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The aim of this paper is to study the minimax theorems for set-valued mappings with or without
linear structure. We define several kinds of cone-convexities for set-valued mappings, give some
examples of such set-valued mappings, and study the relationships among these cone-convexities.
By using our minimax theorems, we derive some existence results for saddle points of set-valued
mappings. Some examples to illustrate our results are also given.

1. Introduction

The minimax theorems for real-valued functions were introduced by Fan [1, 2] in the early
fifties. Since then, these were extended and generalized in many different directions because
of their applications in variational analysis, game theory, mathematical economics, fixed-
point theory, and so forth (see, for example, [3–11] and the references therein). The minimax
theorems for vector-valued functions have been studied in [4, 9, 10] with applications to
vector saddle point problems. However, the minimax theorems for set-valued bifunctions
have been studied only in few papers, namely, [4–8] and the references therein.

In this paper, we establish some new minimax theorems for set-valued mappings.
Section 2 deals with preliminaries which will be used in rest of the paper. Section 3 denotes
the cone-convexities of set-valued mappings. In Section 4, we establish some minimax
theorems by using separation theorems, Fan-Browder fixed-point theorem. In the last
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section, we discuss some existence results for different kinds of saddle points for set-valued
mappings.

2. Preliminaries

Throughout the paper, unless otherwise specified, we assume that X, Y are two nonempty
subsets, andZ is a real Hausdorff topological vector space, C is a closed convex pointed cone
in Zwith intC/= ∅. Let Z∗ be the topological dual space of Z, and let

C∗ =
{
g ∈ Z∗ : g(c) ≥ 0 ∀c ∈ C

}
. (2.1)

We present some fundamental concepts which will be used in the sequel.

Definition 2.1 (see [3, 4, 8]). Let A be a nonempty subset of Z. A point z ∈ A is called a

(a) minimal point of A if A ∩ (z − C) = {z}; MinA denotes the set of all minimal points
of A;

(b) maximal point of A if A ∩ (z +C) = {z}; MaxA denotes the set of all maximal points
of A;

(c) weakly minimal point of A if A ∩ (z − intC) = ∅; MinwA denotes the set of all weakly
minimal points of A;

(d) weakly maximal point ofA ifA∩ (z+ intC) = ∅; MaxwA denotes the set of all weakly
maximal points of A.

It can be easily seen that MinA ⊂ MinwA and MaxA ⊂ MaxwA.

Lemma 2.2 (see [3, 4]). Let A be a nonempty compact subset of Z. Then,

(a) Min A/= ∅;
(b) A ⊂ Min A + C;

(c) Max A/= ∅;
(d) A ⊂ Max A − C.

Following [6], we denote both Max and Maxw by max (both Min and Minw by min)
in R since both Max and Maxw (both Min and Minw) are the same in R.

Definition 2.3. Let X, Y be Hausdorff topological spaces. A set-valued map F : X ⇒ Y with
nonempty values is said to be

(a) upper semicontinuous at x0 ∈ X if for every x0 ∈ X and for every open set N
containing F(x0), there exists a neighborhood M of x0 such that F(M) ⊂ N;

(b) lower semi-continuous at x0 ∈ X if for any sequence {xn} ⊂ X such that xn → x0 and
any y0 ∈ F(x0), there exists a sequence yn ∈ F(xn) such that yn → y0;

(c) continuous at x0 ∈ X if F is upper semi-continuous as well as lower semi-continuous
at x0.

We present the following fundamental lemmas which will be used in the sequel.



Abstract and Applied Analysis 3

Lemma 2.4 (see [9, Lemma 3.1]). Let X, Y, and Z be three topological spaces. Let Y be compact,
F : X × Y ⇒ Z a set-valued mapping, and the set-valued mapping T : X ⇒ Z defined by

T(x) =
⋃

y∈Y
F
(
x, y

)
, ∀x ∈ X. (2.2)

(a) If F is upper semi-continuous on X × Y, then T is upper semi-continuous on X.

(b) If F is lower semi-continuous onX, so is T.

Lemma 2.5 (see [9, Lemma 3.2]). Let Z be a Hausdorff topological vector space, F : Z ⇒ R a
set-valued mapping with nonempty compact values, and the functions p, q : Z → R defined by
p(z) = maxF(z) and q(z) = minF(z).

(a) If F is upper semi-continuous, so is p.

(b) If F is lower semi-continuous, so is p.

(c) If F is continuous, so are p and q.

We shall use the following nonlinear scalarization function to establish our results.

Definition 2.6 (see [6, 10]). Let k ∈ intC and v ∈ Z. The Gerstewitz function ξkv : Z → R is
defined by

ξkv(u) = min{t ∈ R : u ∈ v + tk − C}. (2.3)

We present some fundamental properties of the scalarization function.

Proposition 2.7 (see [6, 10]). Let k ∈ intC and v ∈ Z. The Gerstewitz function ξkv : Z → R has
the following properties:

(a) ξkv(u) < r ⇔ u ∈ v + rk − intC;

(b) ξkv(u) ≤ r ⇔ u ∈ v + rk − C;

(c) ξkv(u) = 0 ⇔ u ∈ v − ∂C, where ∂C is the topological boundary of C;

(d) ξkv(u) > r ⇔ u /∈ v + rk − C;

(e) ξkv(u) ≥ r ⇔ u /∈ v + rk − intC;

(f) ξkv(·) is a convex function;

(g) ξkv(·) is an increasing function, that is, u2 − u1 ∈ intS ⇒ ξkv(u1) < ξkv(u2);

(h) ξkv(·) is a continuous function.

Theorem 2.8 ( Fan-Browder fixed-point theorem (see [12])). Let X be a nonempty compact
convex subset of a Hausdorff topological vector space and let T : X ⇒ X be a set-valued mapping
with nonempty convex values and open fibers, that is, T−1(y) = {x ∈ X : y ∈ T(x)} is open for all
y ∈ X. Then, T has a fixed point.
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3. Cone-Convexities

In this section, we present different kinds of cone-convexities for set-valued mappings and
give some relations among them. Some examples of such set-valuedmappings are also given.

Definition 3.1. Let X be a nonempty convex subset of a topological vector space W. A set-
valued mapping F : X ⇒ Z is said to be

(a) above -C-convex [4] (resp., above-C-concave [5]) on X if for all x1, x2 ∈ X and all
λ ∈ [0, 1],

F(λx1 + (1 − λ)x2) ⊂ λF(x1) + (1 − λ)F(x2) − C,

(
resp., λF(x1) + (1 − λ)F(x2) ⊂ F(λx1 + (1 − λ)x2) − C

)
;

(3.1)

(b) below-C-convex [13] (resp., below-C-concave [9, 13]) on X if for all x1, x2 ∈ X and all
λ ∈ [0, 1],

λF(x1) + (1 − λ)F(x2) ⊂ F(λx1 + (1 − λ)x2) + C

(
resp., F(λx1 + (1 − λ)x2) ⊂ λF(x1) + (1 − λ)F(x2) + C

)
;

(3.2)

(c) above-C-quasi-convex (resp., below-C-quasiconcave) [7, Definition 2.3] on X if the set

LevF≤(z) := {x ∈ X : F(x) ⊂ z − C}
(
resp., LevF≥(z) := {x ∈ X : F(x) ⊂ z + C}),

(3.3)

is convex for all z ∈ Z;

(d) above-properly C-quasiconvex (resp., above-properly C-quasiconcave [6]) on X if for all
x1, x2 ∈ X and all λ ∈ [0, 1], either

F(λx1 + (1 − λ)x2) ⊂ F(x1) − C

(
resp., F(x1) ⊂ F(λx1 + (1 − λ)x2) − C

) (3.4)

or

F(λx1 + (1 − λ)x2) ⊂ F(x2) − C

(
resp., F(x2) ⊂ F(λx1 + (1 − λ)x2) − C

)
;

(3.5)

(e) below-properly C-quasiconvex [7] (resp., below-properly C-quasiconcave) on X if for all
x1, x2 ∈ X and all λ ∈ [0, 1], either

F(x1) ⊂ F(λx1 + (1 − λ)x2) + C

(
resp., F(λx1 + (1 − λ)x2) ⊂ F(x1) + C

) (3.6)
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or

F(x2) ⊂ F(λx1 + (1 − λ)x2) + C

(
resp., F(λx1 + (1 − λ)x2) ⊂ F(x2) + C

)
;

(3.7)

(f) above-naturally C-quasiconvex [6] on X if for all x1, x2 ∈ X and all λ ∈ [0, 1],

F(λx1 + (1 − λ)x2) ⊂ co{F(x1) ∪ F(x2)} − C, (3.8)

where coA denotes the convex hull of a set A;

(g) above -C-convex-like (resp., above-C-concave-like) on X (X is not necessarily convex)
if for all x1, x2 ∈ X and all λ ∈ [0, 1], there is an x′ ∈ X such that

F
(
x′) ⊂ λF(x1) + (1 − λ)F(x2) − C

(
resp., λF(x1) + (1 − λ)F(x2) ⊂ F

(
x′) − C

)
;

(3.9)

(h) below -C-convex-like [13] (resp., below -C-concave-like) on X (X is not necessarily
convex) if for all x1, x2 ∈ X and all λ ∈ [0, 1], there is an x′ ∈ X such that

λF(x1) + (1 − λ)F(x2) ⊂ F
(
x′) + C

(
resp., F

(
x′) ⊂ λF(x1) + (1 − λ)F(x2) + C

)
.

(3.10)

It is obvious that every above-C-convex set-valued mapping or above-properly C-
quasi-convex set-valued mapping is an above-naturally C-quasi-convex set-valued mapping,
and every above-C-convex (above-C-concave) set-valuedmapping is an above-C-convex-like
(above-C-concave-like) set-valued mapping. Similar relations hold for cases below.

Remark 3.2. The definition of above-properly C-quasi-convex (above-properly C-quasi-
concave) set-valued mapping is different from the one mentioned in [7, Definition 2.3] or
[5, 6]. The following Examples 3.3 and 3.4 illustrate the reason why they are different from
the one mentioned in [5–7]. However, if F is a vector-valued mapping or a single-valued
mapping, both mappings reduce to the ordinary definition of a properly C-quasi-convex
mapping for vector-valued functions [7]. The above-C-convexity in Definition 3.1 is also
different from the below-C-convexity used in [5, 9].

Example 3.3. Consider C = {(s, t) ∈ R
2 : s ≥ 0, t ≥ 0}. Let F : [x1, x2] ⊂ R ⇒ R

2 be a set-valued
mapping defined by

F(x1) :=
{
(s, t) ∈ R

2 : (s − 2)2 + (t − 4)2 = 1, 2 ≤ s ≤ 3, 4 ≤ t ≤ 5
}⋃

{(s, 5) : −1 ≤ s ≤ 2},

F(x2) :=
{
(s, t) ∈ R

2 : (s − 6)2 + (t + 2)2 = 1, 6 ≤ s ≤ 7,−2 ≤ t ≤ −1
}
,

(3.11)
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and for all λ ∈ (0, 1),

F(λx1 + (1 − λ)x2) :=
{
(s, t) ∈ R

2 : (s − 2)2 + (t − 2)2 = 4, 0 ≤ s ≤ 2, 0 ≤ t ≤ 2
}
. (3.12)

Then F is an above-properlyC-quasi-convex set-valuedmapping, but it is not below-properly
C-quasi-convex.

On the other hand, let G : [x1, x2] ⊂ R ⇒ R
2 be a set-valued mapping defined by

G(x1) :=
{
(s, t) ∈ R

2 : (s − 1)2 + (t − 4)2 = 1, 1 ≤ s ≤ 2, 4 ≤ t ≤ 5
}
,

G(x2) :=
{
(s, t) ∈ R

2 : (s − 6)2 + (t + 2)2 = 1, 6 ≤ s ≤ 7,−2 ≤ t ≤ −1
}
,

(3.13)

and for all λ ∈ (0, 1),

G(λx1 + (1 − λ)x2) : =
{
(s, t) ∈ R

2 : (s − 2)2 + (t − 2)2 = 4, 0 ≤ s ≤ 2, 0 ≤ t ≤ 2
}

⋃
{(s, 0) : 2 ≤ s ≤ 3}.

(3.14)

Then,G is a below-properly C-quasi-convex set-valued mapping, but it is not above-properly
C-quasi-convex.

Example 3.4. Let C = {(s, t) : s ≥ 0, t ≥ 0}. Define F : [−1, 1] ⇒ R
2 by

F(x) =
{
(x, t) : 1 − x2 ≤ t ≤ 1

}
, ∀x ∈ [−1, 1]. (3.15)

Then F is continuous, above-C-quasi-convex, below-C-quasi-concave, above-properly C-
quasi-convex, and above-properly C-quasi-concave, but it is not below-properly C-quasi-
conconvex.

Proposition 3.5. Let X be a nonempty set (not necessarily convex) and for a given set-valued
mapping F : X ⇒ Z with nonempty compact values, define a set-valued mapping M : X ⇒ Z
as

M(x) = MaxwF(x), ∀x ∈ X. (3.16)

(a) If Fis above-C-convex-like, thenM is so.

(b) IfX is a topological space and F is a continuous mapping, thenM is upper semicontinuous
with nonempty compact values on X.

Proof. (a) Let F be above-C-convex-like, and let x1, x2 ∈ X be arbitrary. Since F is above-C-
convex-like, for any α ∈ [0, 1], there exists x′ ∈ X such that

F
(
x′) ⊂ αF(x1) + (1 − α)F(x2) − C. (3.17)
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By Lemma 2.2,

MaxwF
(
x′) ⊂ αMaxwF(x1) + (1 − α)MaxwF(x2) − C. (3.18)

Therefore, x �→ MaxwF(x) is above-C-convex-like.
(b) The upper semicontinuity of M was deduced in [4, Lemma 2].

Proposition 3.6. Let X be a nonempty convex set, and let F : X ⇒ Z be a set-valued mapping with
nonempty compact values. Then, the set-valued mapping M : X ⇒ Z defined by

M(x) = MaxwF(x), ∀x ∈ X, (3.19)

is above-C-quasiconvex if F is so.

The following result can be easily derived, and therefore, we omit the proof.

Proposition 3.7. Let X be a nonempty convex set and F : X ⇒ R be above-R+-concave. Then the
set-valued mapping x �→ maxF(x) is above-R+-concave and below-R+-quasiconcave. Furthermore, if
F : X ⇒ R is above-properly R+-quasiconcave, then the set-valued mapping x �→ maxF(x) is also
above-properly R+-quasiconcave and below-R+-quasiconcave.

Let ξ ∈ C∗ and F : X ⇒ Z be a set-valued mapping. Then, the composition mapping
ξ ◦ F : X ⇒ R is defined by

(ξ ◦ F)(x) = ξ(F(x)) =
⋃

y∈F(x)
ξ
(
y
)
, ∀x ∈ X. (3.20)

Clearly, the composition mapping ξ ◦ F : X ⇒ R is also a set-valued mapping.

Proposition 3.8. Let X be a nonempty set, F : X ⇒ Z a set-valued mapping, and ξ ∈ C∗.

(a) If F is above-C-convex-like, then ξ ◦ F is above-R+-convex-like.

(b) If F is below-C-concave-like, then ξ ◦ F is below-R+-concave-like.

(c) If X is a topological space and F is upper semi-continuous, then so is ξ ◦ F.

Proof. (a) By the definition of above-C-convex-like set-valued mapping F : X ⇒ Z, for any
x1, x2 ∈ X and all λ ∈ [0, 1], there exists x′ ∈ X such that F(x′) ⊂ λF(x1) + (1 − λ)F(x2) − C.
For any y ∈ F(x′), there exist y1 ∈ F(x1), y2 ∈ F(x2) such that

λy1 + (1 − λ)y2 ∈ f − C. (3.21)

For any ξ ∈ C∗, we have ξ(y) ≤ λξ(y1) + (1 − λ)ξ(y2). Hence, ξ(F(x′)) ⊂ λξ(F(x1)) + (1 −
λ)ξ(F(x2)) − R+. Thus, ξ ◦ F is above-R+-convex-like.

The proof of (b) and (c) is easy, and therefore, we omit it.
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Proposition 3.9. Let X be a nonempty convex set and ξ ∈ C∗.

(a) If F : X ⇒ Z is above-C-concave (above-properly C-quasi-concave), then ξ ◦ F : X ⇒ R is
above-R+-concave (above-properly R+-quasi-concave).

(b) If F : X ⇒ Z is above-properly C-quasi-convex, then ξ ◦ F : X ⇒ R is above-R+-quasi-
convex and above-properly R+-quasi-convex.

(c) If F : X ⇒ Z is above-C-convex, then ξ ◦ F : X ⇒ R is above-R+-convex and above-R+-
quasi-convex.

Lemma 3.10. LetZ be a real Hausdorff topological vector space andC a closed convex pointed cone in
Z with intC/= ∅. Let X be a nonempty compact subset of a topological spaceX, and let F : X ⇒ Z be
an upper semi-continuous set-valued mapping with nonempty compact values. Then, for any ξ ∈ C∗,
there exists y ∈ Maxw F(X) such that ξ(y) = max

⋃
x∈X ξ(F(x)).

Proof. For any given ξ ∈ C∗, the mapping x ⇒ ξ(F(x)) is upper semi-continuous by
Proposition 3.8 (c). By the compactness of X, there exist x0 ∈ X and y0 ∈ F(x0) such
that ξ(y0) = max

⋃
x∈X ξ(F(x)). By Lemma 2.2, there exists y ∈ Maxw

⋃
x∈X F(x) such that

y0 − y ∈ −C, and hence ξ(y) ≥ ξ(y0). On the other hand, y ∈ Maxw
⋃

x∈X F(x) ⊂ F(X),
we know that ξ(y) ∈ ξ(F(X)), and then ξ(y) ≤ max

⋃
x∈X ξ(F(x)) = ξ(y0). Therefore, the

conclusion holds.

Proposition 3.11. Let X be a nonempty convex set. If F : X ⇒ Z is above-properly C-quasi-convex,
then it is above-C-quasi-convex.

Proof. For any z ∈ Z, let x1, x2 ∈ LevF≤(z). Then, F(x1) and F(x2) are subsets of z−C. Since F
is above-properly C-quasi-convex, for any λ ∈ [0, 1], F(λx1 + (1 − λ)x2) is contained in either
F(x1) −C or F(x2) −C, and hence, in z −C. Thus, the set LevF≤(z) is convex, and therefore, F
is above-C-quasi-convex.

Proposition 3.12. LetX be a nonempty convex set. If F : X ⇒ Z is above-naturally C-quasi-convex,
then it is above-C-quasi-convex.

Proof. Let z, x1, and x2 be the same as given as in Proposition 3.11. Then, co{F(x1) ∪ F(x2)} ⊂
z − C since z − C is convex. By the above-naturally C-quasi-convexity, F(λx1 + (1 − λ)x2)} ⊂
z − C for all λ ∈ [0, 1]. Thus, the set LevF≤(z) is convex, and therefore, F is above-C-quasi-
convex.

Proposition 3.13. LetX be a nonempty convex set. If F : X ⇒ Z is above-naturally C-quasi-convex,
then ξ ◦ F is above-naturally R+-quasi-convex for any ξ ∈ C∗.

Proof. Let ξ ∈ C∗ be given. From the above-naturally C-quasi-convexity of F, for any x1, x2 ∈
X and any λ ∈ [0, 1],

F(λx1 + (1 − λ)x2) ⊂ co{F(x1) ∪ F(x2)} − C. (3.22)
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For any y ∈ F(αx1 + (1 − α)x2), there is a w ∈ co{F(x1) ∪ F(x2)} such that y ∈ w − C. Then
there exist yi ∈ F(x1) ∪ F(x2) and λi ∈ [0, 1], 1 ≤ i ≤ n such that w =

∑n
i=1 λiyi. Hence,

ξ(w) =
∑n

i=1 λiξ(yi), and

ξ
(
y
) ∈ ξ(w) − R+ =

n∑

i=1

λiξ
(
yi

) − R+ ⊂ co{ξ(F(x1)) ∪ ξ(F(x2))} − R+. (3.23)

Therefore, ξ ◦ F is a above-naturally R+-quasi-convex.

Proposition 3.14. Let F : X ⇒ Z be a set-valued mapping with nonempty compact values. For any
ξ ∈ C∗,

(a) if ξ(d) = min
⋃

x∈X ξ(F(x)) for some d ∈ Z, then d ∈ Minw
⋃

x∈X F(x);

(b) if ξ(e) = max
⋃

x∈X ξ(F(x)) for some e ∈ Z, then e ∈ Maxw
⋃

x∈X F(x).

Proof. Let ξ(d) = min
⋃

x∈X ξ(F(x)). Suppose that d /∈ Minw
⋃

x∈X F(x). Then

(
⋃

x∈X
F(x)

)
⋂

(d − intC)/= ∅. (3.24)

Then, there exists w ∈ ⋃
x∈X F(x) and w ∈ d − intC. Therefore, there exists s ∈ X such that

w ∈ F(s) and d − w ∈ intC. Since ξ ∈ C∗, ξ(d) > ξ(w) and ξ(w) ≥ min
⋃

x∈X ξ(F(x)). This
implies that ξ(d) > min

⋃
x∈X ξ(F(x)), which is a contradiction. This proves (a).

Analogously, we can prove (b), so we omit it.

Remark 3.15. Propositions 3.8 and 3.9, Lemma 3.10, and Propositions 3.13 and 3.14 are always
true except Proposition 3.8 (b) if we replace ξ by any Gerstewitz function.

4. Minimax Theorems for Set-Valued Mappings

In this section, we establish someminimax theorems for set-valuedmappings with or without
linear structure.

Theorem 4.1. Let X, Y be two nonempty compact subsets (not necessarily convex) of real Hausdorff
topological spaces X and Y, respectively. Let the set-valued mapping F : X × Y ⇒ R be lower
semi-continuous on X and upper semi-continuous on Y such that for all (x, y) ∈ X × Y , F(x, y) is
nonempty compact and satisfies the following conditions:

(i) for each x ∈ X, y �→ F(x, y) is below-R+-concave-like on Y;

(ii) for each y ∈ Y, x �→ F(x, y) is above-R+-convex-like on X.

Then,

max
⋃

y∈Y
min

⋃

x∈X
F(x, y) = min

⋃

x∈X
max

⋃

y∈Y
F
(
x, y

)
. (4.1)
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Proof. Since

max
⋃

y∈Y
min

⋃

x∈X
F
(
x, y

) ≤ min
⋃

x∈X
max

⋃

y∈Y
F
(
x, y

)
, (4.2)

it is sufficient to prove that

max
⋃

y∈Y
min

⋃

x∈X
F
(
x, y

) ≥ min
⋃

x∈X
max

⋃

y∈Y
F
(
x, y

)
. (4.3)

Choose any α ∈ R such that α < min
⋃

x∈X max
⋃

y∈Y F(x, y). For any y ∈ Y , let

LevF≤
(
y;α

)
=
{
x ∈ X : F

(
x, y

) ⊂ α − R+
}
. (4.4)

Then, by the lower semi-continuity of the set-valuedmapping x �→ F(x, y), the set LevF≤(y;α)
is closed, hence it is compact for all y ∈ Y . By the choice of α, we have

⋂

y∈Y
LevF≤

(
y;α

)
= ∅. (4.5)

Since X is compact and the collection {X \ LevF≤(y;α) : y ∈ Y} covers X, there exist finite
number of points y1, y2, . . . , ym in Y such that

X ⊂
m⋃

i=1

(
X \ LevF≤

(
yi;α

))
(4.6)

or

m⋂

i=1

LevF≤
(
yi;α

)
= ∅. (4.7)

This implies that

max
m⋃

i=1

F
(
x, yi

)
> α, ∀x ∈ X, (4.8)

and therefore,

min
⋃

x∈X
max

m⋃

i=1

F
(
x, yi

)
> α. (4.9)

Following the idea of Borwein and Zhuang [14], let

E :=
{
(z, r) ∈ R

m+1 : there isx ∈ X,F
(
x, yi

) ⊂ r + zi − R+, i = 1, 2, . . . , m
}
, (4.10)
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where z = (z1, z2, . . . , zm). Then the set E is convex, so is intE. We note that the interior intE
of E is nonempty since

(

0, 1 +max
m⋃

i=1

F
(
x, yi

)
)

∈ intE, ∀x ∈ X. (4.11)

Since (0, α) /∈ E, by separation hyperplane theorem [15, Theorem 14.2], there is a (Ξ, ε)/= 0 ×
{0} such that

〈(Ξ, ε), (z, r)〉 ≥ 〈(Ξ, ε), (0, α)〉, ∀(z, r) ∈ E, (4.12)

where Ξ = (λ1, λ2, . . . , λm), that is,

Ξz + εr ≥ εα, ∀(z, r) ∈ E. (4.13)

By (4.11), (4.13), and the choice of α, we have that ε > 0. Furthermore, from the fact

m∏

i=1

(
F
(
x, yi

)
+ r

) × {−r} ⊂ E, (4.14)

we have

(
ηx,1 + r, ηx,2 + r, . . . , ηx,m + r,−r) ∈ E, ∀ηx,i ∈ F

(
x, yi

)
. (4.15)

Hence, by (4.13), we have

m∑

i=1

λi
(
ηx,i + r

)
+ ε(−r) ≥ εα (4.16)

or

m∑

i=1

(
λi
ε

)
ηx,i +

(∑m
i=1 λi
ε

− 1
)
r ≥ α, ∀x ∈ X, r ∈ R. (4.17)

Thus, we have
∑m

i=1(λi/ε) = 1. Hence, by (4.17), we have

m∑

i=1

(
λi
ε

)
F
(
x, yi

) ⊂ α + R+. (4.18)

Since F(x, y) is below-R+-concave-like in y, there is y′ ∈ Y such that

F
(
x, y′) ⊂

m∑

i=1

(
λi
ε

)
F
(
x, yi

)
+ R+, ∀x ∈ X. (4.19)



12 Abstract and Applied Analysis

Therefore,

⋃

x∈X
F
(
x, y′) ⊂ α + R+, (4.20)

and hence,

max
⋃

y∈Y
min

⋃

x∈X
F
(
x, y

) ≥ α. (4.21)

This completes the proof.

Remark 4.2. Theorem 4.1 is a modification of [14, Theorem A]. If F is a real-valued function,
then Theorem 4.1 reduces to the well-known minimax theorem due to Fan [2].

We next establish aminimax theorem for set-valuedmappings defined on the sets with
linear structure.

Theorem 4.3. LetX, Y be two nonempty compact convex subsets of real Hausdorff topological vector
spaces X and Y, respectively. Let the set-valued mapping F : X × Y ⇒ R be lower semi-continuous
on X and upper semi-continuous on Y such that for all (x, y) ∈ X ×Y , F(x, y) is nonempty compact,
and satisfies the following conditions:

(i) for each y ∈ Y , x �→ F(x, y) is above-R+-quasi-convex on X;

(ii) for each x ∈ X, y �→ F(x, y) is above-R+-concave, or above-properly R+-quasi-concave on
Y;

(iii) for each y ∈ Y , there is a xy ∈ Y such that

maxF
(
xy, y

) ≤ max
⋃

y∈Y
min

⋃

x∈X
F
(
x, y

)
. (4.22)

Then,

min
⋃

x∈X
max

⋃

y∈Y
F
(
x, y

)
= max

⋃

y∈Y
min

⋃

x∈X
F
(
x, y

)
. (4.23)

Proof. We only need to prove that

max
⋃

y∈Y
min

⋃

x∈X
F
(
x, y

)
< min

⋃

x∈X
max

⋃

y∈Y
F
(
x, y

)
(4.24)

is impossible, since it is always true that

max
⋃

y∈Y
min

⋃

x∈X
F
(
x, y

) ≤ min
⋃

x∈X
max

⋃

y∈Y
F
(
x, y

)
. (4.25)
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Suppose that there is an α ∈ R such that

max
⋃

y∈Y
min

⋃

x∈X
F
(
x, y

)
< α < min

⋃

x∈X
max

⋃

y∈Y
F
(
x, y

)
. (4.26)

Define G : X × Y ⇒ X × Y by

G
(
x, y

)
=
{
s ∈ X : maxF

(
s, y

)
< α

} × {t ∈ Y : maxF(x, t) > α}. (4.27)

For each x ∈ X, max
⋃

y∈Y F(x, y) ≥ min
⋃

x∈X max
⋃

y∈Y F(x, y) > α. Since Y is compact and
the set-valued mapping y �→ maxF(x, y) is upper semi-continuous, there is a t ∈ Y such that
maxF(x, t) = max

⋃
y∈Y F(x, y) > α.

On the other hand, from the condition (iii), for each y ∈ Y , there is a xy ∈ Y such that
maxF(xy, y) < α. Hence, for each (x, y) ∈ X × Y , G(x, y)/= ∅. By (i) and Proposition 3.6, the
mapping x → maxF(x, y) is above-R+-quasi-convex on X. By (ii) and Proposition 3.7, the
mapping y → maxF(x, y) is below-R+-quasi-concave on y. Hence, for each (x, y) ∈ X × Y ,
the set G(x, y) is convex. From the lower semi-continuities on X and upper semi-continuity
on Y of F, the set

G−1(s, t) = {x ∈ X : maxF(x, t) > α} × {y ∈ Y : maxF
(
s, y

)
< α

}
(4.28)

is open in X × Y . By Fan-Browder fixed-point Theorem 2.8, there exists (x, y) ∈ X × Y such
that

(
x, y

) ∈ G
(
x, y

)
, (4.29)

that is,

maxF
(
x, y

)
> α > maxF

(
x, y

)
, (4.30)

which is a contradiction. This completes the proof.

Remark 4.4. [5, Propositions 2.7 and 2.1] can be deduced from Theorem 4.3. Indeed, in [5,
Proposition 2.1], the above-naturally C-quasi-convexity is used. By Proposition 3.12, the
condition (i) of Theorem 4.3 holds. Hence the conclusion of Proposition 2.1 in [5] holds.
We also note that, in Theorem 4.3, the mapping F need not be continuous on X × Y . Hence
Theorem 4.3 is a slight generalization of [7, Theorem 3.1].

Theorem 4.5. Let X and Y be nonempty compact (not necessarily convex) subsets of real Hausdorff
topological vector spaces X and Y, respectively. Let the mapping F : X × Y ⇒ Z be upper semi-
continuous with nonempty compact values and lower semi-continuous on X such that

(i) for each x ∈ X, y → F(x, y) is below-C-concave-like on Y ;

(ii) for each y ∈ Y , x → F(x, y) is above-C-convex-like on X;
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(iii) for every y ∈ Y ,

Max
⋃

y∈Y
Minw

⋃

x∈X
F
(
x,y

) ⊂ Minw

⋃

x∈X
F
(
x,y

)
+ C. (4.31)

Then for any

z1 ∈ Max
⋃

y∈Y
Minw

⋃

x∈X
F
(
x,y

)
, (4.32)

there is a

z2 ∈ Min

⎛

⎝co

⎧
⎨

⎩

⋃

x∈X
Maxw

⋃

y∈Y
F
(
x,y

)
⎫
⎬

⎭

⎞

⎠ (4.33)

such that

z1 ∈ z2 + C, (4.34)

that is,

Max
⋃

y∈Y
Minw

⋃

x∈X
F
(
x,y

) ⊂ Min

⎛

⎝co

⎧
⎨

⎩

⋃

x∈X
Maxw

⋃

y∈Y
F
(
x,y

)
⎫
⎬

⎭

⎞

⎠ + C. (4.35)

Proof. Let Γ(x) := Maxw
⋃

y∈Y F(x, y) for all x ∈ X. From Lemma 2.4 and Proposition 3.5, the
set-valued mapping x �→ Γ(x) is upper semi-continuous with nonempty compact values on
X. Hence the set Γ(X) is compact, and so is co{Γ(X)}. Then co{Γ(X)}+C is a closed convex set
with nonempty interior. Suppose that v /∈ co{Γ(X)} + C. By separation hyperplane theorem
[15, Theorem 14.2], there exist k ∈ R, ε > 0 and a nonzero continuous linear functional
ξ : Z → R such that

ξ(v) ≤ k − ε < k ≤ ξ(u + c), for every u ∈ co{Γ(X)}, c ∈ C. (4.36)

Therefore,

ξ(c) > ξ(v − u), for every u ∈ co{Γ(X)}, c ∈ C. (4.37)

This implies that ξ ∈ C∗ and ξ(v) < ξ(u) for all u ∈ co{Γ(X)}.
Let g := ξF : X × Y ⇒ R. From Lemma 3.10, for each fixed x ∈ X, there exist y∗

x ∈ Y
and f(x, y∗

x) ∈ F(x, y∗
x) with f(x, y∗

x) ∈ Γ(x) such that ξ(f(x, y∗
x)) = max

⋃
y∈Y ξ(F(x, y)).

Choosing c = 0 and u = f(x, y∗
x) in (4.36), we have

max
⋃

y∈X
ξ
(
F
(
x, y

))
= ξf

(
x, y∗

x

) ≥ k > k − ε ≥ ξ(v), ∀x ∈ X. (4.38)
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Therefore,

min
⋃

x∈X
max

⋃

y∈Y
ξ
(
F
(
x, y

))
> ξ(v). (4.39)

By the conditions (i), (ii) and Proposition 3.8, the set-valued mapping y �→ ξ(F(x, y))
is below-R+-concave-like on Y for all x ∈ X, and the set-valued mapping x �→ ξ(F(x, y)) is
above-R+-convex-like on X for all y ∈ Y . From Theorem 4.1, we have

max
⋃

y∈Y
min

⋃

x∈X
ξ
(
F
(
x, y

))
> ξ(v). (4.40)

Since Y is compact, there is an y′ ∈ Y such that min
⋃

x∈X ξ(F(x, y′)) > ξ(v). For any x ∈ X
and all g(x, y′) ∈ F(x, y′), we have

ξ
(
g
(
x, y′)) > ξ(v), (4.41)

that is,

ξ
(
g
(
x, y′) − v

)
> 0, ∀x ∈ X, g

(
x, y′) ∈ F

(
x, y′). (4.42)

Thus, v /∈ ⋃
x∈X F(x, y′) + C, and hence,

v /∈ Minw

⋃

x∈X
F
(
x, y′) + C. (4.43)

If v ∈ Max
⋃

y∈Y Minw
⋃

x∈X F(x, y), by the condition (iii), v ∈ Minw
⋃

x∈X F(x, y′) + C which
contradicts (4.43). Hence, for every v ∈ Max

⋃
y∈Y Minw

⋃
x∈X F(x, y),

v ∈ co

⎧
⎨

⎩

⋃

x∈X
Maxw

⋃

y∈Y
F
(
x, y

)
⎫
⎬

⎭
+ C, (4.44)

that is,

Max
⋃

y∈Y
Minw

⋃

x∈X
F
(
x, y

) ⊂ co

⎧
⎨

⎩

⋃

x∈X
Maxw

⋃

y∈Y
F
(
x, y

)
⎫
⎬

⎭
+ C (4.45)

or

Max
⋃

y∈Y
Minw

⋃

x∈X
F
(
x, y

) ⊂ Min

⎛

⎝co

⎧
⎨

⎩

⋃

x∈X
Maxw

⋃

y∈Y
F
(
x, y

)
⎫
⎬

⎭

⎞

⎠ + C. (4.46)

The following examples illustrate Theorem 4.5.
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Example 4.6. Let X = Y = {0} ∪ {1/n : n ∈ N}, C = R
2
+ and

F
(
x, y

)
=
{
(s, t) ∈ R

2 : s = x2, t = 1 − y2
}
, ∀(x, y) ∈ X × Y. (4.47)

It is obviously that F is below-R2
+-concave-like on Y and above-R2

+-convex-like onX. We now
verify the condition (iii) of Theorem 4.5. Indeed, for any y ∈ Y ,

⋃

x∈X
F
(
x, y

)
=
(
{0} ∪

{
1
n2

: n ∈ N

})
×
{
1 − y2

}
,

Minw

⋃

x∈X
F(x, y) =

(
{0} ∪

{
1
n2

: n ∈ N

})
×
{
1 − y2

}
.

(4.48)

Then,

⋃

y∈Y
Minw

⋃

x∈X
F
(
x, y

)
=
(
{0} ∪

{
1
n2

: n ∈ N

})
×
(
{1} ∪

{
1 − 1

n2
: n ∈ N

})
,

Max
⋃

y∈Y
Minw

⋃

x∈X
F
(
x, y

)
= {(1, 1)}.

(4.49)

Thus, for every y ∈ Y ,

Max
⋃

y∈Y
Minw

⋃

x∈X
F
(
x, y

) ⊂
(
{0} ∪

{
1
n2

: n ∈ N

})
×
{
1 − y2

}
+ C

= Minw

⋃

x∈X
F
(
x, y

)
+ C,

(4.50)

and the condition (iii) of Theorem 4.5 holds.
Furthermore, for any x ∈ X,

⋃

y∈Y
F
(
x, y

)
=
{
x2
}
×
(
{1} ∪

{
1 − 1

n2
: n ∈ N

})
,

Maxw
⋃

y∈Y
F
(
x, y

)
=
{
x2
}
×
(
{1} ∪

{
1 − 1

n2
: n ∈ N

})
.

(4.51)

Then,

⋃

x∈X
Maxw

⋃

y∈Y
F
(
x, y

)
=
(
{0} ∪

{
1
n2

: n ∈ N

})
×
(
{1} ∪

{
1 − 1

n2
: n ∈ N

})
,

co

⎧
⎨

⎩

⋃

x∈X
Maxw

⋃

y∈Y
F
(
x, y

)
⎫
⎬

⎭
= [0, 1] × [0, 1].

(4.52)
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Thus,

Min

⎛

⎝co

⎧
⎨

⎩

⋃

x∈X
Maxw

⋃

y∈Y
F
(
x, y

)
⎫
⎬

⎭

⎞

⎠ = {(0, 0)},

Max
⋃

y∈Y
Minw

⋃

x∈X
F
(
x, y

)
= {(1, 1)} ⊂ Min

⎛

⎝co

⎧
⎨

⎩

⋃

x∈X
Maxw

⋃

y∈Y
F
(
x, y

)
⎫
⎬

⎭

⎞

⎠ + C.

(4.53)

Hence, the conclusion of Theorem 4.5 holds.

Example 4.7. Let X = [0, 1], Y = [−1, 0], C = R
2
+, and G : Y ⇒ Y be defined by

G
(
y
)
=

{
[−1, 0], y = 0,
{0}, y /= 0.

(4.54)

Let F(x, y) = {x2} × G(y) for all (x, y) ∈ X × Y . Then G is upper semi-continuous, but not
lower semi-continuous on R, and F is not continuous but is upper semi-continuous on X ×Y .
Moreover, F has nonempty compact values and is lower semi-continuous on X. It is easy
to see that F is below-C-concave-like on Y and is above-C-convex-like on X. We verify the
condition (iii) of Theorem 4.5. Indeed, for all y ∈ Y ,

⋃
x∈X F(x, y) = [0, 1] ×G(y).

Minw

⋃

x∈X
F
(
x, y

)
=

{
[0, 1] × {0}, y /= 0,
({0} × [−1, 0]) ∪ ([0, 1] × {−1}), y = 0.

(4.55)

Then,

⋃

y∈Y
Minw

⋃

x∈X
F
(
x, y

)
= ({0} × [−1, 0]) ∪ ([0, 1] × {−1}) ∪ ([0, 1] × {0}),

Max
⋃

y∈Y
Minw

⋃

x∈X
F
(
x, y

)
= {(1, 0)} ⊂ Minw

⋃

x∈X
F
(
x, y

)
+ C.

(4.56)

Therefore, the condition (iii) of Theorem 4.5 holds.
Since

F
(
x, y

)
=

{{
x2} × [−1, 0], y = 0,
{
x2} × {0}, y /= 0,

(4.57)

for all (x, y) ∈ X × Y , and Max
⋃

y∈Y Minw
⋃

x∈X F(x, y) = {(1, 0)}, for each y ∈ Y , we can
choose xy = 0 ∈ X such that

Max
⋃

y∈Y
Minw

⋃

x∈X
F
(
x, y

) ⊂ F
(
xy, y

)
+ C. (4.58)
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Furthermore,

⋃

y∈Y
F
(
x, y

)
=
{
x2
}
×
⎛

⎝
⋃

y∈Y
G
(
y
)
⎞

⎠

=
{
x2
}
× ([−1, 0] ∪ {0})

=
{
x2
}
× [−1, 0],

⋃

x∈X
Maxw

⋃

y∈Y
F
(
x, y

)
= [0, 1] × [−1, 0].

(4.59)

Therefore,

Max
⋃

y∈Y
Minw

⋃

x∈X
F
(
x, y

)
= {(1, 0)} ⊂ {(0,−1)} + C

= Min
⋃

x∈X
Maxw

⋃

y∈Y
F
(
x, y

)
+ C.

(4.60)

Hence, the conclusion of Theorem 4.5 holds.

Remark 4.8. Theorem 3.1 in [5] Theorem 3.1 in [6], or Theorem 4.2 in [7] cannot be applied to
Examples 4.6 and 4.7 because of the following reasons:

(i) the two sets X and Y are not convex in Example 4.6;

(ii) F is not continuous on X × Y in Examples 4.6 and 4.7.

Theorem 4.9. LetX, Y be two nonempty compact convex subsets of real Hausdorff topological vector
spaces X and Y, respectively. Suppose that the set-valued mapping F : X × Y ⇒ Z has nonempty
compact values, and it is continuous on Y and lower semi-continuous on X such that

(i) for each y ∈ Y , x �→ F(x, y) is above-naturally C-quasi-convex on X;

(ii) for each x ∈ X, y �→ F(x, y) is above-C-concave or above-properly C-quasi-concave on Y ;

(iii) for every y ∈ Y ,

Max
⋃

y∈Y
Minw

⋃

x∈X
F
(
x, y

) ⊂ Minw
⋃

x∈X
F
(
x, y

)
+ C; (4.61)

(iv) for any continuous increasing function h and for each y ∈ Y , there exists xy ∈ X such
that

max h
(
F
(
xy, y

)) ≤ max
⋃

y∈Y
min

⋃

x∈X
h
(
F
(
x, y

))
. (4.62)
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Then, for any z1 ∈ Max
⋃

y∈Y Minw
⋃

x∈X F(x, y), there is a

z2 ∈ Min
⋃

x∈X
Maxw

⋃

y∈Y
F
(
x,y

)
(4.63)

such that z1 ∈ z2 + C, that is,

Max
⋃

y∈Y
Minw

⋃

x∈X
F(x, y) ⊂ Min

⋃

x∈X
Maxw

⋃

y∈Y
F(x, y) + C. (4.64)

Proof. Let Γ(x) be defined as the same as in the proof of Theorem 4.5. Following the same
perspective as in the proof of Theorem 4.5, suppose that v /∈ ⋃

x∈X Maxw
⋃

y∈Y F(x, y)+C. For
any k ∈ intC and Gerstewitz function ξkv : Z ⇒ R. By Proposition 2.7(d), we have

ξkv(u) > 0, for every u ∈ Γ(X). (4.65)

Let g := ξkv ◦ F : X × Y ⇒ R. From Lemma 3.10, for the mapping ξkv and Remark 3.15, for
each x ∈ X, there exist y∗

x ∈ Yand f(x, y∗
x) ∈ F(x, y∗

x)with f(x, y∗
x) ∈ Maxw

⋃
y∈Y F(x, y) such

that ξkvf(x, y∗
x) = max

⋃
y∈Y ξkv(F(x, y)). Choosing u = f(x, y∗

x) in (4.65), we have

max
⋃

y∈Y
ξkv

(
F
(
x, y

))
> 0, ∀x ∈ X. (4.66)

Therefore,

min
⋃

x∈X
max

⋃

y∈Y
ξkv

(
F
(
x, y

))
> 0. (4.67)

By conditions (i), (ii) and Remark 3.15, the set-valued mapping y �→ ξkv(F(x, y)) is
upper semi-continuous, and either above-R+-concave or above-properly R+-quasi-concave
on Y , and the set-valued mapping x �→ ξkv(F(x, y)) is lower semi-continuous and above-R+-
quasi-convex on X. From Theorem 4.3, we have

max
⋃

y∈Y
min

⋃

x∈X
ξkv

(
F
(
x, y

))
> 0. (4.68)

Since the set-valued mapping y �→ F(x, y) is lower semi-continuous on Y , by Lemma 2.4
(b) and Lemma 2.5 (b), the set-valued mapping y �→ min

⋃
x∈X ξkv(F(x, y)) is upper

semi-continuous on Y . By the compactness of Y , there exists y′ ∈ Y such that
min

⋃
x∈X ξkv(F(x, y′)) > 0. For all x ∈ X and all g(x, y′) ∈ F(x, y′), we have ξkv(g(x, y′)) > 0.

Thus, v /∈ ⋃
x∈X F(x, y′) + C, and hence,

v /∈ Minw

⋃

x∈X
F
(
x, y′) + C. (4.69)
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If v ∈ Max
⋃

y∈Y Minw
⋃

x∈X F(x, y), by the condition (iii), v ∈ Minw
⋃

x∈X F(x, y′) + C which
contradicts (4.69). Hence, for every v ∈ Max

⋃
y∈Y Minw

⋃
x∈X F(x, y),

v ∈ Min
⋃

x∈X
Maxw

⋃

y∈Y
F
(
x, y

)
+ C, (4.70)

that is,

Max
⋃

y∈Y
Minw

⋃

x∈X
F
(
x, y

) ⊂ Min
⋃

x∈X
Maxw

⋃

y∈Y
F
(
x, y

)
+ C. (4.71)

This completes the proof.

The following example illustrates Theorem 4.9.

Example 4.10. Let X = Y = [0, 1], C = R
2
+ and G : X ⇒ Y be a set-valued mapping defined as

G(x) =

{
[0, 1], x /= 0,
{0}, x = 0.

(4.72)

Let F(x, y) = G(x) × {−y2} for all (x, y) ∈ X × Y . Then G is lower semi-continuous, but not
upper semi-continuous on R, and F is continuous on Y , and F has nonempty compact values
and is lower semi-continuous on X. It is easy to see that F is above-C-concave or above-
properly C-quasi-concave on Y and is above-naturally C-quasi-convex on X.

We verify the condition (iii) of Theorem 4.9. Indeed, for all y ∈ Y ,
⋃

x∈X F(x, y) =
[0, 1] × {−y2} and Minw

⋃
x∈X F(x, y) = [0, 1] × {−y2}. Hence,

⋃

y∈Y
Minw

⋃

x∈X
F
(
x, y

)
= [0, 1] × [−1, 0],

Max
⋃

y∈Y
Minw

⋃

x∈X
F
(
x, y

)
= {(1, 0)} ⊂ Minw

⋃

x∈X
F
(
x, y

)
+ C.

(4.73)

Therefore, the condition (iii) of Theorem 4.9 holds.
Since Max

⋃
y∈Y Minw

⋃
x∈X F(x, y) = {(1, 0)} for any y ∈ Y , we can choose xy = 0 ∈ X

such that

F
(
xy, y

)
=
{(

0,−y2
)}

⊂ Max
⋃

y∈Y
Minw

⋃

x∈X
F
(
x, y

) − C. (4.74)

For any continuous increasing function h, the condition (iv) of Theorem 4.9 holds.
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Furthermore, since for each x ∈ X,

⋃

y∈Y
F
(
x, y

)
= G(x) × [−1, 0],

Maxw
⋃

y∈Y
F
(
x, y

)
=

{
{0} × [−1, 0], x = 0,
({1} × [−1, 0])⋃([0, 1] × {0}), x /= 0,

(4.75)

we have

⋃

x∈X
Maxw

⋃

y∈Y
F
(
x, y

)
= ({0} × [−1, 0])

⋃
([0, 1] × {0})

⋃
({1} × [−1, 0]),

Min
⋃

x∈X
Maxw

⋃

y∈Y
F
(
x, y

)
= {(0,−1)}.

(4.76)

Thus,

Max
⋃

y∈Y
Minw

⋃

x∈X
F
(
x, y

)
= {(1, 0)} ⊂ {(0,−1)} + C

= Min
⋃

x∈X
Maxw

⋃

y∈Y
F
(
x, y

)
+ C.

(4.77)

Therefore, the conclusion of Theorem 4.9 holds.

Remark 4.11. Theorem 3.1 in [5], Theorem 3.1 in [6], or Theorem 4.2 in [7] cannot be applied
to Example 4.10 as F is not continuous on X × Y .

If we choose Z = R and C = R+ in Theorems 4.5 and 4.9, we always have C∗ = R+ and
for every y ∈ Y ,

max
⋃

y∈Y
min

⋃

x∈X
F
(
x, y

) ≥ min
⋃

x∈X
F
(
x, y

)
. (4.78)

Hence, the condition (iii) of Theorem 4.5 holds. Thus, we have the following corollaries.

Corollary 4.12. Let X, Y be nonempty compact (not necessarily convex) subsets of real Hausdorff
topological vector space X and Y, respectively. Suppose that the set-valued mapping F : X × Y ⇒ R

has nonempty compact values such that it is lower semi-continuous onX and is upper semi-continuous
on X × Y . Assume that the following conditions hold:

(i) for each x ∈ X, y �→ F(x, y) is below-R+-concave-like on Y ;

(ii) for each y ∈ Y, x �→ F(x, y) is above-R+-convex-like on X;

(iii) for every y ∈ Y ,

max
⋃

y∈Y
min

⋃

x∈X
F
(
x, y

) ≥ min
⋃

x∈X
F
(
x, y

)
. (4.79)
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Then, for any

z1 ∈ max
⋃

y∈Y
min

⋃

x∈X
F
(
x, y

)
, (4.80)

there is a

z2 ∈ min

⎛

⎝co

⎧
⎨

⎩

⋃

x∈X
max

⋃

y∈Y
F
(
x, y

)
⎫
⎬

⎭

⎞

⎠ (4.81)

such that

z1 ≥ z2, (4.82)

that is,

max
⋃

y∈Y
min

⋃

x∈X
F
(
x, y

) ≥ min

⎛

⎝co

⎧
⎨

⎩

⋃

x∈X
max

⋃

y∈Y
F
(
x, y

)
⎫
⎬

⎭

⎞

⎠. (4.83)

Corollary 4.13. Under the framework of Corollary 4.12, in addition, let X, Y be two convex subsets,
and let F be upper semi-continuous on X × Y . Then,

max
⋃

y∈Y
min

⋃

x∈X
F
(
x, y

)
= min

⋃

x∈X
max

⋃

y∈Y
F
(
x, y

)
. (4.84)

Proof. By Corollary 4.12, we have

max
⋃

y∈Y
min

⋃

x∈X
F
(
x, y

) ≥ min

⎛

⎝co

⎧
⎨

⎩

⋃

x∈X
max

⋃

y∈Y
F
(
x, y

)
⎫
⎬

⎭

⎞

⎠. (4.85)

Since the set-valued mapping F is upper semi-continuous on X × Y and Y is compact, by
Lemmas 2.4 and 2.5, the set-valued mapping x �→ max

⋃
y∈Y F(x, y) is upper semi-continuous

on X. Since X is convex, it is connected. By [16, Theorem 3.1],
⋃

x∈X
max

⋃

y∈Y
F
(
x, y

)
(4.86)

is connected in R, and hence, it is convex. From (4.85),

max
⋃

y∈Y
min

⋃

x∈X
F
(
x, y

) ≥ min

⎛

⎝
⋃

x∈X
max

⋃

y∈Y
F
(
x, y

)
⎞

⎠. (4.87)

This completes the proof.

When Z = R and C = R+, from Theorem 4.9, we deduce the following corollary.
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Corollary 4.14. Let X, Y be two nonempty compact convex subsets in real Hausdorff topological
vector spaces X and Y, respectively. Suppose that the set-valued mapping F : X × Y ⇒ R has
nonempty compact values such that it is continuous on Y and is lower semi-continuous onX. Assume
that the following conditions hold:

(i) for each y ∈ Y , x → F(x, y) is above-naturally R+-quasi-convex on X;

(ii) for each x ∈ X, y → F(x, y) is above-R+-concave or above-properly R+-quasi-concave on
Y ;

(iii) for each y ∈ Y , there exists xy ∈ X such that

maxF
(
xy, y

) ≤ max
⋃

y∈Y
min

⋃

x∈X
F
(
x, y

)
. (4.88)

Then,

max
⋃

y∈Y
min

⋃

x∈X
F
(
x, y

)
= min

⋃

x∈X
max

⋃

y∈Y
F
(
x, y

)
. (4.89)

Remark 4.15. Corollary 4.14 includes Proposition 2.1 in [5].

5. Saddle Points for Set-Valued Mappings

In this section, we discuss the existence of several kinds of saddle points for set-valued
mappings including theC-loose saddle points, weakC-saddle points, R+-loose saddle points,
and R+-saddle points of F on X × Y .

Definition 5.1. Let F : X ×Y ⇒ Z be a set-valued mapping. A point (x, y) ∈ X × Y is said to be
a

(a) C-loose saddle point [7] of F on X × Y if

F
(
x, y

)⋂
⎛

⎝Max
⋃

y∈Y
F
(
x, y

)
⎞

⎠/= ∅,

F
(
x, y

)⋂
(

Min
⋃

x∈X
F
(
x, y

)
)

/= ∅;

(5.1)

(b) weak C-saddle point [7] of F on X × Y if

F
(
x, y

) ⋂
⎛

⎝Maxw
⋃

y∈Y
F
(
x, y

)
⎞

⎠
⋂
(

Minw

⋃

x∈X
F
(
x, y

)
)

/= ∅; (5.2)
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(c) R+-loose saddle point of F on X × Y if Z = R and

F
(
x, y

)
=

⎡

⎣min
⋃

x∈X
F
(
x, y

)
,max

⋃

y∈Y
F
(
x, y

)
⎤

⎦; (5.3)

(d) R+-saddle point of F on X × Y if Z = R and

max
⋃

y∈Y
F
(
x, y

)
= min

⋃

x∈X
F
(
x, y

)
= F

(
x, y

)
. (5.4)

It is obvious that every weak C-saddle point is a C-loose saddle point and every R+-
saddle point is a R+-loose saddle point.

Theorem 5.2. Under the framework of Theorem 4.1, F has R+-saddle point if the set-valued mapping
y �→ F(x, y) is continuous.

Proof. By Lemmas 2.4 and 2.5, we attained the max and min in Theorem 4.1. By the
compactness of X and Y and the lower semi-continuity of F on X and Y , respectively, there
exists (x, y) ∈ X × Y such that

max
⋃

y∈Y
min

⋃

x∈X
F
(
x, y

)
= min

⋃

x∈X
F
(
x, y

)
,

min
⋃

x∈X
max

⋃

y∈Y
F
(
x, y

)
= max

⋃

y∈Y
F
(
x, y

)
.

(5.5)

Combining this with Theorem 4.1, we have

max
⋃

y∈Y
F
(
x, y

)
= min

⋃

x∈X
F
(
x, y

)
= F

(
x, y

)
, (5.6)

and hence, F has R+-saddle point.

Theorem 5.3. Under the framework of Theorem 4.3, F has R+-saddle point if the set-valued mapping
y �→ F(x, y) is continuous.

Theorem 5.4. Under the framework of Theorem 4.5 or Theorem 4.9, F has weak C-saddle point if the
set-valued mapping y �→ F(x, y) is continuous.

Proof. For any ξ ∈ C∗, the set-valued mapping ξ ◦ F satisfies all the conditions of Theorem 5.2
or Theorem 5.3. Hence, ξ ◦ F has R+-saddle point, that is, there exists (x, y) ∈ X × Y such that

max
⋃

y∈Y
ξ
(
F
(
x, y

))
= min

⋃

x∈X
ξ
(
F
(
x, y

))
= ξ

(
F
(
x, y

))
. (5.7)
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Then, for any z ∈ F(x, y),

ξ(z) ∈ min
⋃

x∈X
ξ
(
F
(
x, y

))
,

ξ(z) ∈ max
⋃

y∈Y
ξ
(
F
(
x, y

))
.

(5.8)

Thus, by Proposition 3.14,

z ∈ Minw

⋃

x∈X
F
(
x, y

)⋂
Maxw

⋃

y∈Y
F
(
x, y

)
, (5.9)

and (x, y) is a weak C-saddle point of F.
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