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We study nonlinear impulsive differential equations of fractional order with irregular boundary
conditions. Some existence and uniqueness results are obtained by applying standard fixed-point
theorems. For illustration of the results, some examples are discussed.

1. Introduction

Boundary value problems of nonlinear fractional differential equations have recently been
studied by several researchers. Fractional differential equations appear naturally in various
fields of science and engineering and constitute an important field of research. As a matter
of fact, fractional derivatives provide an excellent tool for the description of memory
and hereditary properties of various materials and processes [1-4]. Some recent work on
boundary value problems of fractional order can be found in [5-23] and the references
therein. In [24], some existence and uniqueness results were obtained for an irregular
boundary value problem of fractional differential equations.

Dynamical systems with impulse effect are regarded as a class of general hybrid
systems. Impulsive hybrid systems are composed of some continuous variable dynamic
systems along with certain reset maps that define impulsive switching among them. It is
the switching that resets the modes and changes the continuous state of the system. There are
three classes of impulsive hybrid systems, namely, impulsive differential systems [25, 26],
sampled data or digital control system [27, 28], and impulsive switched system [29, 30].
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Applications of such systems include air traffic management [31], automotive control [32, 33],
real-time software verification [34], transportation systems [35, 36], manufacturing [37],
mobile robotics [38], and process industry [39]. In fact, hybrid systems have a central role
in embedded control systems that interact with the physical world. Using hybrid models,
one may represent time and event-based behaviors more accurately so as to meet challenging
design requirements in the design of control systems for problems such as cut-off control and
idle speed control of the engine. For more details, see [40] and the references therein.

The theory of impulsive differential equations of integer order has found its extensive
applications in realistic mathematical modelling of a wide variety of practical situations and
has emerged as an important area of investigation. The impulsive differential equations of
fractional order have also attracted a considerable attention and a variety of results can be
found in the papers [41-50].

In this paper, motivated by [24], we study a nonlinear impulsive hybrid system of
fractional differential equations with irregular boundary conditions given by

“Du(t) = f(t,ut)), l<a<2, te],
Au(ty) = LIe(u(ty)), Ad'(t) =Ii(u(t)), k=1,2,...,p, (1.1)

1 (0) + (D)% (T) +bu(T) =0, u(0)+ (-1)"'w(T)=0, 6=1,2,

where €D? is the Caputo fractional derivative, f € C(J x R,R), Iy, I; € C(R,R),b €
R,b#0,] = [0,T(T > 0),0 = tp < t < -+ < g < -+ < t, < t,n =T, ] =
T\ {ti,to, .. by}, Au(te) = u(ty) — u(ty), where u(t;) and u(t,) denote the right and the left
limits of u(t) att =t (k=1,2,...,p), respectively. Au/(t;) have a similar meaning for u'(t).

Here, we remark that irregular boundary value problems for ordinary and partial
differential equations occur in scientific and engineering disciplines and have been addressed
by many authors, for instance, see [24] and the references.

The paper is organized as follows. Section2 deals with some definitions and
preliminary results, while the main results are presented in Section 3.

2. Preliminaries

Let us fix Jo = [0,t1], Jk-1 = (tk-1,tk], k =2,...,p + 1 with t,.; = T and introduce the spaces:
PC(JR)={u:] —R|ueC(Ji),k=0,1,...,p, and u(t;) exist, k =1,2,...,p}, (2.1)
with the norm ||ul| = sup,[u(t)|, and

u:jJ — R|ueC1(]k),k:0,1,...,p,}

1 —
PCUR) = { and u(t;),u' (t) exist,k=1,2,...,p 2

with the norm ||ul|pct = max{||u]|, ||| }. Obviously, PC(J,R) and PC'(J, R) are Banach spaces.

Definition 2.1. A function u € PC!(J,R) with its Caputo derivative of order a existing on J is
a solution of (1.1) if it satisfies (1.1).
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To prove the existence of solutions of problem (1.1), we need the following fixed-point
theorems.

Theorem 2.2 (see [51]). Let E be a Banach space. Assume that Q is an open bounded subset of E
with® € Qand let T : Q — E be a completely continuous operator such that

[ITull < flull,  Vu € 0Q. (2.3)

Then T has a fixed point in Q.

Lemma 2.3 (see [1]). For a > 0, the general solution of fractional differential equation “D%u(t) = 0
is

u(t) = Co+ Cit + Cot? + -+ + Cpqt"}, (2.4)

where C; €R,i=0,1,2,...,n-1, n = [a] + 1 ([a] denotes integer part of a).

Lemma 2.4 (see [1]). Let a > 0. Then

I°“D*u(t) = u(t) + Co + Cit + Cot? + -+ + Cpq " (2.5)

forsomeC;eR,i=1,2,...,n-1,n=[a] +1

Lemma 2.5. For a given y € C[0,T], a function u is a solution of the following impulsive irregular
boundary value problem

“D*u(t)=y(t), l<a<2, te],
Au(ty) = L(u(ty)), A (t) = Ti(u(ty), k=1,2,...,p, (2.6)

1 (0) + (D)% (T) +bu(T) =0, u(0)+ (-1 u(T)=0, 6=1,2, b0,
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if and only if u is a solution of the impulsive fractional integral equation

u(t) = 1

t (t _ S)a—l

0

tx

+[1+(—1)9+1]t (T - 5y

where

o =

. [1 + (—1)9”]t T (T = )2

1- (_1)6+1 T (T— S)a—l
bT T(a)

T(a) y(s)ds + y(s)ds

tp

b), T(a-1)
t (t_s)a—l

y(s)ds

bT , T(a-1)

P

T a-2 T a-1
(T -5) t (T -59) )
—y(s)ds - T J‘tp W}/(S)ds + e4, te ]0,

1— (_1)6+1 T (T _ S)a—l
T ), T(a)

y(s)ds + y(s)ds

I'(a)

bT  T(a-1) /&)
T (T _ S)a—z F d (T S)a—l d
———Yy(s) S—TJ; W]/(S) s

b), T(a-1)
k ti ( S)a 1 ]
ds+1I;
+Z[L Ty V(s + Li(u(t)

i=1

S (- s5)"? ; ]
b=t ds + I (u(t;
+i:21(k )[L_1 T 1) y(s)ds + I* (u(t;))

£ [ (ti=5)"" . ]
+D(t—ti) f y(s)ds + I} (u(t;)) | + 4, teJe, k=1,2,...,p,
i=1 2

o D(a-1)
(2.7)
[1+(—1)9+1]t—T Pl - s)"‘z
bT z;[ft T /&4t (u(n-))]
1_(—1)9+1—bt 14 t (ti—s)a_l
+T{§|:J‘ti_1 T(a) ]/(S)ds+1i(u(ti)):| n

p-1 t
(k- 5)*
— 4 d
+§<tp t)[fm NEEEIRAS s+1<u<t>>]

14 ti t
+§(T_tp)[ftil( " )1) y(s)ds + I (u(t))]}

Proof. Let u be a solution of (2.6). Then, by Lemma 2.4, we have

t
u(t) =I"y(t) —c1 — cof = % J‘o (t- s)”‘_ly(s)ds —c1—ct, te], (2.9)
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for some ¢y, c; € R. Differentiating (2.9), we get
u'(t) = ! f (t=5)"2y(s)ds —cy, tE€ ]
“Ta-1 ), 4 z o

Ift € J;, then

) = o5 [ -9 tyes - - a1,
1 t
w'(t) = (t—s)"y(s)ds — dy,

Ila-1) J;

for some dy,d; € R. Thus,

ty
u(ty) = ﬁ fo (t—8)'y(s)ds —c1 —coty, u(ty) =-dy,

1

“(5) = F (tl—s)“ 2y(s)ds —ca, () = -ds

Using the impulse conditions
Au(ty) = u(t]) —u(t]) = Li(u(h)), Au'(t) =u' () —u/'(8]) = I} (u(tr)),

we find that

ty
—-d; = ﬁ 4[0 (t =) 'y(s)ds — c1 — oty + L1 (u(ty)),

1 h

b vyl MG $)" Py (s)ds - ¢ + I} (u(h)).

Consequently, we obtain

t

a-1 a-1
u(t) = T )f (t=9)""y(s)ds + =—— (t1—s) y(s)ds

1"()

"T@-1

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

t
fo (=) Py (s)ds + i (u(t)) + (t - 1) [} (w(h)) —c1 —cat, t€E .

(2.15)
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By a similar process, we get

¢ a1 a-1
u(t) = tk( r(s)) y(S)dS+ZUt 1( r(s)) y(S)dsH(u(t))]

k-1 t; (ti _ S)a— .
' z;(tk ) I:J‘tﬂ [(a-1) y(s)ds + I; (u(t:)

+zk:(t_t) J‘ti (ti—S)a—Z (S)ds+1*(u(t')) i — oot te] k=12
<), Ta-n Y Jwt))| —ei-cat, teJi, k=1,2,...,p.

(2.16)

Applying the boundary conditions u'(0) + (-1)%/(T) + bu(T) = 0 and u(0) +
(-1)%"u(T) = 0, we find that

~ 1-— (_1)6+1 T (T—S)a 1 ( _S)a 2
c= - T T(a) y(s )ds+ . ﬁy(s)ds

tp

p ti
* 25 U —(t i y(s)ds+1*<u<t>>]

1

_ 9+1 4 t; _ o1
L{ZU 4 5) y(s)ds+1(u<t>>]

p-1 ti L o\a2
N Z(t [L (ltz(a i)l) y(s)ds + I;(M(ti))]

i=1

P ti L a\a2
+Z(T—tp)[ L (lt"l(as—)l) y(s)ds+1:‘(u<ti)>]},

(2.17)

0+1 a=2 T a-1
1+ (-1) T(T-5) 1J‘ (T -5s) y(s)ds

©= 7 ), T@-n YO T, T

1+ (_1)9+1 14 ti (i’ S)a -2 X
L) Ut fe i y(eds + I (u(t))]

1 P ti (tl _ S)u_l
tT {; [J;H I'(a) y(s)ds +I; (u(ti))]

p-1 t a-2
"o(ti-s)
S (b, ~ Giz9) _(s)d
+ 2. (t, -t )l:J; Ta-1) y(s)ds + I} (u(t; ))]

4 t; t; a=2
+§(T‘t”)Um G yeds I (u(t»]}
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Substituting the value of ¢; (i = 1,2) in (2.9) and (2.16), we obtain (2.7). Conversely, assume
that u is a solution of the impulsive fractional integral equation (2.7), then by a direct
computation, it follows that the solution given by (2.7) satisfies (2.6). This completes the

proof.

O

Remark 2.6. With T = ur, the first five terms of the solution (2.7) correspond to the solution for
the problem without impulses [24].

3. Main Results

Define an operator G : PC(J,R) — PC(J,R) by

Gu(t) =

G (ti—9)""
e f(s u s))ds+ZUt B CIAY u(s))ds+1(u(t))]

b i-1

)a—2

+ Z(tk t) Ut ] (ff(_—sl)f(s,u(s))ds + Ii*(u(t,-)):l

: "oti-9)*? . ]
t—t ))ds + I t;
- w[fm a2y (s ue)ds + I u(t))

1 ()% (@9 1+ O™t - o

@ f(s,u(s))ds + o7 N f (s,u(s))ds
1 (T (T -s)*2 T(T-s)"
-3 . mf(s,u(s )ds — = 5 T(a) ————f(s,u(s))ds

[1+ 9+1]t—T P Uti (t — 5)"2

b, L(a—=1)
+ (10+1 {il:

i=1

—————f(s,u(s))ds + Il-*(u(ti)):|

t; _ oyl
L (& F(S)) f(s,u(s))ds + Ii(u(t; ))]

)a—Z

(ti—s .
;( —t) Ut ) mf(s,u(S))ds +1 (u(ti))]

+Z(T—t,,) Ut (ti(—f(s u(s))ds + IF (u(t; ))]}

i-1

(3.1)

Notice that problem (1.1) has a solution if and only if the operator G has a fixed point.
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For the sake of convenience, we set the following notations:

1 5p +1
y:2(l+p)<l+W>I“a(T)+[2(2p—1)T+ p“; ]I“—l

+2< |b|T>pL2+
5p + 1] Ta1

1 T*
v=2(1 +p)<1+ |b|T>—F(¢x+1) + [2(2p—1)T+ o T

5p -
|b|

22p-1)T +

L3, (3.2)

Theorem 3.1. Assume that

(Hy) there exists a nonnegative function a(t) € L(0,T) such that
|f(tu)| <a(t)+éulff, 0<p<l, (3.3)

where ¢ is a nonnegative constant;

(Hy) there exist positive constants Ly and Lg such that

()| < Lo, |Iiw)|<Ls, forteueR, k=1,2,...,p. (3.4)

Then problem (1.1) has at least one solution.

Proof. As a first step, we show that the operator G : PC(J,R) — PC(J,R) is completely
continuous. Observe that continuity of G follows from the continuity of f, Iy and I}.

Let Q ¢ PC(J,R) be bounded. Then, there exist positive constants L; > 0 (i = 1,2,3)
such that |f(t,u)| < L1, [Ix(u)| < Ly, and |[}(u)| < L3, for all u € Q. Thus, forall u € Q, we
have

(t_s)al S)a—l - .
Gua < | Sr—Ire, u(s))|ds+Z[L T |f(S,u(S))|dS+IL(u(tl))I:I

i-1

k-1 ti (ti _ S)a—z )
+ ;(tk —t) Utm m|f(s,u(s))|ds +|I (u(ti))|]

+Z(t—tk U (lt;( 0 |f(s u(s))|ds+|1*(u(t))|]

tiq
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( 1 0+1 (T S)a_l
|b|T : T(a) |f(5/u(5))|ds

[1 +(-1)% ]t T (T = 5)2

" |b|T t, [(a-1) |f(5/u(5))|ds

a-2 a1
|b|f r(aS)l) |f(s, u(s))|d5+_L (TF(Z)) |f(s,u(s))|ds

[1 + (_1)6+1]t—T p (t 5)% 2
' bT ;[L T-1) |f(s,u(s))|ds + |1 (u(t))|]
&{P[ti —s)*! - t.]
: ; J “T@ ————|f(s,u(s))|ds + [Ii(u(t;))|
1

i=

p- ti a-2
+ > (tp— 1) U (t( ) |f (s, u(s))|ds + |I} (u(t))|]
1 ]

P ti a-2
+Z(T_tp>|:£. (tizs)" - S) |f(s u(s))|ds + | I} (u(t; ))|]}

i=1

t a-1 P t a-1
(t=s) =
<L ———d L ds+L
S T ) M (PR
2

i=1
< (ti—5)"
+§T[Llf 1) s +L3]
L bt - 5)™ 2 2Ly (T (T -s)*" 2Ly (T (T -s)*?
+>T|L ———ds+ Ly |+ | ——t—ds+ — |
; [1-[” I'(a-1) )| eI i, (@) bl )y, T(a-1)

L] T (T_ S)a72 T (T_ S)LX 1 i S)a—z
B, Ta-n M), T |b|Z Llf“ fa-1) b

L2+ biT o(ti—s)*! e ot —s)"?
|b|T {Z [Ll J;H T(a) ds + Lz] + ;T[Iq f 1 —r(a ) ds+ Lj

i=1 ti_

14 ti L a\a2
+§T|:L1 L_ —(lt“l(a S_)l) ds + Ls] }

1

_ 120 +p)(Ib|T + )T 'L, . [5p +1+2b|T(2p - 1)]T*'L,
Ib| T(a+1) T ()

20+ [piT)pLs

P [p -2+ 2T (2p - D)L |

(3.5)
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which implies

2(1+p) (T + )T='Ly  [5p+1+2b[T(2p-1)]T*'Li  2(1+|b|T)pLe
IGull < |b| T(a+1) N T(a) " T

+[5p -2 +2/b|T(2p - 1)]L3} = L.

(3.6)
On the other hand, for any t € J, 0 < k < p, we get
(G0 < “( 2 u<s>>|ds+z[jt'l Lo |f<s,u<s>>|ds+|I:‘<u<ti>>|]
Az . "] fT o f’:)z (s u(]ds + 7 fT T s utsplas
N %{ i[ j %lf(au(s))lds v |L~<u<t1->>|]
+S0-1) [ [ St uonlas st >>|]
zqw[f T 2If(s u(s)|ds + |I*<u<t>>l]}
e [ = 5 (=
L1 t (TF(Z); 1 |b|TZ[L1,[ (_5_);2515+L3]
+ %{2::[14 Lt (t"r_ (Z))a_l ds+L2] +§T[L1 f: (;i (; i)i;z ds+L3]
+zp:TI:L1 Lt (?(; i)i)zd +L3]}
(G S U ol B oy

(3.7)
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Hence, for t,t; € Ji with t; < t,,0 < k < p, we have
tr _
[(Gu)(t2) = (Gu) (1) < | |(Gu)'(s)|ds < L(ta — ty). (3.8)
5]

This implies that G is equicontinuous on all J,k = 0,1,2,...,p and hence, by the Arzela-
Ascoli theorem, the operator G : PC(J,R) — PC(J,R) is completely continuous.

Next, we prove that G : B — B. For that, let us choose R > max {2y, (2v§)1/ (=p )} and
define a ball B = {u € PC(J,R) : [|u|| < R}. For any u € B, by the assumptions (H;) and (H,),
we have

t (t_s)u 1 (t' S)a—l
|Gu(t)| < . T@ [a(s) + &u(s)|?] als+Z|:J;1 @)

[a(s) +¢&lu(s)I]ds + |Ii(”(ti))|]

k-1 . t; (tl _S)u—Z , ) |
+ ;(tk tl)[J‘til Ta- D) [a(s) + &lu(s)IP]ds + |IF (u(t))]

)aZ

k ~ t; (t s , ) |
+§(t tk)l:L T@-1 [a(s) + &lu(s)P]ds + | I} (u(t))|

1- (_1)6+1 T (T_S):x—l
oIT ), T@

[a(s) + élu(s)|f]ds

[1 + (—1)9+1]t T (T = g)*?

TR, Ta- 1y ) e

(T S)lx -2

S)ul
4+ —
B L T@-1)

i [a) + g ds

~[a(s) + Hu(s)F s + f T-

[1 + (- 1)9+1]t T
bT

pT o
Z[ ) [a(s)+§|u(s)|p |ds + | I (u(t; ))|]

i=1

( 1)9+1

i=1

P T rti a-l
{ s [ f S) [a(s) + &lu(s)|F]ds + I1f<”(fi>)|]
-1

bt —5)* 72 o L ]
+i:1 (tp - t>Um Ta—-1) [a(s) + &lu(s)F]ds + | I} (u(t))]

+§(T ~t,) ’[ti (ti—s)" [a(s) + &lu(s)[P]ds + |I} (u(t))|
i=1 i’ tig F(D( - 1) ' 1
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<2(l+p)<l+ IbIT> 1*a(T) + [Z(Zp—l)T 57b| 1]1“ ! (T)+2<1+ |b|T>pL2

5p -2 To¢RP
+ 2(2p—1)T+ b ]L3+2(1+p)<1+W>1"(a+1)

5p + 1] Ta-1¢Re
+ [2(2p-1)T + .
@p =T+ =5~ | T
(3.9)
Thus,
IGull < p+ vERP < g g “R (3.10)

where p and v are given by (3.2). This implies G : B — B. Hence, G : B — B is completely
continuous. Therefore, by the Schauder fixed-point theorem, the operator G has at least one
fixed point. Consequently, problem (1.1) has at least one solution in B. O

Remark 3.2. For p = 1in (Hy), if ¢ < 1, we can take R > u/(1 - v¢), then the conclusion of
Theorem 3.1 holds.

Theorem 3.3. Suppose that there exist a nonnegative functions a; € L(0,1) and a nonnegative
number & such that |f(t,u)| < ai(t) + &|ulf for p > 1. Furthermore, the assumption (Hy) holds.
Then problem (1.1) has at least one solution.

Proof. The proof is similar to that of Theorem 3.1, so we omit it. O
Theorem 3.4. Suppose that
Ie(u) _ Le(u)

t,
tim £ ( “_o, lim -0, lim
u—0 u—0 U u—0 U

-0 (3.11)

Then problem (1.1) has at least one solution.

Proof. By Theorem 3.1, we know that the operator G : PC(J,R) — PC(J,R) is completely
continuous. In view of (3.11), we can find a constant r > 0 such that |f(t, u)| < 61ul, |Ir (1) <
62lu| and |I; (u)| < 63|ul for 0 < |u| < r, where 6; > 0 (i = 1,2,3) satisfy

2(1+p)(|b|T + 1)T*16, N [5p +1+2b|T(2p - 1)]T*'6 , 20+ [bIT)po,
[(a+1) I'(a) T (3.12)
+[5p—2+2|b|T(2p - 1)]65 < |b].
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Let Q = {u € PC(J,R) | |lu|| < r}. Take u € PC(J,R) such that ||u|| = r, which means

u € 0. Then, as in the proof of Theorem 3.1, we have

2(1+p)(bIT+1)T*'6,  [Bp+1+2bIT(2p-1)]T* 6,
= |b|{ T(a+1) " I(a)

(3.13)
20+ [bT)pé,

’ +[5p—z+z|b|r<zp—1>163}uuu,

which, in view of (3.12), implies that |Gu|| < ||u||, u € 0Q. Therefore, by Theorem 2.2, the
operator G has at least one fixed point. Thus we conclude that problem (1.1) has at least one
solution u € Q. O

Theorem 3.5. Assume that

(Hs) there exist positive constants K; (i = 1,2,3) such that

|f(t,u) - f(t,0)] < Kilu—-2], [k (u) = Ix(v)| < Kalu -1, |Ii(u) - I{(v)| < Kslu -],
(3.14)

forte JuveRand k=1,2,...,p.
Then problem (1.1) has a unique solution if
21 +p)(BIT + 1)T*'Ky . [5p+1+2b|T(2p -1)]T* 'K, N 2(1 + |b|T)pK>

[(a+1) ['(a) T (3.15)
+[Bp-2+2b|T(2p - 1)] K3 < |b].

Proof. For u,v € PC(J,R), we have

t (t—S)Dﬁl
t ['(a)

i=1

[(Gu)(t) - (Go)(B)] < |f(s,u(s)) = f(s,0(s))|ds

t ( s)al
J‘ 5 |f(s,u(s)) = f(s,0(s))|ds + | Li(u(t:;)) - Li(v(t:))]

ti

+Z(tk—t)[Jt (t"( (s u(s)) — f(5,0(5))|ds

+[ I} (u(t:) - If(v(ti))|]
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k t a=2
+Z<t—tk>U Ui (e 1 o) - s v()lds
i=1

ti1
+| I (u(t) - If(U(ti))|]

+

N0+l T a1
1-(-1) J‘t (T -5s) |f(5,u(s))_f(5,v(s))|ds

|b|IT I(a)

et -
b|T L T(a- |f(S u(s)) - f(s,v(s))|ds

a-2
+ — |b| (17:(“ 5)1) |f(s,u(s ) — f(S,U(S))|ds

a-1
I(T ) |f(s,u(s)) - f(5,0(s))|ds

[1 + (—1)9+1]t T
bT

i a-2
EPIU: (It“(aS)l) |f(s,u(s)) = f(s,0(s))|ds

i=1

+|IF(u(t)) - I;‘(v(ti))l]

0+1
G
bT

P ti t; S)
X{ZU T 161090 = 5 09N s+ ) - L-(v(ti))l]

1

p-1
+§(t”_ti)|:J‘ (lt"l(aS)1 |f(s,u(s)) = f(s,v(s))|ds

tiq

I ) - I;<v<ti>>|]

4 “o(t-s)"
+§(T—tp) I:J‘ Ta-1) |f(s,u(s)) = f(s,0(s))|ds

ti

I (u(t) - I (0(t)) |] }
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1 [204p)(BIT + DT*'Ky | [5p+1+2bIT(2p - D] T* 'Ky
=l T(a+1) - (@)

20+ pIT)pK:

el [5p—2+2|b|T(2p—1)]I<3}||u—v||

A
= llu—2f,

b
(3.16)

which, by (3.15), yields ||Tu — Tv|| < ||u — v||. So, G is a contraction. Therefore, by the Banach
contraction mapping principle, problem (1.1) has a unique solution. O

Example 3.6. Consider the following fractional impulsive irregular boundary value problem

e¥cos®[u(t) + e*P]  sin(t+1)

1+ ud(t) ’ V5 +u2(t)

1\ _ .2 21 1\ 7+ 212(1/4) (3.17)
Au<z> =2+ 3sin ln<1+2u <Z>)]’ Au <Z> TRy

W' (0)+ (1% (1) +bu(1) =0, u(0)+ (-1 u(1)=0, 6=1,2, b#0,

CD%u(t) =

1
lulf, 0<t<l, t;éz,

wherel <a<2andp =1

Observe that

e®cos® [u(t) + e""] .\ sin(t + 1)

L+ut(t) 5+ u2(b)

[ulf| < e +|ul. (3.18)

|f(t,u)| =

Clearly, a(t) = e ¢=1,L,=5,Ls =7/2, and the conditions of Theorem 3.1 hold for 0 < p<1.
Thus, by Theorem 3.1, problem (3.17) has at least one solution. In a similar way, for p > 1,
the impulsive irregular fractional boundary value problem (3.17) has at least one solution by
means of Theorem 3.3.

Example 3.7. Consider the impulsive fractional irregular boundary value problem given by

1
CD%u(t) = 2(1 - cosu(t)) + eCHut(t), 0<t<1, t# =

Au<1> _ arctan®u(1/5) Au’<1> _ 5 _q (3.19)
5 5 g 5 !

W(0)+ (1% (1) +bu(1) =0, u(0)+ (-1)*'u(1)=0, 6=1,2, b#0,

wherel <a<2andp=1.
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It can easily be verified that all the assumptions of Theorem 3.4 are satisfied. Thus, by
the conclusion of Theorem 3.4, we deduce that the problem (3.19) has at least one solution.

Example 3.8. Consider
CD7*u(t) = 100> + ie-COSZ”“) 0<t<l t¢§
200 ’ Ty
3\ 1 3 (3 [u(3/4)] (3.20)
su(g) =geoou(y) 2(3) = st warmy
w'(0) + (1% (1) +8u(1) =0, wu(0)+(-1)*'u(1)=0, 6=1,2.
Hereq=7/4,b=8,T =1,and p = 1. With

1

Ky,== K = 5 (3.21)

we find that

A 2(1+p)(IbIT + )T* 'K, . [5p +1+2b|T(2p - 1)]T*'K; , 20+ [BIDpK;
[(a+1) I'(a) T (3.22)
+[5p -2 +2b|T(2p - 1)] K3 < 6.031587 < |b| = 8.

Thus, all the conditions of Theorem 3.5 are satisfied. Consequently, the conclusion of
Theorem 3.5 applies and the fractional order impulsive irregular boundary value problem
(3.20) has a unique solution on [0, 1].
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