ(f) < ρ(f), λ(1/f) < ρ(f).

Hayman also posed the following conjecture: if f is a transcendental meromorphic
function and n ≥ 1, then fnf ′ takes every finite nonzero value infinitely often. This conjecture
has been solved by Hayman [1] for n ≥ 3, by Mues [4] for n = 2, by Bergweiler and Eremenko
[8] for n = 1.

Recently, for an analog of Hayman conjecture for difference, Laine and Yang [9] proved
the following.

Theorem E. Let f be a transcendental entire function with finite order and c be a nonzero complex
constant. Then for n ≥ 2, fn(z)f(z + c) assumes every nonzero value a ∈ C infinitely often.

Liu et al. [10] consider the question when f is a transcendental meromorphic function.

Theorem F. Let f be a transcendental meromorphic function with finite order and c be a nonzero
complex constant. Then for n ≥ 6, fn(z)f(z + c) assumes every nonzero value a ∈ C infinitely often.

In this paper, we improved the above result by reducing the condition n ≥ 6.

Theorem 1.10. Let f be a transcendental meromorphic function with finite order with two Borel
exceptional values d,∞, and c be a nonzero complex constant. Then for n ≥ 1, G = fn(z)f(z + c)
assumes every value a(/=dn+1) ∈ C infinitely often and λ(G − a) = ρ(f).

From Theorem 1.10, we can obtain the following.

Corollary 1.11. If f(z) is a transcendental meromorphic function of finite order with two Borel
exceptional values 0,∞, and let c be a nonzero complex constant. Then for n ≥ 1, G = fn(z)f(z + c)
assumes every nonzero value a ∈ C infinitely often.
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Example 1.12. For f(z) = ((ez − 1)/(ez + 1)), c = πi and a = 1, it is easy to see 0,∞ are not
Borel exceptional values, and

G − 1 = f(z)2f(z + c) − 1 =
−2

ez + 1
, (1.2)

has no zeros. Thus our condition in Corollary 1.11 is sharp.

Remark 1.13. Theorem 1.10 also improved the result in [11, Theorem 1.2], where they
considered the case of entire function and n = 1.

For the analog of Hayman conjecture on fnf ′, f(z + c) can be replaced by Δf(z) =
f(z + c) − f(z) in Theorem 1.10. Then a simple modification of the proof of Theorem 1.10
yields the following result.

Theorem 1.14. Let f be a transcendental meromorphic function with finite order with two Borel
exceptional values d,∞, and c be a nonzero complex constant with c such that Δf(z)/≡ 0. Then for
n ≥ 1, G = fn(z)Δf(z) assumes every value a ∈ C infinitely often and λ(G − a) = ρ(f).

Corollary 1.15. If f(z) is a transcendental entire function of finite order with a Borel exceptional
values d, and c be a nonzero complex constant with c such that Δf(z)/≡ 0. Then for n ≥ 1, G =
fn(z)Δf(z) assumes every value a ∈ C infinitely often and λ(G − a) = ρ(f).

Remark 1.16. Theorem 1.14 also improved the result in [7, Theorem 1.4], where they consider
the case of entire function and n ≥ 2. the value a can be a polynomial a(z)/≡ 0 in their result.
In fact, our results also can allow the value a to be a polynomial, even be a meromorphic
function a(z)/≡ 0 satisfying ρ(a) < ρ(f).

Example 1.17. For f(z) = exp{z} + z, c = 2πi, a = cz, it is easy to see that f(z) has no Borel
exceptional value, we have G = f(z)Δf(z) − cz = cez, which has no zeros. Hence, f(z) has a
Borel exceptional value necessary in Corollary 1.15.

2. Lemmas

The following lemma, due to Gross [12], is important in the factorization and uniqueness
theory of meromorphic functions, playing an important role in this paper as well. We give a
slight changed form.

Lemma 2.1 (see [13]). Suppose that fj(z) (j = 1, 2, . . . , n + 1) are meromorphic functions and
gj (j = 1, 2, . . . , n) are entire functions satisfying the following conditions.

(i)
∑n

j=1 fj(z)e
gj (z) ≡ fn+1.

(ii) If 1 ≤ j ≤ n + 1, 1 ≤ k ≤ n, the order of fj is less than the order of egk(z). If n ≥ 2,
1 ≤ j ≤ n + 1, 1 ≤ h < k ≤ n, and the order of fj(z) is less than the order of egh−gk .

Then fj(z) ≡ 0 (j = 1, 2, . . . , n + 1).
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Lemma 2.2 (see [14, 15]). Let f(z) be a moermorphic function of finite order, and let c ∈ C \ {0}.
Then

m

(

r,
f(z + c)
f(z)

)

= S
(
r, f

)
, (2.1)

where S(r, f) = o{T(r, f)}.

Lemma 2.3 (see [14]). Let f(z) be a meormorphic function of finite order ρ, and let c ∈ C \ {0}.
Then, for each ε > 0, one has

T
(
r, f(z + c)

)
= T

(
r, f

)
+O

(
rρ−1+ε

)
+O

(
log r

)
. (2.2)

We are concerned with functions which are polynomials in f(z + cj), where cj ∈ C,
with coefficients aλ(z) such that

T(r, aλ) = o
(
T
(
r, f

))
, (2.3)

except possibly for a set of r having finite logarithmic measure. Such functions will be
called difference polynomials in f(z). Similarly, we are concerned with functions which are
polynomials in f(z+cj) and the derivatives of f , with coefficients aλ(z) such that (2.3) holds,
except possibly for a set of r having finite logarithmic measure. Such functions will be called
differential-difference polynomials in f(z). We also denote |c| = max{|cj |}.

Halburd and Korhonen proved the following difference analogous to the Clunie
Lemma [16], which has numerous applications in the study of complex differential equations,
and beyond.

Lemma 2.4 (see [15]). Let f(z) be a nonconstant meromorphic solution of

fnP
(
z, f

)
= Q

(
z, f

)
, (2.4)

where P(z, f) and Q(z, f) are difference polynomials in f(z), and let δ < 1 and ε > 0. If the degree
of Q(z, f) as a polynomial in f(z) and its shifts is at most n, then

m
(
r, P

(
z, f

))
= o

(
T
(
r + |c|, f)

rδ

)

+ o
(
T
(
r, f

))
(2.5)

for all r outside of a possible exceptional set with finite logarithmic measure.

We can obtain the following differential-difference analogous to the Clunie lemma by
the same method as Lemma 2.4.

Lemma 2.5. Let f(z) be a non-constant meromorphic solution of (2.4), where P(z, f) and Q(z, f)
are differential-difference polynomials in f(z), and let δ < 1 and ε > 0. If the degree of Q(z, f) as a
polynomial in f(z) and its shifts is at most n, then (2.5) holds.
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Remark 2.6. If the coefficients of P(z, f) and Q(z, f) are aλ(z) satisfying the order less than
ρ(f), from the proof of Lemma 2.5, we can obtain

m
(
r, P

(
z, f

))
= o

(
T
(
r + |c|, f)

rδ

)

+ o
(
T
(
r, f

))
+O(m(r, aλ(z))). (2.6)

Lemma 2.7. If f(z) is a transcendental meromorphic function with exponent of convergence of poles
λ(1/f) = λ < +∞, and let c ∈ C \ {0}. Then, for each ε > 0, one has

N
(
r, f(z + c)

)
= N

(
r, f

)
+O

(
rλ−1+ε

)
+O

(
log r

)
. (2.7)

From the above lemma, we can obtain the following important result.

Lemma 2.8. If f(z) is a transcendental meromorphic function with exponent of convergence of poles
λ(1/f) = λ < +∞, and let c ∈ C \ {0}. Then, for each ε > 0, one has

λ

(
1

f(z + c)

)

= λ

(
1

f(z)

)

= λ, λ

(
1
Δf

)

≤ λ. (2.8)

Proof. By the definition of exponent of convergence of poles, we can easily prove it by
Lemma 2.7.

Remark 2.9. The second result is similar with λ(1/f ′) ≤ λ(1/f).

Lemma 2.10 (see [17]). Let f be a nonconstant meromorphic function, n be a positive integer.
P(f) = anf

n + an−1fn−1 + · · · + a1f where ai is a meromorphic function satisfying T(r, ai) =
S(r, f) (i = 1, 2, . . . , n). Then

T
(
r, P

(
f
))

= nT
(
r, f

)
+ S

(
r, f

)
. (2.9)

Lemma 2.11. If f(z) is a transcendental meromorphic function with exponent of convergence of poles
λ(1/f) = λ < ρ(f) < +∞, and let c ∈ C \ {0} and n ≥ 1 be an integer. Set G(z) = fn(z)f(z + c),
then ρ(G) = ρ(f).

Proof. We can rewrite G(z) as the form

G(z) = f(z)n+1
f(z + c)
f(z)

. (2.10)

For each ε > 0, by Lemma 2.2 and (2.10), we get that

m(r, G) ≤ (n + 1)m
(
r, f

)
+m

(

r,
f(z + c)
f(z)

)

= (n + 1)m
(
r, f

)
+O

(
rρ−1+ε

)
. (2.11)
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From Lemma 2.10, we have

N(r, G) ≤ nN
(
r, f

)
+N

(
r, f(z + c)

) ≤ (n + 1)N
(
r, f

)
+O

(
rλ−1+ε

)
+O

(
log r

)
. (2.12)

By (2.11) and (2.12), we have

T(r, G) ≤ (n + 1)T
(
r, f

)
+O

(
rρ−1+ε

)
+O

(
log r

)
. (2.13)

This is, ρ(G) ≤ ρ(f). Next we prove ρ(G) ≥ ρ(f).
By Lemma 2.2 and (2.10), we have

(n + 1)m
(
r, f

)
= m

(
r, fn+1

)
≤ m(r, G) +m

(

r,
f(z)

f(z + c)

)

= m(r, G) +O
(
rρ−1+ε

)
. (2.14)

Note that λ(1/f) < ρ(f), we have

N
(
r, f

)
= O

(
rρ−1+ε

)
. (2.15)

Thus, from (2.14) and (2.15), we have

T
(
r, f

) ≤ m(r, G) +O
(
rρ−1+ε

)
. (2.16)

Hence, we prove ρ(G) ≥ ρ(f). Therefore, ρ(G) = ρ(f).

Remark 2.12. If n ≥ 2, we can prove ρ(G) ≥ ρ(f) by the inequality T(r, G) ≥ (n − 1)T(r, f) +
S(r, f), without the condition λ(1/f) < ρ(f).

3. Proof of Theorem 1.1

We only prove the case ρ(f) = ρ > 0. For the case ρ(f) = 0, we can use the same method
in the proof. Suppose that b ∈ C and λ(Ψn(z) − b) < ρ(f). First, we claim that Ψn(z) − b is
transcendental meromorphic. Suppose thatΨn(z)−b = r(z), where r(z) is a rational function.
Then

−af(z)n = b −Δf(z) + r(z). (3.1)

By Lemma 2.4, for each ε > 0, we have

T
(
r,Δf(z)

) ≤ 2T
(
r, f

)
+ S

(
r, f

)
+O

(
rρ−1+ε

)
. (3.2)
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By Lemma 2.10, we have

T
(
r, af(z)n

)
= nT

(
r, f

)
+ S

(
r, f

)

= T
(
r, b −Δf(z) + r(z)

)

≤ 2T
(
r, f

)
+ S

(
r, f

)
+O

(
rρ−1+ε

)
.

(3.3)

This is a contradiction. Hence, the claim holds. Thus, Ψn(z) − b can be written as

Ψn(z) − b =
p1(z)
p2(z)

exp
{
q(z)

}
:= r(z) exp

{
q(z)

}
, (3.4)

where q(z)/≡ 0 is a polynomial, p1(z) is an entire function with ρ(p1) < ρ(f), and p2(z) is
the canonical product formed with the poles of Ψn(z) − b. Hence, ρ(p2) = λ(p2) = λ(1/r) ≤
max{λ(1/f(z)), λ(1/f(z + c))} = λ(1/f) < ρ(f). Obviously, ρ(r) ≤ max{ρ(p1), ρ(p2)} < ρ(f).

Differentiating (3.4) and eliminating exp{q(z)}, we obtain

fn−1P
(
z, f

)
= Q

(
z, f

)
, (3.5)

where

P
(
z, f

)
= anr(z)f ′(z) − a

(
r ′(z) + q′(z)p(z)

)
f(z),

Q
(
z, f

)
= r(z)f ′(z) − r(z)f ′(z + c) + Δf(z)

(
r ′(z) + q′(z)r(z)

) − b
(
r ′(z) + q′(z)p(z)

)
.

(3.6)

We claim that P(z, f)/≡ 0. Suppose that

anr(z)f ′(z) − a
(
r ′(z) + q′(z)r(z)

)
f(z) ≡ 0. (3.7)

Integrating (3.7), we have

f(z)n = dr(z) exp
{
q(z)

}
, (3.8)

where d(/= 0) is a constant. Therefore, by (3.4) and (3.8), and the definition ofΨn(z), we obtain

Ψn(z) − b = f(z + c) − f(z) − af(z)n − b =
1
d
f(z)n; (3.9)

therefore,

d
(
f(z + c) − f(z)

)
= (ad + 1)f(z)n + bd. (3.10)

We can prove that ad + 1/= 0 by the similar to the proof in [5]. We omit it here.
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Differentiating (3.9), and then dividing by f ′(z), we have

d

(
f ′(z + c)
f ′(z)

− 1
)

= n(ad + 1)f(z)n−1. (3.11)

Therefore, by Lemma 2.2, we obtain that

(n − 1)m
(
r, f

)
= S

(
r, f ′) = S

(
r, f

)
. (3.12)

Note that n ≥ 2, we have

m
(
r, f

)
= S

(
r, f

)
. (3.13)

From (3.8), we know that the poles of f(z) come from the poles of r(z), we have

N
(
r, f

) ≤ O(N(r, r)) ≤ O(T(r, r)). (3.14)

From (3.13) and (3.14), we have

T
(
r, f

) ≤ O(T(r, r)). (3.15)

We can obtain ρ(f) ≤ ρ(r). It is a contradiction. Hence, the claim P(z, f)/≡ 0 holds.
Since n ≥ 3 and the total of Q(z, f) as a differential-difference polynomial in f(z), its

shift and its derivatives, degfQ(z, f) = 1, by (3.5), Lemma 2.5 and Remark 2.6, we obtain that
for δ < 1,

m
(
r, P

(
z, f

))
= o

(
T
(
r + |c|, f)

rδ

)

+ o
(
T
(
r, f

))
+O(m(r, r(z))),

m
(
r, fP

(
z, f

))
= o

(
T
(
r + |c|, f)

rδ

)

+ o
(
T
(
r, f

))
+O(m(r, r(z))),

(3.16)

for all r outside of an exceptional set of finite logarithmic measure. Form (3.16), we have

m
(
r, f

)
= o

(
T
(
r + |c|, f)

rδ

)

+ o
(
T
(
r, f

))
+O(m(r, r(z))) (3.17)

for all r outside of an exceptional set of finite logarithmic measure. By (3.14) and (3.15), we
can get a contradiction with ρ(r) < ρ(f). Hence, Ψn(z) − b has infinitely many zeros and
λ(Ψn(z) − b) = ρ(f). The proof of Theorem 1.1 is complete.
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4. Proof of Theorem 1.5

Since f(z) has a Borel exceptional value d, we can write f(z) as

f(z) = d +
g(z)
p(z)

exp
{
αzk

}
, f(z + c) = d +

g(z + c)
p(z + c)

h1(z) exp
{
αzk

}
, (4.1)

where α/= 0 is a constant, k(≥ 1) is an integer satisfying ρ(f) = k, and g(z), h1(z) are entire
functions such that g(z)h1(z)/≡ 0, ρ(g) < k, ρ(h1) = k − 1, and p(z) is the canonical product
formed with the poles of f(z) satisfying ρ(p) = λ(p) = λ(1/f) < ρ(f). Set H(z) = g(z)/p(z),
it is easy to see that ρ(H) < ρ(f).

First, we prove thatΨ2(z)−b = Δf(z)−af(z)2−b is transcendental. IfΨ2(z)−b = r(z),
where r(z) is a rational function, then

af(z)2 = Δf(z) − b + r(z). (4.2)

Thus, by Lemma 2.10, we have

T
(
r, af2

)
= 2T

(
r, f

)
+ S

(
r, f

)
, (4.3)

m
(
r,Δf(z) − b + r(z)

) ≤ m
(
r, f

)
+m

(

r,
f(z + c)
f(z)

− 1
)

+O
(
log r

)

≤ m
(
r, f

)
+ S

(
r, f

)
.

(4.4)

By Lemma 2.7, we have

N
(
r,Δf(z) − b + r(z)

) ≤ N
(
r, f(z)

)
+N

(
r, f(z + c)

)
+O

(
log r

)

≤ 2N
(
r, f

)
+O

(
rλ−1+ε

)
+O

(
log r

)
.

(4.5)

From (4.4) and (4.5), we can get

T
(
r,Δf(z) − b + r(z)

) ≤ T
(
r, f

)
+N

(
r, f

)
+O

(
rλ−1+ε

)
+O

(
log r

)
. (4.6)

By (4.2), (4.3), and (4.6), we have

T
(
r, f

) ≤ N
(
r, f

)
+O

(
rλ−1+ε

)
+O

(
log r

)
. (4.7)

It is contradiction with λ(1/f) < ρ(f).
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Secondly, we prove that ρ(Ψ2(z) − b) = ρ(f) = k ≥ 1. By the expression of Ψ2(z), we
have ρ(Ψ2(z) − b) ≤ k. Set G(z) = Ψ2(z) − b. Suppose that ρ(G) = k1 < k, then by (4.1), we
have

[
g(z + c)
p(z + c)

h1(z) −
g(z)
p(z)

]

exp
{
αzk

}
− a

g2(z)
p2(z)

exp
{
2αzk

}
= b +G(z). (4.8)

this is,

[H(z + c)h1(z) −H(z)] exp
{
αzk

}
− aH(z)2 exp

{
2αzk

}
= b +G(z). (4.9)

Since H(z)/≡ 0, we see the order of the left-hand side of (4.9) is k. Obviously, it contradicts
the order of the right side of (4.9) is less than k for ρ(G) < k. Hence, ρ(G) = k.

Thirdly, we prove λ(G) = k(≥ 1). If λ(G) < k, then G(z) can be written as

G(z) =
g∗(z)
p∗(z)

exp
{
βzk

}
= H∗(z) exp

{
βzk

}
, (4.10)

where β(/= 0) is a constant, g∗(z)(/≡ 0) is an entire function satisfying ρ(g∗) < k, and ρ(p∗) =
λ(p∗) = max{λ(1/f(z)), λ(1/f(z+c))} = λ(1/f) < ρ(f) = k by Lemma 2.8. Hence, ρ(H∗) < k.

By (4.1), (4.10), and G(z) = Ψ2(z) − b, we have

[H(z+c)h1(z)−H(z)−2adH(z)] exp
{
αzk

}
−aH(z)2 exp

{
2αzk

}
−H∗(z) exp

{
βzk

}
=ad2+b.

(4.11)

In fact, (4.11) can be rewritten into

f1(z) exp
{
αzk

}
+ f2(z) exp

{
2αzk

}
+ f3(z) exp

{
βzk

}
= f4(z), (4.12)

where ρ(fj) (j = 1, 2, 3, 4) < k. Obviously, α/= 2α. We just consider three cases.

Case 1 (β /=α, 2α). By Lemma 2.1, we have f2(z) ≡ 0, this is, H(z) ≡ 0, a contradiction.

Case 2 (β = α, β /= 2α). By Lemma 2.1, we still have f2(z) ≡ 0, this is,H(z) ≡ 0, a contradiction.

Case 3 (β = 2α, β /=α). By Lemma 2.1, we have f1(z) ≡ 0 and f4(z) ≡ 0. In order to complete
our proof, we need to get a contradiction.

Subcase 1. If d = 0, then f1(z) = H(z+c)h1(z)−H(z). Since f(z+c)/≡ f(z), we know f1(z)/≡ 0.
We get a contradiction.

Subcase 2. If d /= 0, then f4(z) = ad2 + b. By the assumption ad2 + b /= 0. We can get f4(z)/≡ 0, a
contradiction.

If the condition f(z + c)/≡ f(z) is replaced by f(z + c)/≡ (2ad + 1)f(z) − 2ad2, from
f1(z) = H(z + c)h1(z) −H(z) − 2adH(z), we know f1(z)/≡ 0. We get a contradiction.

This completes the proof of the Theorem.
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5. Proof of Theorem 1.10

Since f(z) has a Borel exceptional value d, we can write f(z) as

f(z) = d +
g(z)
p(z)

exp
{
αzk

}
, f(z + c) = d +

g(z + c)
p(z + c)

h1(z) exp
{
αzk

}
, (5.1)

where α/= 0 is a constant, k(≥ 1) is an integer satisfying ρ(f) = k, and g(z), h1(z) are
entire functions such that g(z)h1(z)/≡ 0, ρ(g) < k, ρ(h1) = k − 1, and p(z) is the canonical
product formed with the poles of f(z) satisfying ρ(p) = λ(p) = λ(1/f) < ρ(f). Set
H(z) = g(z)/p(z)/≡ 0, it is to see that ρ(H) < ρ(f).

Nowwe suppose that λ(G−a) < ρ(f). By Lemma 2.11, we have ρ(G) = ρ(f) = ρ(G−a),
so that λ(G − a) < ρ(G − a) = ρ(f) = k and G(z) − a can be rewritten into the form

G(z) − a =
g∗(z)
p∗(z)

exp
{
βzk

}
= H∗(z) exp

{
βzk

}
, (5.2)

where β(/= 0) is a constant, g∗(z)(/≡ 0) is an entire function satisfying ρ(g∗) < k, and ρ(p∗) =
λ(p∗) = max{λ(1/f(z)), λ(1/f(z+c))} = λ(1/f) < ρ(f) = k by Lemma 2.8. Hence, ρ(H∗) < k.

By (5.1) and (5.2), we get

fn+1(z)e(n+1)αz
k

+ fn(z)enαz
k

+ · · · + f1(z)eαz
k

+ dn+1 − a = H∗(z)eβz
k

, (5.3)

where

fj(z) = C
j
nd

n−j+1Hj(z) + C
n−j+1
n dn−j+1Hj−1(z)H(z + c)h1(z), j = 1, 2, . . . , n,

fn+1(z) = H(z)nH(z + c)h1(z).
(5.4)

Note that fn+1(z)/≡ 0 and H∗(z)/≡ 0, by comparing growths of both sides of (5.3), we see that
β = (n + 1)α. Thus, by (5.3), we have

[
fn+1(z) −H∗(z)

]
e(n+1)αz

k

+ fn(z)enαz
k

+ · · · + f1(z)eαz
k

= a − dn+1. (5.5)

By Lemma 2.1, we get a = dn+1. This is a contradiction with our assumption a/=dn+1. Hence,
λ(G − a) = ρ(f).

6. Proof of Theorem 1.14

Similar to the proof of Theorem 1.10, we can obtain (5.1) and (5.2).
By (5.1) and (5.2), we get

fn+1(z)e(n+1)αz
k

+ fn(z)enαz
k

+ · · · + f1(z)eαz
k

+ dn+1 − a = H∗(z)eβz
k

, (6.1)
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where

fj+1(z) = C
j
nd

n−jHj(z)h(z), j = 1, 2, . . . , n,

f1(z) = dnh(z), h(z) = H(z + c)h1(z) −H(z)/≡ 0.
(6.2)

Note that fn+1(z)/≡ 0 and H∗(z)/≡ 0, by comparing growths of both sides of (5.3), we see that
β = (n + 1)α. Thus, by (5.3), we have

[
fn+1(z) −H∗(z)

]
e(n+1)αz

k

+ fn(z)enαz
k

+ · · · + f1(z)eαz
k

= a − dn+1. (6.3)

By Lemma 2.1, we get f1(z) ≡ 0. This is a contradiction with h(z)/≡ 0. Hence, λ(G−a) = ρ(f).

Acknowledgments

This work was supported by the National Natural Science Foundation of China (no.
11126327, 11171184), the Science Research Foundation of CAUC, China (no. 2011QD10X),
NSF of Guangdong Province (no. S2011010000735), and STP of Jiangmen, China (no.
[2011]133).

References

[1] W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, Oxford,
UK, 1964.

[2] L. Yang, Value Distribution Theory, Springer, Berlin, Germany, 1993.
[3] W. K. Hayman, “Picard values of meromorphic functions and their derivatives,” Annals of

Mathematics, vol. 70, pp. 9–42, 1959.
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