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We introduce a new class of functions analytic in the open unit disc, which contains the class of
Bazilevic functions and also generalizes the concept of uniform convexity. We establish univalence
criterion for the functions in this class and investigate rate of growth of coefficients, arc length
problem, inclusion results, and distortion bounds. Some interesting results are derived as special
cases.

1. Introduction

Let A be the class functions analytic in the open unit disc E = {z : |z| < 1} and satisfying the
conditions f(0) = 0, f ′(0) = 1. Let S ⊂ A be the class of functions which are univalent, and
also let S∗(r), C(r) be the subclasses of S which consists of starlike and convex functions of
order γ (0 ≤ γ < 1), respectively.

Kanas and Wisniowska [1, 2] studied the classes of k-uniformly convex functions,
denoted by k-UCV and the corresponding class UST related with the Alexander-type
relation. In [3], the domain Ωk, k ∈ [0,∞) is defined as follows:

Ωk =
{
u + iv : u > k

√
(u − 1)2 + v2

}
. (1.1)

For fixed k,Ωk represents the conic region bounded, successively, by the imaginary axis (k =
0), the right branch of hyperbola (0 < k < 1), a parabola (k = 1), and an ellipse (k > 1). Also,
we note that, for no choice of k(k > 1),Ωk reduces to a disc.

In this paper, we will choose k ∈ [0, 1]. Related with Ωk, we define the domain Ωk,γ ,
see [4], as follows:

Ωk,γ =
(
1 − γ)Ωk + γ,

(
0 ≤ γ < 1

)
. (1.2)
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For k ∈ [0, 1], the following functions denoted by pk,γ(z) are univalent in E, continuous as
regards to k and γ , have real coefficients, and map E ontoΩk,γ , such that pk,γ(0) = 1, p′

k,γ
(0) >

0:

pk,γ(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 +
(
1 − 2γ

)
z

(1 − z) , (k = 0),

1 +
2
(
1 − γ)
1 − k2 sinh2

[(
2
π
arc cos k

)
arc tanh

√
z

]
, (0 < k < 1),

1 +
2
(
1 − γ)
π2

(
log

1 +
√
z

1 − √
z

)2

, (k = 1).

(1.3)

Let P denote the class of the Caratheodory functions of positive real part. We define a subclass
of P as follows.

Definition 1.1. Let P(pk,γ) ⊂ P be the class consisting of functions p(z)which are analytic in E
with p(0) = 1 and which are subordinate to pk,γ(z) in E. We write p ∈ P(pk,γ) implies p ≺ pk,γ ,
where pk,γ(z) is the function, given by (1.3), and maps E onto Ωk,γ , k ∈ [0, 1], γ ∈ [0, 1). That
is p(E) ⊂ pk,γ(E). We note that P(p0,0) = P and p ∈ P(p0,γ) = P(γ) implies that Re p(z) > γ, z ∈
E. It is easy to verify that P(pk,γ) is a convex set, and P(pk,γ) ⊂ P(γ1), γ1 = (k + γ)/(1 + k).

The class P(pk,γ) is extended as follows.

Definition 1.2. Let p(z) be analytic in E with p(0) = 1. Then, p ∈ Pm(pk,γ) if and only if, for
m ≥ 2, 0 ≤ γ < 1, k ∈ [0, 1], z ∈ E, we have

p(z) =
(
m

4
+
1
2

)
p1(z) −

(
m

4
− 1
2

)
p2(z), p1, p2 ∈ P

(
pk,γ
)
. (1.4)

When k = 0, we obtain the class Pm(γ) which reduces to the class Pm with γ = 0, introduced
and studied in [5]. Also P2(pk,γ) = P(pk,γ).

We now define the following.

Definition 1.3. Let f ∈ Awith f(z)f ′(z)/z/= 0 in E. Let, for α real and β ∈ [−1/2, 1),

J
(
α, β, f(z)

)
= (1 − α)(1 − β)zf ′(z)

f(z)
+ α
{
1 − β + zf ′′(z)

f ′(z)

}
. (1.5)

Then f ∈ k −UBm(α, β, γ) if and only if

J
(
α, β, f(z)

) ∈ Pm(pk,γ), for z ∈ E. (1.6)

For any real number α and β ∈ [−1/2, 1), we note that the identity function belongs to k −
UBm(α, β, γ) so that k −UBm(α, β, γ) is not empty.

Throughout this paper, we assume that k ∈ [0, 1], γ ∈ [0, 1), m ≥ 2, α, β ∈ R, β ∈
[−1/2, 1), z ∈ E, unless otherwise specified.
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We note the following special cases.

(i) For m = 2, 0 ≤ β < 1, k = 0, we have a subclass of a class introduced by Mocanu
[6]. Also see [7, 8].

(ii) It is well known that 0−UB2(α, β, 0) = B2(α, β) contains the Bazilevic functions with
α > 0 and B2(α, β) ⊂ S.

(iii) k−UBm(1, 0, γ) = k−Vm(γ) ⊂ Vm((k+γ)/(1+k)) ⊂ Vm, where Vm is the well-known
class of functions with bounded boundary rotation, see [9].

(iv) k −UBm(0, 0, γ) = k −URm(γ) ⊂ Rm((k + γ)/(1 + k)) ⊂ Rm, where Rm denotes the
class of functions with bounded radius rotation, see [9].

(v) k − UB2(1, 0, γ) = k − UCV (γ) is the class of uniformly convex functions of order
γ, 0 −UCV (γ) = C(γ), and 1 −UCV (γ) = UCV (γ).

Also k −UB2(0, 0, γ) = UST(γ), andUST(γ) ⊂ S∗(γ1), γ1 = (k + γ)/(1 + k).

Remark 1.4.

(i) From Definition 1.3, it can easily be seen that f ∈ k −UBm(α, β, γ) if and only if, for
α/= 0, there exists a function g ∈ k −URm(γ) such that

f(z) =

[
m1

∫z
0
tm1−1

(
g(t)
t

)(1−β)/α
dt

]1/m1

= z + · · · , (1.7)

where

m1 = 1 +
(1 − α)(1 − β)

α
. (1.8)

A simple computation shows that (1.7) can be written as

(1 − α)zf
′(z)

f(z)
+

α

1 − β
(
1 − β + zf ′′(z)

f ′(z)

)
=
zg ′(z)
g(z)

, (1.9)

with g ∈ k −URm(γ).

(ii) Also, for f ∈ k − UBm(α, β, γ), it can be verified from (1.5) that
z(f(z)/z)(1−α)(f ′(z))α/(1−β) belongs to k −URm(γ) for all z ∈ E.

2. Preliminary Results

The following lemma is an easy generalization of a result due to Kanas [3].

Lemma 2.1 (see [10]). Let k ∈ [0,∞), and let σ, δ1 be any complex numbers with σ /= 0 and 0 ≤ γ <
Re(σk/(k + 1) + δ1). If h(z) is analytic in E, h(0) = 1 and satisfies

(
h(z) +

zh′(z)
σh(z) + δ1

)
≺ pk,γ(z), (2.1)
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and qk,γ(z) is an analytic solution of

qk,γ(z) +
zq′k,γ(z)

σqk,γ(z) + δ1
= pk,γ(z), (2.2)

then qk,γ(z) is univalent,

h(z) ≺ qk,γ(z) ≺ pk,γ(z), (2.3)

and qk,γ(z) is the best dominant of (2.1), where qk,γ(z) is given as

qk,γ(z) =

⎧⎨
⎩
[(∫1

0
exp
∫ tz
t

pk,γ(u) − 1
u

du

)
dt

]−1
+
δ1
σ

⎫⎬
⎭. (2.4)

Lemma 2.2 (see [11]). Let u = u1 + iu2 and v = v1 + iv2, and let ψ(u, v) be a complex-valued
function satisfying the following conditions:

(i) ψ(u, v) is continuous in D ⊂ C
2,

(ii) (1, 0) ∈ D and Reψ(1, 0) > 0,

(iii) Reψ(iu2, v1) ≤ 0, whenever (iu2, v1) ∈ D and v1 ≤ −(1 + u22)/2.
If h(z) is a function analytic in E such that (h(z), zh′(z)) ∈ D and Reψ{h(z), zh′(z)} > 0 for
z ∈ E, then Reh(z) > 0 in E.

Lemma 2.3 (see [12]). Let f ∈ A with f(z)f ′(z)/z/= 0 in E. Then f(z) is a Bazilevic function
(hence univalent) in E if and only if, for 0 ≤ θ1 < θ2 ≤ 2π, 0 < r < 1, z = reiθ, one has

∫θ2
θ1

[
Re
{
1 +

zf ′′(z)
f ′(z)

+ (α1 − 1)
zf ′(z)
f(z)

}
− β1 Im

zf ′(z)
f(z)

]
dθ > −π, (2.5)

where α1 > 0, β1 real.

3. Main Results

In the following, we establish the criterion of univalence for the class k − UBm(α, β, γ) with
certain restriction on the upper bound of the value ofm.

Theorem 3.1. Let f ∈ k −UBm(α, β, γ), α > 0, β ∈ [0, 1). Then f ∈ S for m ≤ 2{α(1 + 2β)(k +
1)/(1 − β)(1 − γ) + 1} in E.

Proof. Since f ∈ k − UBm(α, β, γ) ⊂ Bm(α, β, γ1), γ1 = (k + γ)/(1 + k), we note that, in (1.9),
g ∈ Rm(γ1). It is known [13] that there exists g1 ∈ Rm such that, for z ∈ E,

g(z) = z
(
g1(z)
z

)(1−γ1)
. (3.1)
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Now from (1.9) and (3.1), we have, for z = reiθ, 0 < r < 1, 0 ≤ θ1 < θ2 ≤ 2π ,

∫θ2
θ1

Re

{
(1 − α)(1 − β)

α

zf ′(z)
f(z)

+
(
1 +

zf ′′(z)
f ′(z)

)}
dθ > −π

{(
1 − β)
α

(
1 − γ
1 + k

)(m
2

− 1
)
− 2β

}
.

(3.2)

We use Lemma 2.3 with α1 = 1/α + β(1 − 1/α), β1 = 0 to have the required result.

As special cases, we note that

(i) for k = 0, β = 0, α = 1, f(z) is univalent for m ≤ 2(1/(1 − γ) + 1). We observe
that, when γ = 0, we obtain a well-known result that the class Vm of functions with
bounded boundary rotation contains univalent functions for 2 ≤ m ≤ 4, see [9];

(ii) for k = 1, β = 0, α = 1, γ = 0, f ∈ 1 −UVm is univalent form ≤ 6.

Let Γ denote the Gamma function, and let F(a, b, c; z) be the hypergeometric function
which is analytic in E and is defined by

F(a, b, c; z) =
Γ(c)

Γ(c)Γ(c − b)
∫1

0
ub−1(1 − u)c−b−1(1 − zu)−adu, (3.3)

where Re b > 0, Re(c − b) > 0.
Define

K(m1, k1, r) = r
[
F
(
k1
(m
2

+ 1
)
, m1,

{
k1
(m
2

− 1
)
+m1 + 1

}
, r
)]1/m1

, (3.4)

where

m1 = 1 +
(1 − α)(1 − β)

α
,

k1 =

(
1 − β)
α

(
1 − γ
1 + k

)
, α1 /= 0.

(3.5)

Also, for 0 ≤ θ ≤ 2π , let

fθ(m1, k1, z) =
[
m1

∫z
0
ξm1−1

(
1 + eiθξ

)−k1((m/2)+1)(
1 − eiθξ

)k1((m/2)−1)
dξ

]1/m1

. (3.6)

We now consider the distortion problem.

Theorem 3.2. Let f ∈ k −UBm(α, β, γ), α /= 0, β ∈ [0, 1). Then, for |z| = r,

(i) −K(m1, k1,−r) ≤ |f(z)| ≤ K(m1, k1, r), for α > 0,

(ii) K(m1, k1, r) ≤ |f(z)| ≤ −K(m1, k1,−r), for α < 0.
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Proof. Suppose z0 is a point on the circumference |z| = r such that |f(z0)| =
min0≤θ≤2π |f(reiθ)|, and let τ denote the preimage under f on the segment [0, f(z0)].

Consider first case α > 0.
Distortion results for g1 ∈ Rm are given as follows:

(1 − |ξ|)m/2−1
(1 + |ξ|)m/2+1

≤
∣∣∣∣g1(ξ)ξ

∣∣∣∣ ≤ (1 + |ξ|)m/2−1
(1 − |ξ|)m/2+1

, (3.7)

see [9]. In view of (1.7), (3.1), and (3.7), we have

∣∣f(z0)∣∣m1 = m1

∫
τ

ξm1−1
∣∣∣∣g(ξ)ξ

∣∣∣∣
(1−β)/α

|dξ|,

≥ m1

∫ r
0
tm1−1(1 − t)k1(m/2−1)(1 + t)−k1(m/2+1)dt,

= m1r
m1

∫1

0
um1−1(1 + ru)−k1(m/2+1)(1 − u)k1(m/2−1)du.

(3.8)

Hence

∣∣f(z)∣∣ ≥ ∣∣f(z0)∣∣ ≥ −K(m1, k1,−r), (3.9)

where K(m1, k1, r) is defined in (3.4).
The proof of (i) for the upper bound of |f(z)| can be obtained in the similar manner.
The proof of (ii) for the case α < 0 is analogous.

Remark 3.3. The bounds in Theorem 3.2 are sharp for f ∈ Bm(α, β, γ1), γ1 = (k + γ)/(1 + k),
and the equality occurs for the function fθ(m1, k1, z) given by (3.6) with θ suitably chosen.

As an application of Theorem 3.2, we derive bound for initial Taylor coefficient of f(z)
as follows.

Corollary 3.4. Let f(z) = z +
∑∞

n=2 anz
n satisfy the conditions of Theorem 3.2. Then

|a2| ≤ k1(m/2 + 1)
{k1(m/2 − 1) +m1 + 1} , (3.10)

where k1 andm1 are given in (3.4).

Proof. First consider the case α > 0 and assume a2 to be real.
We find

K(m1, k1, r) = r +
k1(m/2 + 1)

{k1(m/2 − 1) +m1 + 1}r
2 +O

(
r3
)
,

∣∣f(r)∣∣ = r + a2r2 +O
(
r3
)
.

(3.11)
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In view of Theorem 3.2(i), we have

a2 ≤ k1(m/2 + 1)
{k1(m/2 − 1) +m1 + 1} . (3.12)

For α < 0, we proceed in a similar manner and use Theorem 3.2(ii) to complete the proof.

We note that −K(m1, k1,−r) andK(m1, k1, r) are increasing functions of r. Thus letting
r → 1 in the left hand side of (i) and (ii) in Theorem 3.2, we have the following.

Corollary 3.5. Let f satisfy the conditions of Theorem 3.2. Then
⋂

f∈k−∪Bm(α,β,γ)
f(E) = {w : |w| < r(m1, k1)}, (3.13)

where

r(m1, k1) =

⎧⎪⎨
⎪⎩
F
(
k1
(m
2

+ 1
)
, m1,

{
k1
(m
2

− 1
)
+m1 + 1

}
; 1
)
, for α > 0,

F
(
k1
(m
2

+ 1
)
, m1,

{
k1
(m
2

− 1
)
+m1 + 1

}
;−1
)
, for α < 0.

(3.14)

Using Theorem 3.1 and Corollary 3.4, we have the following covering result.

Corollary 3.6. Let f ∈ k−UBm(α, β, γ), α > 0, β ∈ [1, 0), andm ≤ 2{α(1+2β)(k+1)/(1−β)(1−
γ) + 1}. If D is the boundary of the image of E under f , then every point of D is at distance at least

[
k1(m/2 − 1) +m1 + 1

2[k1(m/2 − 1) +m1 + 1] + k1(m/2 + 1)

]
(3.15)

from the origin.

Proof. Let f(z)/=w0, w0 /= 0. Then f1 given by f1(z) = w0f(z)/(w0 − f(z)) is univalent, since
f is univalent by Theorem 3.1. Writing f(z) = z +

∑∞
n=2 anz

n, we have

f1(z) =
w0f(z)
w0 − f(z) = z +

(
a2 +

1
w0

)
z2 + · · · , (3.16)

and since f1 ∈ S, it follows that ∣∣∣∣a2 + 1
w0

∣∣∣∣ ≤ 2. (3.17)

Now using Corollary 3.4,

∣∣∣∣ 1
w0

∣∣∣∣ ≤ 2 +
k1((m/2) + 1)

{k1((m/2) − 1) +m1 + 1} , (3.18)

and this proves the result.
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As a special case, for α = 1, β = 0, γ = 0, k = 0, and m = 2, f is convex, and in this
case, |w0| > 1/4.

We now proceed to investigate some inclusion properties.

Theorem 3.7. Let f ∈ k − UBm(α, β, γ), α > 0, β ∈ [1, 0). Then f ∈ k − URm(γ) for 0 ≤ γ <
{(1 − β + αβ)k/α(k + 1)}, z ∈ E. In particular, for α > 0, β ∈ [1, 0), one has

k −UBm
(
α, β
) ⊂ k −URm. (3.19)

Proof. Since f ∈ k −UBm(α, β, γ), we can write from (1.7)

(1 − α)(1 − β)zf ′(z)
f(z)

+ α
(
1 − β + zf ′′(z)

f ′(z)

)
=
(
1 − β)zg ′(z)

g(z)
, (3.20)

or

(1 − α)zf
′(z)

f(z)
+

α

1 − β
(
1 − β + zf ′′(z)

f ′(z)

)
=
zg ′(z)
g(z)

∈ Pm
(
pk,γ
)
. (3.21)

Let zf ′(z)/f(z) = p(z). Then p(z) is analytic in E with p(0) = 1. Then we can write (3.21) as

(
1 − β + αβ)

1 − β
{
p(z) +

α

1 − β + αβ
zp′(z)
p(z)

− αβ

1 − β + αβ
}

= h0(z) =
zg ′(z)
g(z)

, (3.22)

or
{
p(z) +

(1/m1)zp′(z)
p(z)

}(1 − β)
αm1

h0(z) +
β

m1
, (3.23)

wherem1 = 1 + (1 − α)(1 − β)/α.
Since h0 ∈ Pm(pk,γ) and Pm(pk,γ) is a convex set, see [4], it follows that {((1 −

β)/αm1)h0(z) + (β/m1)p0(z)}, with p0(z) = 1, belong to Pm(pk,γ) in E.
Define

φm1(z) =
z

(1 − z)1/m1

{
(1 − (z/2))

(1 − z)2
}
. (3.24)

Writing

p(z) =
(
m

4
+
1
2

)
p1(z) −

(
m

4
− 1
2

)
p2(z), (3.25)

we use convolution technique, see [4], to have
(
p(z) ∗ φm1(z)

z

)
= p(z) +

(1/m1)zp′(z)
p(z)

, (3.26)

where ∗ denotes convolution (Hadamard product).
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Therefore, from (3.23), (3.25), and (3.26), we have for i = 1, 2

{
pi(z) +

zq′i(z)
m1p(z)

}
∈ P(pk,γ). (3.27)

We now use Lemma 2.1 with σ = m1, δ1 = 0, Re(m1k/(k + 1)) > γ to obtain pi(z) ≺
pk,γ(z), i = 1, 2, and consequently p ∈ Pm(pk,γ) in E. This proves that f ∈ k − URm(γ) in E.

For k = 0, we can improve this result by restricting α, β suitably as follows.

Corollary 3.8. Let f ∈ Bm(α, β, γ), α ∈ (0, 1], β ∈ [0, 1). Then, f ∈ Rm(γ0), where

γ0 =

⎧⎪⎨
⎪⎩

2
(
2m1γ − 1

)
+
√(

2m1γ − 1
)2 + 8m1

⎫⎪⎬
⎪⎭. (3.28)

Proof. Writing pi(z) = (1 − γ0)hi(z) + γ0 and proceeding as in Theorem 3.7, it follows from
(3.25) and (3.27) that for i = 1, 2

{(
1 − γ0

)
hi(z) +

(
1 − γ0

)
zh′i(z)

m1
(
1 − γ0

)
hi(z) +m1γ0

+
(
γ0 − γ

)} ∈ P, z ∈ E. (3.29)

Constructing the functional ψ(u, v) with u = hi(z), v = zh′i(z), we note that the first two
conditions of Lemma 2.2 are easily verified. For condition (iii), we proceed as follows:

Reψ(iu2, v1) =
(
γ0 − γ

)
+

m1γ0
(
1 − γ0

)
v1

m2
1γ

2
0 +m2

1

(
1 − γ0

)2
u22

,

(
v1 ≤ −

(
1 + u22

)
2

)
,

≤
2
(
γ0 − γ

)[
m2

1γ
2
0 +m2

1

(
1 − γ0

)2
u22

]
−m1γ0

(
1 − γ0

)(
1 + u22

)

2
[
m2

1γ
2
0 +m2

1

(
1 − γ0

)2
u22

] ,

=
A + Bu22

2C
,

(3.30)

where A = 2(γ0 − γ)(m2
1γ

2
0 ) +m1γ0(1 − γ0), B = 2(γ0 − γ)m2

1(1 − γ0)2 −m1γ0(1 − γ0), C = [m2
1γ

2
0 +

m2
1(1 − γ0)2u22] > 0.

The right-hand side of (3.30) is less than or equal to zero if A ≤ 0 and B ≤ 0, and
condition (iii) is satisfied. Form A ≤ 0, we obtain γ0 as given by (3.28), and B ≤ 0 ensures that
γ0 ∈ [0, 1).

We now use Lemma 2.2 to have hi ∈ P, i = 1, 2, and this implies pi ∈ P(γ0), i = 1, 2.
Consequently p ∈ Pm(γ0) in E, and this completes the proof.

We note that k −UBm(α, β, γ) ⊂ Bm(α, β, γ1) with γ1 = (k + γ)/(1 + k). Thus the above
result can be restated in a general form as follows.
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Corollary 3.9. Let f ∈ k −UBm(α, β, γ), α ∈ (0, 1], β ∈ [0, 1). Then f ∈ Rm(γ2) in E, where

γ2 =

⎧⎪⎨
⎪⎩

2
(
2mγ1 − 1

)
+
√(

2mγ1 − 1
)2 + 8m1

⎫⎪⎬
⎪⎭. (3.31)

By taking α = 1, β = 0, k = 1, we have the following.

Corollary 3.10. Let f ∈ 1 −UBm(1, 0, γ). Then f ∈ Rm(σ1), where 0 ≤ σ1 < 1 with

σ1 =

[∫1

0
exp

{
2
(
1 − γ)
π2

∫1

t

1
x

(
log

1 +
√
x

1 − √
x

)2

dx

}
dt

]−1
. (3.32)

When γ = 0, one has σ1 = 0.73719 · · · , and this value of σ1 is sharp, see [14].

Proof. In Theorem 3.7, with k = 1, α = 1, β = 0, we have m1 = 1 and therefore, from (3.27), it
follows that

(
pi(z) +

zp′i(z)
pi(z)

)
≺ p1,γ(z), i = 1, 2. (3.33)

By taking pi(z) = zf ′
i(z)/fi(z), it implies that

Re

(
1 +

zf ′′
i (z)

f ′
i(z)

)
>

∣∣∣∣∣
zf ′′

i (z)
f ′
i(z)

∣∣∣∣∣ + γ, z ∈ E, i = 1, 2. (3.34)

That is, fi ∈ UCV (γ), and it has been proved in [14] that every function in the class UCV (γ)
is starlike of order σ1 where this order is exact and is given by (3.32).

Now, using the argument given in Theorem 3.7, we have p(z) = (zf(z)/f(z)) ∈
Pm(σ1), z ∈ E, and the proof is complete.

We now prove the following.

Theorem 3.11. Let 0 < α2 < α1 ≤ 1, β ∈ [0, 1). Then

k −UBm
(
α1, β, γ

) ⊂ k −UBm
(
α2, β, γ

)
, z ∈ E. (3.35)

Proof. Let f ∈ k −UBm(α1, β, γ). Then, for z ∈ E

(1 − α1)
zf ′(z)
f(z)

+
α1

1 − β
(
1 − β + zf ′′(z)

f ′(z)

)
= H1(z), H1 ∈ Pm

(
pk,γ
)
. (3.36)
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Also, by Theorem 3.7, we have

zf ′(z)
f(z)

= H2(z), H2 ∈ Pm
(
pk,γ
)
. (3.37)

Now

(1 − α2)
zf ′(z)
f(z)

+
α2

1 − β
(
1 − β + zf ′′(z)

f ′(z)

)
=
α2
α1
H1(z) +

(
1 − α2

α1

)
H2(z) = H(z), (3.38)

and since Pm(pk,γ) is convex set,H ∈ Pm(pk,γ) in E. This proves the result.

LetM(r) = max0≤θ≤2π |f(reiθ)|, L(r) the length of the curve C, C = f(reiθ), 0 ≤ θ ≤ 2π ,
and A(r) the area of the region bounded by C.

We will now study the arc length problem for the class Bm(α, β, γ) as follows.

Theorem 3.12. For k = 0, let f ∈ Bm(α, β, γ). Then, for 0 < r < 1,

(i) L(r) ≤ (πM(r)/α(1 − β))[m{(1 − γ) + (α − 1)(1 − γ0)} + 2αβ], α ≥ 2, where γ0 is given
by (3.28).

(ii) L(r) ≤ (πM(r)/α)[m(2 − α) + 2αβ/(1 − β)], 0 < α < 2.

Proof. We prove (i), and proof of (ii) follows on similar lines.
Solving (1.7) for f ′, we obtain a formal representation as

zf ′(z) =
[
g(z)

](1−β)/α
zβ
[
f(z)

]−(1−α)(1−β)/α
, (α/= 0), (3.39)

with z = reiθ.

L(r) =
∫2π

0

∣∣zf ′(z)
∣∣dθ =

∫2π

0
zf ′(z)e−i arg(zf

′(z))dθ. (3.40)

Integration by parts gives us

L(r) =
∫2π

0
f(z)e−i arg(zf

′(z)) Re

{(
zf ′(z)

)′
f ′(z)

}
dθ

≤ M(r)
α

∫2π

0

∣∣∣∣Re J(α, β, f(z)) + (α − 1)
zf ′(z)
f(z)

+
αβ

1 − β
∣∣∣∣dθ,

(3.41)

where we have used Logarithmic differentiation of (3.39).
Now, from Corollary 3.8, it follows that zf ′/f ∈ Pm(γ0), where γ0 is given by (3.28).

Also, since f ∈ Bm(α, β, γ), we have

∫2π

0

∣∣Re J(α, β, f(z))∣∣dθ ≤ m(1 − γ)π. (3.42)

Using these observations in (3.41), we prove part (i).
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Remark 3.13. In Theorem 3.12, we have, for α > 0,

L(r) = O(1)M(r), (3.43)

whereO(1) is a constant depending only on α, β,m, and γ . This can be improved by using the
univalence criterion of f ∈ Bm(α, β, γ) as follows.

Corollary 3.14. Let f ∈ Bm(α, β, γ), α > 0, β ∈ [0, 1), and m ≤ 2{α(1 + 2β)/(1 − β)(1 − γ) + 1}.
Then

L(r) = O(1)

√
A(r) log

1
1 − r2 . (3.44)

Proof. In view of the univalence of f by Theorem 3.1, we have M(r) ≤ (4/r)M(r2), see [9],
and

M
(
r2
)
=

∞∑
n=1

|an|r2n =
∞∑
n=1

(
n1/2|an|rn

)(
n−1/2rn

)
. (3.45)

Making now use of the area theorem and the Schwarz inequality, we obtain the required
result.

Corollary 3.15. Let f : f(z) = z +
∑∞

n=2 anz
n satisfy the condition of Theorem 3.12. Then

an = O(1)
M((n − 1)/n)

n
, (n −→ ∞). (3.46)

Proof is immediately since by Cauchy’s Theorem.
We can write

n|an| = 1
2πrn

∣∣∣∣∣
∫2π

0
zf ′(z)e−inθdθ

∣∣∣∣∣ =
1

2πrn
L(r). (3.47)

Now taking r = (1 − 1/n) in Theorem 3.12, we prove the result.
We study the arc length problem and corresponding rate of growth of coefficient for

the class k −UBm(α, β, γ).

Theorem 3.16. Let, for α ≥ 1, −1/2 ≤ β < 1, f ∈ k−UBm(α, β, γ). Then form > 2(1−k1)/k1, one
has

L(r) = O(1)M(r)1−m1

(
1

1 − r
){k1(m/2+1)−1}

, (r −→ 1), (3.48)

where O(1) depends only onm1, k1, andm andm1, k1 are as given by (3.4).
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Proof. From (1.7), we can write

(
zf ′(z)

)(
f(z)

)(1−α)(1−β)/α = (g(z))(1−β)/α, g ∈ k −
⋃
Rm

(
γ
)
. (3.49)

Now, for z = reiθ, α ≥ 1,

L(r) =
∫
|z| = r

∣∣f ′(z)
∣∣ |dz| =

∫2π

0
zf ′(z)e−i arg zf

′(z)dθ

≤
∫2π

0

∣∣∣(g(z))(1−β)/αzβ(f(z))−(1−α)(1−β)/αe−i arg zf ′
∣∣∣dθ.

(3.50)

Since g ∈ k −URm(γ), we use a result proved in [4] and write

g(z) =

(
g1(z)

)m/4+1/2
(
g2(z)

)m/4−1/2 , g1, g2 ∈ k −UR2
(
γ
)
. (3.51)

Since k −UR2(γ) ⊂ S∗((k + γ)/(1 + k)), see [4].
We can write

gi(z) = z
(
si(z)
z

)1−((k+γ)/(1+k))
, si ∈ S∗,

= z
(
si(z)
z

)(1−γ)/(1+k)
, i = 1, 2.

(3.52)

Using (3.51), (3.52), and distortion results for the class S∗ of starlike functions, we obtain from
(3.50)

L(r) ≤ C1(M(r))1−m1

∫2π

0

(
r∣∣1 − reiθ∣∣2

)k1(m/4+1/2)

dθ,

= O(1)(M(r))1−m1

(
1

1 − r
)k1(m/4+1/2)−1

, (r −→ 1),

(3.53)

where k1(m/2 + 1) > 1.

Remark 3.17.

(i) For the case 0 < α < 1, we can solve the arc length problem in a similar manner. We
define m̃(r) = min0≤θ≤2π |f(z)| and proceed as before to obtain

L(r) = O(1)(m̃(r))1−m1

(
1

1 − r
)k1(m/2+1)−1

, (r −→ 1). (3.54)
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(ii) For α < 0, we have

L(r) = O(1)(M(r))1−m1

(
1

1 − r
)k1(m/2−1)−1

, for m >

(
1
k1

+ 1
)
. (3.55)

We can derive the following result of order of growth of coefficients from Theorem 3.16 with
the same method used before.

Corollary 3.18. Let f : f(z) = z+
∑∞

n=2 anz
n ∈ k−UBm(α, β, γ), β ∈ [0, 1), γ ∈ [0, 1), α ≥ 1. Then

an = O(1)M(1−m1)n{k1(m/2+1)−2}, (n −→ ∞), (3.56)

where O(1) depends only onm,m1, k1 and γ .
The exponent {k1(m/2 + 1) − 2} is best possible for k = 0, γ = 0. The extremal function

satisfies the equation

(
f(z)
z

)1−α(
f ′(z)

)α/(1−β) =
(
g0(z)
z

)
, (3.57)

with

g0(z) =
1

(m + 2)

{(
1 + z
1 − z

)m/2+1
− 1

}
∈ Rm. (3.58)
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