
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 307968, 14 pages
doi:10.1155/2012/307968

Research Article
Existence of Positive Solutions of
Neutral Differential Equations
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The paper contains some suffcient conditions for the existence of positive solutions which are
bounded below and above by positive functions for the nonlinear neutral differential equations
of higher order. These equations can also support the existence of positive solutions approaching
zero at infinity.

1. Introduction

This paper is concerned with the existence of a positive solution of the neutral differential
equations of the form:

dn

dtn
[x(t) − a(t)x(t − τ)] = (−1)n+1p(t)f(x(t − σ)), t ≥ t0, (1.1)

where n > 0 is an integer, τ > 0, σ ≥ 0, a ∈ C([t0,∞), (0,∞)), p ∈ C(R, (0,∞)), f ∈ C(R,R), f
is a nondecreasing function and xf(x) > 0, x /= 0.

By a solution of (1.1) we mean a function x ∈ C([t1 − τ,∞), R) for some t1 ≥ t0, such
that x(t) − a(t)x(t − τ) is n-times continuously differentiable on [t1,∞) and such that (1.1) is
satisfied for t ≥ t1.

The problem of the existence of solutions of neutral differential equations has been
studied and discussed by several authors in the recent years. For related results we refer
the reader to [1–17] and the references cited therein. However, there is no conception which
guarantees the existence of positive solutions which are bounded below and above by
positive functions. Maybe it is due to the technical difficulties arising in the analysis of
the problem. In this paper we presented some conception. The method also supports the
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existence of positive solutions which approaching zero at infinity. Some examples illustrating
the results.

The existence and asymptotic behavior of solutions of the nonlinear neutral differential
equations and systems have been also solved in [1–7, 12, 15].

As much as we know for (1.1) in the literature, there is no result for the existence of
solutions which are bounded by positive functions. Only the existence of solutions which
are bounded by constants is treated and discussed, for example, in [10, 15, 17]. It seems that
conditions of theorems are rather complicate, but cannot be simpler due to Corollaries 2.4,
2.8, and 3.3.

The following fixed point theorem will be used to prove the main results in the next
section.

Lemma 1.1 (see [7, 10, 12] Krasnoselskii’s fixed point theorem). Let X be a Banach space, let Ω
be a bounded closed convex subset of X, and let S1, S2 be maps of Ω into X such that S1x + S2y ∈ Ω
for every pair x, y ∈ Ω. If S1 is a contractive and S2 is completely continuous then the equation:

S1x + S2x = x (1.2)

has a solution in Ω.

2. The Existence of Positive Solution

In this section, we will consider the existence of a positive solution for (1.1)which is bounded
by two positive functions. We will use the notation m = max{τ, σ}.

Theorem 2.1. Suppose that there exist bounded functions u, v ∈ C1([t0,∞), (0,∞)), constant c > 0,
and t1 ≥ t0 +m such that

u(t) ≤ v(t), t ≥ t0, (2.1)

v(t) − v(t1) − u(t) + u(t1) ≥ 0, t0 ≤ t ≤ t1, (2.2)

1
u(t − τ)

(
u(t) +

1
(n − 1)!

∫∞

t

(s − t)n−1p(s)f(v(s − σ))ds
)

≤ a(t) ≤ 1
v(t − τ)

(
v(t) +

1
(n − 1)!

∫∞

t

(s − t)n−1p(s)f(u(s − σ))ds
)

≤ c < 1, t ≥ t1.

(2.3)

Then (1.1) has a positive solution which is bounded by the functions u, v.

Proof. Let C([t0,∞), R) be the set of all continuous bounded functions with the norm ||x|| =
supt≥t0 |x(t)|. Then C([t0,∞), R) is a Banach space. We define a closed, bounded, and convex
subset Ω of C([t0,∞), R) as follows:

Ω = {x = x(t) ∈ C([t0,∞), R) : u(t) ≤ x(t) ≤ v(t), t ≥ t0}. (2.4)
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We now define two maps S1 and S2 : Ω → C([t0,∞), R) as follows:

(S1x)(t) =

⎧⎨
⎩
a(t)x(t − τ), t ≥ t1,

(S1x)(t1), t0 ≤ t ≤ t1,

(S2x)(t) =

⎧⎪⎨
⎪⎩
− 1
(n − 1)!

∫∞

t

(s − t)n−1p(s)f(x(s − σ))ds, t ≥ t1,

(S2x)(t1) + v(t) − v(t1), t0 ≤ t ≤ t1.

(2.5)

We will show that for any x, y ∈ Ω we have S1x + S2y ∈ Ω. For every x, y ∈ Ω and t ≥ t1 we
obtain

(S1x)(t) +
(
S2y
)
(t) ≤ a(t)v(t − τ) − 1

(n − 1)!

∫∞

t

(s − t)n−1p(s)f(u(s − σ))ds ≤ v(t). (2.6)

For t ∈ [t0, t1]we have

(S1x)(t) +
(
S2y
)
(t) = (S1x)(t1) +

(
S2y
)
(t1) + v(t) − v(t1)

≤ v(t1) + v(t) − v(t1) = v(t).
(2.7)

Furthermore for t ≥ t1 we get

(S1x)(t) +
(
S2y
)
(t) ≥ a(t)u(t − τ) − 1

(n − 1)!

∫∞

t

(s − t)n−1p(s)f(v(s − σ))ds ≥ u(t). (2.8)

Finally let t ∈ [t0, t1] and with regard to (2.2) we get

v(t) − v(t1) + u(t1) ≥ u(t), t0 ≤ t ≤ t1. (2.9)

Then for t ∈ [t0, t1] and any x, y ∈ Ω we get

(S1x)(t) +
(
S2y
)
(t) = (S1x)(t1) +

(
S2y
)
(t1) + v(t) − v(t1)

≥ u(t1) + v(t) − v(t1) ≥ u(t).
(2.10)

Thus, we have proved that S1x + S2y ∈ Ω for any x, y ∈ Ω.
We will show that S1 is a contraction mapping on Ω. For x, y ∈ Ω and t ≥ t1 we have

∣∣(S1x)(t) −
(
S1y
)
(t)
∣∣ = |a(t)|∣∣x(t − τ) − y(t − τ)

∣∣ ≤ c
∥∥x − y

∥∥. (2.11)

This implies that

∥∥S1x − S1y
∥∥ ≤ c

∥∥x − y
∥∥. (2.12)
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Also for t ∈ [t0, t1] the inequality above is valid. We conclude that S1 is a contraction mapping
on Ω.

We now show that S2 is completely continuous. First we will show that S2 is
continuous. Let xk = xk(t) ∈ Ω be such that xk(t) → x(t) as k → ∞. Because Ω is closed,
x = x(t) ∈ Ω. For t ≥ t1 we have

|(S2xk)(t) − (S2x)(t)|

≤ 1
(n − 1)!

∣∣∣∣
∫∞

t

(s − t)n−1p(s)
[
f(xk(s − σ)) − f(x(s − σ))

]
ds

∣∣∣∣

≤ 1
(n − 1)!

∫∞

t1

(s − t1)n−1p(s)
∣∣f(xk(s − σ)) − f(x(s − σ))

∣∣ds.
(2.13)

According to (2.8) we get

∫∞

t1

(s − t1)n−1p(s)f(v(s − σ))ds < ∞. (2.14)

Since |f(xk(s − σ)) − f(x(s − σ))| → 0 as k → ∞, by applying the Lebesgue dominated
convergence theorem we obtain that

lim
k→∞

‖(S2xk)(t) − (S2x)(t)‖ = 0. (2.15)

This means that S2 is continuous.
We now show that S2Ω is relatively compact. It is sufficient to show by the Arzela-

Ascoli theorem that the family of functions {S2x : x ∈ Ω} is uniformly bounded and
equicontinuous on [t0,∞). The uniform boundedness follows from the definition of Ω. For
the equicontinuity we only need to show, according to Levitan result [8], that for any given
ε > 0 the interval [t0,∞) can be decomposed into finite subintervals in such a way that on
each subinterval all functions of the family have change of amplitude less than ε. With regard
to the condition (2.14), for x ∈ Ω and any ε > 0 we take t∗ ≥ t1 large enough so that

1
(n − 1)!

∫∞

t∗
(s − t1)n−1p(s)f(x(s − σ))ds <

ε

2
. (2.16)

Then for x ∈ Ω, T2 > T1 ≥ t∗ we have

|(S2x)(T2) − (S2x)(T1)|

≤ 1
(n − 1)!

∫∞

T2

(s − t1)n−1p(s)f(x(s − σ))ds +
1

(n − 1)!

∫∞

T1

(s − t1)n−1p(s)f(x(s − σ))ds

<
ε

2
+
ε

2
= ε.

(2.17)
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For x ∈ Ω, t1 ≤ T1 < T2 ≤ t∗ and n ≥ 2 we get

|(S2x)(T2) − (S2x)(T1)| = 1
(n − 1)!

∣∣∣∣∣
∫∞

T1

(s − T1)n−1p(s)f(x(s − σ))ds

−
∫∞

T2

(s − T2)n−1p(s)f(x(s − σ))ds

∣∣∣∣∣

=
1

(n − 1)!

∣∣∣∣∣
∫T2

T1

(s − T1)n−1p(s)f(x(s − σ))ds

+
∫∞

T2

(s − T1)n−1p(s)f(x(s − σ))ds

−
∫∞

T2

(s − T2)n−1p(s)f(x(s − σ))ds

∣∣∣∣∣

≤ 1
(n − 1)!

∫T2

T1

sn−1p(s)f(x(s − σ))ds

+
1

(n − 1)!

∫∞

T2

[
(s − T1)n−1 − (s − T2)n−1

]
p(s)f(x(s − σ))ds

≤ max
t1≤s≤t∗

{
1

(n − 1)!
sn−1p(s)f(x(s − σ))

}
(T2 − T1)

+
1

(n − 1)!

∫∞

T2

[(s − T1) − (s − T2)]

×
[
(s − T1)n−2 + (s − T1)n−3(s − T2) + · · · + (s − T1)(s − T2)n−3

+ (s − T2)n−2
]
p(s)f(x(s − σ))ds

≤ max
t1≤s≤t∗

{
1

(n − 1)!
sn−1p(s)f(x(s − σ))

}
(T2 − T1)

+
1

(n − 2)!

∫∞

T2

(T2 − T1)(s − T1)n−2p(s)f(x(s − σ))ds.

(2.18)

With regard to the condition (2.14)we have that

1
(n − 2)!

∫∞

T2

(s − T1)n−2p(s)f(x(s − σ))ds < B, B > 0. (2.19)
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Then we obtain

|(S2x)(T2) − (S2x)(T1)| <
(
max
t1≤s≤t∗

{
1

(n − 1)!
sn−1p(s)f(x(s − σ))

}
+ B

)
(T2 − T1). (2.20)

Thus there exists a δ1 = ε/(M + B), where

M = max
t1≤s≤t∗

{
1

(n − 1)!
sn−1p(s)f(x(s − σ))

}
, (2.21)

such that

|(S2x)(T2) − (S2x)(T1)| < ε if 0 < T2 − T1 < δ1. (2.22)

For n = 1 we proceed by the similar way as above. Finally for any x ∈ Ω, t0 ≤ T1 < T2 ≤ t1
there exists a δ2 > 0 such that

|(S2x)(T2) − (S2x)(T1)| = |v(T1) − v(T2)| =
∣∣∣∣∣
∫T2

T1

v′(s)ds

∣∣∣∣∣
≤ max

t0≤s≤t1

{∣∣v′(s)
∣∣}(T2 − T1) < ε if 0 < T2 − T1 < δ2.

(2.23)

Then {S2x : x ∈ Ω} is uniformly bounded and equicontinuous on [t0,∞) and hence S2Ω is
relatively compact subset of C([t0,∞), R). By Lemma 1.1 there is an x0 ∈ Ω such that S1x0 +
S2x0 = x0. We conclude that x0(t) is a positive solution of (1.1). The proof is complete.

Corollary 2.2. Suppose that all conditions of Theorem 2.1 are satisfied and

lim
t→∞

v(t) = 0. (2.24)

Then (1.1) has a positive solution which tends to zero.

Corollary 2.3. Suppose that there exist bounded functions u, v ∈ C1([t0,∞), (0,∞)), constant c > 0
and t1 ≥ t0 +m such that (2.1), (2.3) hold and

v′(t) − u′(t) ≤ 0, t0 ≤ t ≤ t1. (2.25)

Then (1.1) has a positive solution which is bounded by the functions u, v.

Proof. We only need to prove that condition (2.25) implies (2.2). Let t ∈ [t0, t1] and set

H(t) = v(t) − v(t1) − u(t) + u(t1). (2.26)
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Then with regard to (2.25), it follows that H ′(t) = v′(t) − u′(t) ≤ 0, t0 ≤ t ≤ t1. Since H(t1) = 0
and H ′(t) ≤ 0 for t ∈ [t0, t1], this implies that

H(t) = v(t) − v(t1) − u(t) + u(t1) ≥ 0, t0 ≤ t ≤ t1. (2.27)

Thus all conditions of Theorem 2.1 are satisfied.

Corollary 2.4. Suppose that there exists a bounded function v ∈ C1([t0,∞), (0,∞)), constant c > 0
and t1 ≥ t0 +m such that

a(t) =
1

v(t − τ)

(
v(t) +

1
(n − 1)!

∫∞

t

(s − t)n−1p(s)f(v(s − σ))ds
)

≤ c < 1, t ≥ t1. (2.28)

Then (1.1) has a solution x(t) = v(t), t ≥ t1.

Proof. We put u(t) = v(t) and apply Theorem 2.1.

Theorem 2.5. Suppose that p is bounded and there exist bounded functions u, v ∈ C1([t0,∞),
(0,∞)), constant c > 0 and t1 ≥ t0 +m such that (2.1), (2.2) hold and

1
u(t − τ)

(
u(t) − 1

(n − 1)!

∫ t

t1

(t − s)n−1p(s)f(u(s − σ))ds

)

≤ a(t) ≤ 1
v(t − τ)

(
v(t) − 1

(n − 1)!

∫ t

t1

(t − s)n−1p(s)f(v(s − σ))ds

)

≤ c < 1, t ≥ t1,

(2.29)

if n is odd,

1
u(t − τ)

(
u(t) +

1
(n − 1)!

∫ t

t1

(t − s)n−1p(s)f(v(s − σ))ds

)

≤ a(t) ≤ 1
v(t − τ)

(
v(t) +

1
(n − 1)!

∫ t

t1

(t − s)n−1p(s)f(u(s − σ))ds

)

≤ c < 1, t ≥ t1,

(2.30)

if n is even, and

∫ t

t1

(t − s)n−2p(s)f(v(s − σ))ds ≤ K, t ≥ t1, K > 0, n ≥ 2. (2.31)

Then (1.1) has a positive solution which is bounded by the functions u, v.
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Proof. Let C([t0,∞), R) be the set as in the proof of Theorem 2.1. We define a closed, bounded,
and convex subset Ω of C([t0,∞), R) as in the proof of Theorem 2.1. We define two maps S1

and S2 : Ω → C([t0,∞), R) as follows:

(S1x)(t) =

⎧⎨
⎩
a(t)x(t − τ), t ≥ t1,

(S1x)(t1), t0 ≤ t ≤ t1,

(S2x)(t) =

⎧⎪⎪⎨
⎪⎪⎩

(−1)n+1
(n − 1)!

∫ t

t1

(t − s)n−1p(s)f(x(s − σ))ds, t ≥ t1,

(S2x)(t1) + v(t) − v(t1), t0 ≤ t ≤ t1.

(2.32)

We shall show that for any x, y ∈ Ω we have S1x + S2y ∈ Ω. For n odd, every x, y ∈ Ω and
t ≥ t1 we obtain

(S1x)(t) +
(
S2y
)
(t) ≤ a(t)v(t − τ) +

1
(n − 1)!

∫ t

t1

(t − s)n−1p(s)f(v(s − σ))ds ≤ v(t).

(2.33)

For t ∈ [t0, t1], we have

(S1x)(t) +
(
S2y
)
(t) = (S1x)(t1) +

(
S2y
)
(t1) + v(t) − v(t1)

≤ v(t1) + v(t) − v(t1) = v(t).
(2.34)

Furthermore for t ≥ t1, we get

(S1x)(t) +
(
S2y
)
(t) ≥ a(t)u(t − τ) +

1
(n − 1)!

∫ t

t1

(t − s)n−1p(s)f(u(s − σ))ds ≥ u(t).

(2.35)

Let t ∈ [t0, t1] and according to (2.2)we have

v(t) − v(t1) + u(t1) ≥ u(t). (2.36)

Then for t ∈ [t0, t1] and any x, y ∈ Ω we get

(S1x)(t) +
(
S2y
)
(t) = (S1x)(t1) +

(
S2y
)
(t1) + v(t) − v(t1)

≥ u(t1) + v(t) − v(t1) ≥ u(t).
(2.37)

Thus we have proved that S1x + S2y ∈ Ω for any x, y ∈ Ω.
For n even by the similar way as above we can prove that S1x + S2y ∈ Ω for any

x, y ∈ Ω.
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As in the proof of Theorem 2.1, we can show that S1 is a contraction mapping on Ω.
We now show that S2 is completely continuous. First, we will show that S2 is

continuous. Let xk = xk(t) ∈ Ω be such that xk(t) → x(t) as k → ∞. Because Ω is closed,
x = x(t) ∈ Ω. For t ≥ t1 we have

|(S2xk)(t) − (S2x)(t)| ≤ 1
(n − 1)!

∫ t

t1

(t − s)n−1p(s)
∣∣f(xk(s − σ)) − f(x(s − σ))

∣∣ds. (2.38)

According to (2.33) there exists a positive constant M such that

∫ t

t1

(t − s)n−1p(s)f(v(s − σ))ds ≤ M for t ≥ t1. (2.39)

The inequality above also holds for n even.
Since |f(xk(s−σ))−f(x(s−σ))| → 0 as k → ∞, by applying the Lebesgue dominated

convergence theorem we obtain that

lim
k→∞

‖(S2xk)(t) − (S2x)(t)‖ = 0. (2.40)

This means that S2 is continuous.
We now show that S2Ω is relatively compact. It is sufficient to show by the Arzela-

Ascoli theorem that the family of functions {S2x : x ∈ Ω} is uniformly bounded and
equicontinuous on [t0,∞). The uniform boundedness follows from the definition of Ω. For
n ≥ 2 and with regard to (2.31)we have

∣∣∣∣ ddt (S2x)(t)
∣∣∣∣ = 1

(n − 2)!

∫ t

t1

(t − s)n−2p(s)f(x(s − σ))ds

≤ 1
(n − 2)!

∫ t

t1

(t − s)n−2p(s)f(v(s − σ)) ≤ M1,

(2.41)

and for n = 1 we obtain
∣∣∣∣ ddt (S2x)(t)

∣∣∣∣ = p(t)f(v(t − σ)) ≤ M2, (2.42)

for t ≥ t1, M2 > 0 and |(d/dt)(S2x)(t)| = |v′(t)| ≤ M3 for t0 ≤ t ≤ t1, M3 > 0, which shows
the equicontinuity of the family S2Ω, (cf. [7, page 265]). Hence S2Ω is relatively compact and
therefore S2 is completely continuous. By Lemma 1.1, there is x0 ∈ Ω such that S1x0 + S2x0 =
x0. Thus x0(t) is a positive solution of (1.1). The proof is complete.

Corollary 2.6. Suppose that all conditions of Theorem 2.5 are satisfied and

lim
t→∞

v(t) = 0. (2.43)

Then (1.1) has a positive solution which tends to zero.
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Corollary 2.7. Suppose that p is bounded and there exist bounded functions u, v ∈ C1([t0,∞),
(0,∞)), constant c > 0 and t1 ≥ t0 +m such that (2.1), (2.29), (2.30), (2.31) hold and

v′(t) − u′(t) ≤ 0, t0 ≤ t ≤ t1. (2.44)

Then (1.1) has a positive solution which is bounded by the functions u, v.

Proof. The proof is similar to that of Corollary 2.3 and we omit it.

Corollary 2.8. Suppose that p is bounded and there exists a bounded function v ∈ C1([t0,∞),
(0,∞)), constant c > 0 and t1 ≥ t0 +m such that (2.31) holds and

a(t) =
1

v(t − τ)

(
v(t) +

(−1)n
(n − 1)!

∫ t

t1

(t − s)n−1p(s)f(v(s − σ))ds

)

≤ c < 1, t ≥ t1.

(2.45)

Then (1.1) has a solution x(t) = v(t), t ≥ t1.

Proof. We put u(t) = v(t) and apply Theorem 2.5.

3. Applications and Examples

In this section, we give some applications of the theorems above.

Theorem 3.1. Suppose that 0 < k1 ≤ k2 and there exist γ ≥ 0, c > 0, t1 ≥ t0 +m such that

k1
k2

exp

(
(k2 − k1)

∫ t0

t0−γ
p(t)dt

)
≥ 1, (3.1)

exp

(
−k2
∫ t

t−τ
p(s)ds

)
+

1
(n − 1)!

exp

(
k2

∫ t−τ

t0−γ
p(s)ds

)

×
∫∞

t

(s − t)n−1p(s)f

(
exp

(
−k1
∫ s−σ

t0−γ
p(ξ)dξ

))
ds ≤ a(t)

≤ exp

(
−k1
∫ t

t−τ
p(s)ds

)
+

1
(n − 1)!

exp

(
k1

∫ t−τ

t0−γ
p(s)ds

)

×
∫∞

t

(s − t)n−1p(s)f

(
exp

(
−k2
∫ s−σ

t0−γ
p(ξ)dξ

))
ds ≤ c < 1, t ≥ t1.

(3.2)

Then (1.1) has a positive solution which is bounded by two exponential functions.
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Proof. We set

u(t) = exp

(
−k2
∫ t

t0−γ
p(s)ds

)
, v(t) = exp

(
−k1
∫ t

t0−γ
p(s)ds

)
, t ≥ t0. (3.3)

We will show that the conditions of Corollary 2.3 are satisfied. With regard to (3.1) for t ∈
[t0, t1] we get

v′(t) − u′(t) = −k1p(t)v(t) + k2p(t)u(t)

= p(t)v(t)

[
−k1 + k2u(t) exp

(
k1

∫ t

t0−γ
p(s)ds

)]

= p(t)v(t)

[
−k1 + k2 exp

(
(k1 − k2)

∫ t

t0−γ
p(s)ds

)]

≤ p(t)v(t)

[
−k1 + k2 exp

(
(k1 − k2)

∫ t0

t0−γ
p(s)ds

)]
≤ 0.

(3.4)

Other conditions of Corollary 2.3 are also satisfied. The proof is complete.

Corollary 3.2. Suppose that all conditions of Theorem 3.1 are satisfied and

∫∞

t0

p(t)dt = ∞. (3.5)

Then (1.1) has a positive solution which tends to zero.

Corollary 3.3. Suppose that k > 0, c > 0, t1 ≥ t0 +m and

a(t) = exp

(
−k
∫ t

t−τ
p(s)ds

)
+

1
(n − 1)!

exp

(
k

∫ t−τ

t0

p(s)ds

)

×
∫∞

t

(s − t)n−1p(s)f

(
exp

(
−k
∫ s−σ

t0

p(ξ)dξ

))
ds ≤ c < 1, t ≥ t1.

(3.6)

Then (1.1) has a solution:

x(t) = exp

(
−k
∫ t

t0

p(s)ds

)
, t ≥ t1. (3.7)

Proof. We put k1 = k2 = k, γ = 0 and apply Theorem 3.1.
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Example 3.4. Consider the nonlinear neutral differential equation:

[x(t) − a(t)x(t − 2)]′ = px3(t − 1), t ≥ t0, (3.8)

where p ∈ (0,∞). We will show that the conditions of Theorem 3.1 are satisfied. The condition
(3.1) has a form:

k1
k2

exp
(
(k2 − k1)pγ

) ≥ 1, (3.9)

0 < k1 ≤ k2, γ ≥ 0. For function a(t), we obtain

exp
(−2pk2) + 1

3k1
exp
(
p
[
k2
(
γ − t0 − 2

) − 3k1
(
γ − t0 − 1

)
+ (k2 − 3k1)t

])

≤ a(t) ≤ exp
(−2pk1)

+
1
3k2

exp
(
p
[
k1
(
γ − t0 − 2

) − 3k2
(
γ − t0 − 1

)
+ (k1 − 3k2)t

])
, t ≥ t0.

(3.10)

For p = 1, k1 = 1, k2 = 2, γ = 1, t0 = 1, the condition (3.9) is satisfied and

e−4 +
1
3e

e−t ≤ a(t) ≤ e−2 +
e4

6
e−5t, t ≥ t1 ≥ 3. (3.11)

If the function a(t) satisfies (3.11), then (3.8) has a solution which is bounded by the functions
u(t) = exp(−2t), v(t) = exp(−t), t ≥ 3.

Example 3.5. Consider the nonlinear differential equation:

[x(t) − a(t)x(t − π)]′ = p(t)f(x(t − π)), t ≥ 0, (3.12)

where f(x) =
√
x, x > 0, p(t) = 0.8 exp(π − t + 0.05 cos t), t ≥ 0, and

e0.1 cos t
(
e0.1 cos t + 0.8

(
eπ−t − 1

)) ≤ a(t) ≤ e0.1 cos t
(
e0.1 cos t +

0.8√
b

(
eπ−t − 1

))
< 1, (3.13)

for t ≥ π, b ∈ [1, 2]. Set

u(t) = e0.1 cos t, v(t) = be0.1 cos t, t ≥ 0. (3.14)

Then we have

v′(t) − u′(t) = −0.1be0.1 cos t sin t + 0.1e0.1 cos t sin t

= −0.1(b − 1)e0.1 cos t sin t ≤ 0 for t ∈ [0, π].
(3.15)
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By Corollary 2.7, (3.12) has a solution which is bounded by the functions e0.1 cos t and
be0.1 cos t, t ≥ π . If

a(t) = e0.1 cos t
(
e0.1 cos t + 0.8

(
eπ−t − 1

))
for t ≥ π, (3.16)

then (3.12) has the positive periodic solution x(t) = u(t) = e0.1 cos t, t ≥ π .
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