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The stability analysis of global asymptotic stability of neural networks of neutral type with
both discrete interval delays and general activation functions is discussed. New delay-dependent
conditions are obtained by using more general Lyapunov-Krasovskii functionals. Meanwhile,
these conditions are expressed in terms of a linear matrix inequality (LMI) and can be verified
using the MATLAB LMI toolbox. Numerical examples are used to illustrate the effectiveness of the
proposed approach.

1. Introduction

During the past decades, artificial neural networks have received considerable attention
due to their applicability in solving signal processing, pattern recognition, associative
memories, parallel computation, image processing, and optimization problems [1–6].
Research problems on dynamic behavior such as Chaos control, Hopf bifurcation analysis,
and Stability analysis have arisen in such applications and received attention in recent years.
In addition, time delays occur frequently in neural networks model [7, 8], which reduce the
rate of transmission, as well as cause instability and poor performance of neural networks.
Thus, the study of stability of neural networks with time delays is practically required for
an engineering system. In recent years, various methods have been proposed to deal with
the problem of global stability analysis for neural networks with time delays [9–13]. For
example, Singh, 2007 [12], proposed an LMI method for delayed neural networks. Liu et al.
2008 [13] developed a delayed bidirectional associative memory neural network based on
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Young’s inequality and Hölder’s inequality techniques, and several new sufficient criteria
are obtained by using a new Lyapunov functional and an-matrix.

In practice, in order to describe the dynamics of some complicated neural networks
more precisely, the information about derivatives of the past state has been introduced in
the state equations of a considered neural network model [14–16]. This new type of neural
networks is often called neural networks of neutral type [17]. In particular, the problem of
establishing stability for neural networks of neutral type with discrete time-varying delays
has received research attention recently [18–20]. But, unbounded distributed delays were
not taken into account in Park et al., 2008 [18]; Park and Kwon, 2009 [19]; Park and Kwon,
2009 [20]. In a real neural system, the presence of distributed delay affects the system
stability. More recently, some important results have been obtained on the stability analysis
issue for neural networks of neutral type with discrete and unbounded distributed [21, 22].
Nevertheless, in their works, the activation functions of neural networks of neutral type
with discrete and unbounded distributed delays have to be Lipschitz continuous to avoid
computational complexity. However, in a real system, the activation functions are neither
bounded nor monotonous; the functions are also discontinuous and nondifferentiable.
Despite important progress made in studies on stability of neutral-type neural networks with
discrete delays, due to the lack of the generality of the proposed neural networks model, how
to solve the global stability of the proposed model is a challenging and critical issue.

The objective of this paper is to further reduce the conservatism of the stability
conditions for neural networks of neutral type with mixed delays (discrete interval
delays and unbounded distributed delays) and general activation functions. Based on the
Lyapunov-Krasovskii stability theory and the LMI technique, a new sufficient condition is
proposed in terms of an LMI. Finally, a numerical example is presented to illustrate the
validity of the proposed approach. The rest of this paper is organized as follows. In Section 2,
the problem formulation is stated and two assumptions are presented. The proof of the main
result of stability analysis is given in Section 3. In Section 4, two numerical examples are
provided to demonstrate the effectiveness of the proposed method. The paper is concluded
in Section 5.

Throughout this paper, for real symmetric matricesX and Y , the notationX ≥ Y (resp.,
X > Y )means thatX−Y is positive semidefinite (respectively, positive definite);�n and�n×n

denote the n-dimensional Euclidean space and the set of all n × n real matrices, respectively.
The superscripts “T” and “−1” stand formatrix transposition andmatrix inverse, respectively.
The shorthand diag{X1, . . . , Xn} denotes a block diagonal matrix with diagonal blocks being
the matrices X1, . . . , Xn. The symmetric terms in a symmetric matrix are denoted by (∗). I is
the identity matrix with appropriate dimensions.

2. Problem Description

Consider the following neural networks of neutral-type model:

ẏi(t) = − ciyi(t) +
n∑

j=1

wij1fj

(
yj(t)

)
+

n∑

j=1

wij2gj

(
yj(t − τ(t))

)
+

n∑

j=1

aij

∫ t

−∞
kj(t − s)vj

(
yj(s)

)
ds

+
n∑

j=1

bij ẏj(t − h(t)) + Ii, i = 1, . . . , n,

(2.1)
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where yi(t) is the state of the ith neuron at timet, ci > 0 denotes the passive decay rate, wij1,
wij2, aij , and bij are the interconnection matrices representing the weight coefficients of the
neurons, fj(·), gj(·), and vj(·) are activation functions, and Ii is an external constant input.
The delay kj is a real valued continuous nonnegative function defined on [0,+∞], which is
assumed to satisfy

∫∞
0 kj(s)ds = 1, j = 1, . . . , n.

For system (2.1), the following assumptions are given.

Assumption 2.1. For i ∈ {1, 2, . . . , n}, the neuron activation functions in (2.1) satisfy

l̃−i ≤ fi(x1) − fi(x2)
x1 − x2

≤ l̃+i , i = 1, 2, . . . , n, x1, x2 ∈ �n, x1 /=x2,

l̂−i ≤ gi(x1) − gi(x2)
x1 − x2

≤ l̂+i , i = 1, 2, . . . , n, x1, x2 ∈ �n, x1 /=x2,

l
−
i ≤ vi(x1) − vi(x2)

x1 − x2
≤ l

+
i , i = 1, 2, . . . , n, x1, x2 ∈ �n, x1 /=x2,

(2.2)

where l̃−i , l̃
+
i , l̂

−
i , l̂

+
i , l

−
i , and l

+
i are some constants.

Assumption 2.2. The time-varying delays τ(t) and h(t) satisfy

0 ≤ τ1 ≤ τ(t) ≤ τ2, τ̇(t) ≤ τd < 1, 0 < h(t) ≤ h, ḣ(t) ≤ hd < 1, (2.3)

where τ1, τ2, τd, h, and hd are constants.

Assume y∗ = [y∗
1, y

∗
2, . . . , y

∗
n]

T is an equilibrium point of (2.1). Through xi = yi − y∗
i ,

system (2.1) can be transformed into the following system:

ẋ(t) = −Cx(t) +W1f(x(t)) +W2g(x(t − τ(t))) +A

∫ t

−∞
K(t − s)v(x(s))ds + Bẋ(t − h(t)),

(2.4)

where x(t) = [x1(t), . . . , xn(t)]
T ∈ �n is the neural state vector, f(x(t)) =

[f1(x1(t)), . . . , fn(xn(t))]
T ∈ �n is the neuron activation function vector with f(0) = 0,

g(x(t)) = [g1(x1(t)), . . . , gn(xn(t))]
T ∈ �n is the neuron activation function vector with

g(0) = 0, v(x(t)) = [v1(x1(t)), . . . , vn(xn(t))]
T ∈ �n is the neuron activation function vector

with v(0) = 0. C = diag{c1, . . . , cn} > 0, and W1 ∈ �n×n, W2 ∈ �n×n, A ∈ �n×n, and B ∈ �n×n

are the connection weight matrices.
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Note that since functions fi(·), gi(·), and vi(·) satisfy Assumption 2.1, fi(·), gi(·), and
vi(·) also satisfy

l̃−i ≤ fi(x1) − fi(x2)
x1 − x2

≤ l̃+i , i = 1, 2, . . . , n, x1, x2 ∈ �n, x1 /=x2,

l̂−i ≤ gi(x1) − gi(x2)
x1 − x2

≤ l̂+i , i = 1, 2, . . . , n, x1, x2 ∈ �n, x1 /=x2,

l
−
i ≤ vi(x1) − vi(x2)

x1 − x2
≤ l

+
i , i = 1, 2, . . . , n, x1, x2 ∈ �n, x1 /=x2,

(2.5)

where l̃−i , l̃
+
i , l̂

−
i , l̂

+
i , l

−
i , and l

+
i are some constants.

3. Stability Analysis

In order to obtain the main results of stability analysis, the following lemma is introduced.

Lemma 3.1. For any constant matrix M > 0, any scalars a and b such that a < b, and a vector
function x(t) : [a, b] → �n such that the integrals concerned are well defined, the following holds:

[∫b

a

x(s)ds

]T
M

[∫b

a

x(s)ds

]
≤ (b − a)

∫b

a

xT (s)Mx(s)ds. (3.1)

To simplify the proofs, the following notations are adopted:

L1 = diag
{
l̃−1 l̃

+
1 , l̃

−
2 l̃

+
2 , . . . , l̃

−
nl̃

+
n

}
, L2 = diag

{
l̃−1 + l̃+1 , l̃

−
2 + l̃+2 , . . . , l̃

−
n + l̃+n

}
,

L3 = diag
{
l̂−1 l̂

+
1 , l̂

−
2 l̂

+
2 , . . . , l̂

−
nl̂

+
n

}
, L4 = diag

{
l̂−1 + l̂+1 , l̂

−
2 + l̂+2 , . . . , l̂

−
n + l̂+n

}
,

L5 = diag
{
l
−
1 l

+
1 , l

−
2 l

+
2 , . . . , l

−
n l

+
n

}
, L6 = diag

{
l
−
1 + l

+
1 , l

−
2 + l

+
2 , . . . , l

−
n + l

+
n

}
.

(3.2)

Then, the following theorem is proposed.
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Theorem 3.2. Under Assumptions 2.1 and 2.2, the origin of system (2.4) is globally asymptotically
stable, if there exist matrices P > 0, Qi = QT

i > 0, i = 1, 2, 3, 4, Rj = RT
j > 0, j = 1, 2, 3, S = ST > 0,

diagonal matrices Z > 0, Tj > 0, j = 1, 2, . . . , 6, and E > 0, such that the following LMI holds:

Θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Θ1,1 0 Θ1,3 Θ1,4 Θ1,5 0 0 0 Θ1,9 0 Θ1,11 Θ1,12

∗ Θ2,2 0 0 0 0 0 Θ2,8 Θ2,9 Θ2,10 0 0
∗ ∗ Θ3,3 0 0 0 0 0 Θ3,9 0 Θ3,11 Θ3,12

∗ ∗ ∗ Θ4,4 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ Θ5,5 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ Θ6,6 Θ6,7 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Θ7,7 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Θ8,8 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Θ9,9 0 Θ9,11 Θ9,12

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Θ10,10 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Θ11,11 Θ11,12

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Θ12,12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.3)

where

Θ1,1 = −PC − CTPT +Q1 + R2 + R3 − L1T1 − TT
1 L

T
1 − L3T3 − TT

3 L
T
3 − L5T5 − TT

5 L
T
5 + CTΛC,

Θ1,3 = PW1 − CTZT + L2T1 − CΛW1, Θ1,4 = L4T3, Θ1,5 = L6T5,

Θ1,9 = PW2 − CΛW2, Θ1,11 = PA − CΛA, Θ1,12 = PB − CΛB,

Θ2,2 = −(1 − τd)Q1 − L1T2 − TT
2 L

T
1 − L3T4 − TT

4 L
T
3 − L5T6 − TT

6 L
T
5 ,

Θ2,8 = L2T2, Θ2,9 = L4T4, Θ2,10 = L6T6,

Θ3,3 = ZW1 +WT
1 Z

T +Q2 − T1 − TT
1 +WT

1 ΛW1,

Θ3,9 = WT
1 ΛW2 + ZW2, Θ3,11 = ZA +WT

1 ΛA, Θ3,12 = ZB +WT
1 ΛB,

Θ4,4 = Q3 − T3 − TT
3 , Θ5,5 = Q4 + E − T5 − TT

5 ,

Θ6,6 = −R2 − (τ2 − τ1)−1S, Θ6,7 = (τ2 − τ1)−1S, Θ7,7 = −R3 − (τ2 − τ1)−1S,

Θ8,8 = −(1 − τd)Q2 − T2 − TT
2 , Θ9,9 = −T4 − TT

4 − (1 − τd)Q3 +WT
2 ΛW2,

Θ9,11 = WT
2 ΛA, Θ9,12 = WT

2 ΛB, Θ10,10 = −T6 − TT
6 − (1 − τd)Q4,

Θ11,11 = −E +ATΛA,

Θ11,12 = ATΛB, Θ12,12 = −(1 − hd)R1 + BTΛB, Λ = R1 + (τ2 − τ1)S.
(3.4)

Proof. Construct a Lyapunov-Krasovskili functional for system (2.4) as follows:

V (x(t), t) =
5∑

i=1

Vi(x(t), t), (3.5)
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where

V1(x(t), t) = xT (t)Px(t) + 2
n∑

i=1

zi

∫xi

0
fi(s)ds,

V2(x(t), t) =
∫ t

t−τ(t)
xT (s)Q1x(s)ds +

∫ t

t−τ(t)

[
fT (x(s))Q2f(x(s)) + gT (x(s))Q3g(x(s))

+ vT (x(s))Q4v(x(s))
]
ds,

V3(x(t), t) =
∫ t

t−h(t)
ẋT (s)R1ẋ(s)ds +

∫ t

t−τ1
xT (s)R2x(s)ds +

∫ t

t−τ2
xT (s)R3x(s)ds,

V4(x(t), t) =
n∑

j=1

ej

∫∞

0

∫ t

t−σ
kj(σ)v2

j

(
xj(s)

)
dsdσ, V5(x(t), t) =

∫−τ1

−τ2

∫ t

t+θ
ẋT (s)Sẋ(s)dsdθ.

(3.6)

The time derivative of V (x(t), t) along the trajectory of system (2.4) is calculated

V̇ (x(t), t) =
5∑

i=1

V̇i(x(t), t), (3.7)

where

V̇1(x(t), t) = 2xT (t)P

[
− Cx(t) +W1f(x(t)) +W2g(x(t − τ(t)))

+A
∫ t

−∞
K(t − s)v(x(s))ds + Bẋ(t − h(t))

]

+ 2fT (x(t))Z

[
− Cx(t) +W1f(x(t)) +W2g(x(t − τ(t)))

+A
∫ t

−∞
K(t − s)v(x(s))ds + Bẋ(t − h(t))

]
,

V̇2(x(t), t) = xT (t)Q1x(t) − (1 − τ̇(t))xT (t − τ(t))Q1x(t − τ(t))

+ fT (x(t))Q2f(x(t)) − (1 − τ̇(t))fT (x(t − τ(t)))

×Q2f(x(t − τ(t))) + gT (x(t))Q3g(x(t))

− (1 − τ̇(t))gT (x(t − τ(t)))Q3g(x(t − τ(t)))

+ vT (x(t))Q4v(x(t)) − (1 − τ̇(t))vT (x(t − τ(t)))Q4v(x(t − τ(t)))
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≤ xT (t)Q1x(t) − (1 − τd)xT (t − τ(t))Q1x(t − τ(t))

+ fT (x(t))Q2f(x(t)) − (1 − τd)fT (x(t − τ(t)))

×Q2f(x(t − τ(t))) + gT (x(t))Q3g(x(t))

− (1 − τd)gT (x(t − τ(t)))Q3g(x(t − τ(t)))

+ vT (x(t))Q4v(x(t)) − (1 − τd)vT (x(t − τ(t)))Q4v(x(t − τ(t))),

V̇3(x(t), t) = ẋT (t)R1ẋ(t) −
(
1 − ḣ(t)

)
ẋT (t − h(t))R1ẋ(t − h(t))

+ xT (t)R2x(t) − xT (t − τ1)R2x(t − τ1)

+ xT (t)R3x(t) − xT (t − τ2)R3x(t − τ2)

≤ ẋT (t)R1ẋ(t) − (1 − hd)ẋT (t − h(t))R1ẋ(t − h(t))

+ xT (t)R2x(t) − xT (t − τ1)R2x(t − τ1)

+ xT (t)R3x(t) − xT (t − τ2)R3x(t − τ2),

V̇4(x(t), t) =
n∑

j=1

ej

∫∞

0
kj(δ)v2

j

(
xj(t)

)
dδ −

n∑

j=1

ej

∫∞

0
kj(δ)v2

j

(
xj(t − δ)

)
dδ

= vT (x(t))Ev(x(t)) −
n∑

j=1

ej

∫∞

0
kj(δ)dδ

∫∞

0
kj(δ)v2

j

(
xj(t − δ)

)
dδ

≤ vT (x(t))Ev(x(t)) −
n∑

j=1

ej

(∫∞

0
kj(δ)v

(
xj(t − δ)

)
dδ

)2

,

V̇5(x(t), t) = (τ2 − τ1)ẋT (t)Sẋ(t) −
∫ t−τ1

t−τ2
ẋT (s)Sẋ(s)ds.

(3.8)

By Lemma 3.1, the following inequalities are true:

−
n∑

j=1

ej

(∫∞

0
kj(δ)v

(
xj(t − δ)

)
dδ

)2

≤ −
(∫ t

−∞
K(t − s)v(x(s))ds

)T

E

(∫ t

−∞
K(t − s)v(x(s))ds

)
,

−
∫ t−τ1

t−τ2
ẋT (s)Sẋ(s)ds = −(τ2 − τ1)−1(τ2 − τ1)

∫ t−τ1

t−τ2
ẋT (s)Sẋ(s)ds
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≤ −(τ2 − τ1)−1
[∫ t−τ1

t−τ2
ẋ(s)ds

]T
S

[∫ t−τ1

t−τ2
ẋ(s)ds

]

≤ −(τ2 − τ1)−1[x(t − τ1) − x(t − τ2)]TS[x(t − τ1) − x(t − τ2)].

(3.9)

From (2.5), the following inequalities can be satisfied

[
fi(xi(t)) − l̃−i xi(t)

][
fi(xi(t)) − l̃+i xi(t)

]
≤ 0,

[
fi(xi(t − τ(t))) − l̃−i xi(t − τ(t))

][
fi(xi(t − τ(t))) − l̃+i xi(t − τ(t))

]
≤ 0,

[
gi(xi(t)) − l̂−i xi(t)

][
gi(xi(t)) − l̂+i xi(t)

]
≤ 0,

[
gi(xi(t − τ(t))) − l̂−i xi(t − τ(t))

][
gi(xi(t − τ(t))) − l̂+i xi(t − τ(t))

]
≤ 0,

[
vi(xi(t)) − l

−
i xi(t)

][
vi(xi(t)) − l

+
i xi(t)

]
≤ 0,

[
vi(xi(t − τ(t))) − l

−
i xi(t − τ(t))

][
vi(xi(t − τ(t))) − l

+
i xi(t − τ(t))

]
≤ 0.

(3.10)

Then, for any Tj = diag{tj1, tj2, . . . , tjn} ≥ 0, j = 1, 2, . . . , 6, it follows that

0 ≤ − 2
n∑

i=1

t1i
[
fi(xi(t)) − l̃−i xi(t)

][
fi(xi(t)) − l̃+i xi(t)

]

− 2
n∑

i=1

t2i
[
fi(xi(t − τ(t))) − l̃−i xi(t − τ(t))

]

×
[
fi(xi(t − τ(t))) − l̃+i xi(t − τ(t))

]

= − 2fT (x(t))T1f(x(t)) + 2xT (t)L2T1f(x(t))

− 2xT (t)L1T1x(t) − 2fT (x(t − τ(t)))T2f(x(t − τ(t)))

+ 2xT (t − τ(t))L2T2f(x(t − τ(t))) − 2xT (t − τ(t))L1T2x(t − τ(t)),

0 ≤ − 2
n∑

i=1

t3i
[
gi(xi(t)) − l̂−i xi(t)

][
gi(xi(t)) − l̂+i xi(t)

]

− 2
n∑

i=1

t4i
[
gi(xi(t − τ(t))) − l̂−i xi(t − τ(t))

]

×
[
gi(xi(t − τ(t))) − l̂+i xi(t − τ(t))

]
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= − 2gT (x(t))T3g(x(t)) + 2xT (t)L4T3g(x(t))

− 2xT (t)L3T3x(t) − 2gT (x(t − τ(t)))T4g(x(t − τ(t)))

+ 2xT (t − τ(t))L4T4g(x(t − τ(t))) − 2xT (t − τ(t))L3T4x(t − τ(t)),

(3.11)

0 ≤ − 2
n∑

i=1

t5i
[
vi(xi(t)) − l

−
i xi(t)

][
vi(xi(t)) − l

+
i xi(t)

]

− 2
n∑

i=1

t6i
[
vi(xi(t − τ(t))) − l

−
i xi(t − τ(t))

]

×
[
vi(xi(t − τ(t))) − l

+
i xi(t − τ(t))

]

= − 2vT (x(t))T5v(x(t)) + 2xT (t)L6T5v(x(t))

− 2xT (t)L5T5x(t) − 2vT (x(t − τ(t)))T6v(x(t − τ(t)))

+ 2xT (t − τ(t))L6T6v(x(t − τ(t))) − 2xT (t − τ(t))L5T6x(t − τ(t)).

(3.12)

Then, combining (3.7)–(3.12), it follows that

V̇ (x(t), t) ≤ ξT (t)Θξ(t), (3.13)

where Θ is given in (3.3) and

ξT (t)

=

⎡
⎢⎣

xT (t), xT (t − τ(t)), fT (x(t)), gT (x(t)), vT (x(t)), xT (t − τ1), xT (t − τ2), fT (x(t − τ(t))),

gT (x(t − τ(t))), vT (x(t − τ(t))),

(∫ t

−∞
K(t − s)v(x(s))ds

)T

, ẋT (t − h(t))

⎤
⎥⎦.

(3.14)

It is easy to see that V̇ (x(t), t) < 0 ifΘ < 0 for any ξ(t)/= 0. Thus if the LMI given in (3.3) holds,
the system (2.4) is globally asymptotically stable; the proof is completed.

Remark 3.3. To the best of the authors’ knowledge, the problem of global stability for the
neural networks of neutral type with both mixed delays (discrete interval and unbounded
distributed delays) and general activation functions has not been investigated in the existing
literature.

Remark 3.4. In this paper, it is assumed that the resulting activation functions are non-
monotonic and more general than the usual Lipschitz functions. Thus, the advantage of the
proposed work lies in the less conservative assumptions of activation functions.
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Remark 3.5. It should be noted that when f(x(t)) = g(x(t)) = v(x(t)), the system (2.4) is
described as

ẋ(t) = −Cx(t) +W1f(x(t)) +W2f(x(t − τ(t))) +A

∫ t

−∞
K(t − s)f(x(s))ds + Bẋ(t − h(t)),

(3.15)

which has been intensively investigated in the literatures [21, 22]. Since the discrete delay
are time varying and various in an interval, our work extends and improves the results of
[21, 22].

Then the following corollary can be proved directly.

Corollary 3.6. Under Assumptions 2.1 and 2.2, the origin of system (3.15) is globally asymptotically
stable, if there exist matrices P > 0, Qi = QT

i > 0, i = 1, 2, Rj = RT
j > 0, j = 1, 2, 3, S = ST > 0,

diagonal matrices > 0, Tj > 0, j = 1, 2, and E > 0, such that the following LMI holds:

Θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Θ1,1 0 Θ1,3 0 0 Θ1,6 Θ1,7 Θ1,8

∗ Θ2,2 0 0 0 Θ2,6 0 0
∗ ∗ Θ3,3 0 0 Θ3,6 Θ3,7 Θ3,8

∗ ∗ ∗ Θ4,4 Θ4,5 0 0 0
∗ ∗ ∗ ∗ Θ5,5 0 0 0
∗ ∗ ∗ ∗ ∗ Θ6,6 Θ6,7 Θ6,8

∗ ∗ ∗ ∗ ∗ ∗ Θ7,7 Θ7,8

∗ ∗ ∗ ∗ ∗ ∗ ∗ Θ8,8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.16)

where

Θ1,1 = −PC − CTPT +Q1 + R2 + R3 − 2L1T1 + CTΛC,

Θ1,3 = PW1 − CTZT + L2T1 − CTΛW1,

Θ1,6 = PW2 − CTΛW2, Θ1,7 = PA − CTΛA,

Θ1,8 = PB − CTΛB, Θ2,2 = −(1 − τd)Q1 − 2L1T2,

Θ26 = L2T2, Θ3,3 = E +Q2 + ZW1 +WT
1 Z

T − 2T1 +WT
1 ΛW1,

Θ3,6 = ZW2 +WT
1 ΛW2,

Θ3,7 = ZA +WT
1 ΛB, Θ3,8 = ZB +WT

1 ΛA,

Θ4,4 = −R2 − (τ2 − τ1)−1S, Θ4,5 = (τ2 − τ1)−1S,
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Θ5,5 = −R3 − (τ2 − τ1)−1S,

Θ6,6 = −(1 − τd)Q2 − 2T2 +WT
2 ΛW2, Θ6,7 = WT

2 ΛB,

Θ6,8 = WT
2 ΛA, Θ7,7 = −E +ATΛA,

Θ7,8 = ATΛB, Θ8,8 = −(1 − hd)R1 + BTΛB,

Λ = R1 + (τ2 − τ1)S.

(3.17)

Proof. The proof is similar to that of Theorem 3.2.

4. Numerical Examples

Example 4.1. Consider the following three-neuron delayed neural networks of neutral type as
(2.4), where

C =

⎡

⎣
8 0 0
0 8 0
0 0 10

⎤

⎦, W1 =

⎡

⎣
1.2 −0.4 −0.3

−0.12 −0.81 −0.1
0.2 0.9 −0.3

⎤

⎦,

W2 =

⎡

⎣
1.7 0.1 −0.5
0.25 1.2 0.1
−0.1 0.65 1.2

⎤

⎦, A =

⎡

⎣
0.7 0.6 −0.8
−0.1 0.1 1.1
0.11 0.63 0.7

⎤

⎦,

B =

⎡

⎣
0.4 0 0
0 0.4 0
0 0 0.4

⎤

⎦,

τ(t) = h(t) = 0.3 + 0.3sin2(t).

(4.1)

Then, let τ1 = 0.3, τ2 = 0.6, τd = 0.3, hd = 0.3, L1 = 0.09I, L2 = I, L3 = 0.16I, L4 = I, L5 = 0.21I,
and L6 = I. UsingMATLAB LMI Control toolbox, by Theorem 3.2, we can find that the system
(2.4) is globally asymptotically stable and the solutions of LMI (3.3) are as follows:

P =

⎡

⎣
41.9798 5.3585 1.4026
5.3585 74.9441 −13.7212
1.4026 −13.7212 60.0629

⎤

⎦, Q1 =

⎡

⎣
85.9041 7.5228 −3.9355
7.5228 123.3913 −11.8320
−3.9355 −11.8320 93.7664

⎤

⎦,

Q2 =

⎡

⎣
31.9192 3.9335 7.9742
3.9335 60.8900 −3.6718
7.9742 −3.6718 69.4215

⎤

⎦, Q3 =

⎡

⎣
49.3721 2.7949 −4.1159
2.7949 46.4749 1.3294
−4.1159 1.3294 45.9695

⎤

⎦,
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Q4 =

⎡

⎣
28.1041 1.0821 0.1583
1.0821 30.9955 0.1964
0.1583 0.1964 31.1201

⎤

⎦, R1 =

⎡

⎣
4.2784 0.8939 0.1355
0.8939 9.1183 −2.1952
0.1355 −2.1952 6.2238

⎤

⎦,

R2 =

⎡

⎣
55.2806 3.7360 0.1040
3.7360 62.7629 1.6388
0.1040 1.6388 64.7637

⎤

⎦, R3 =

⎡

⎣
55.2806 3.7360 0.1040
3.7360 62.7629 1.6388
0.1040 1.6388 64.7637

⎤

⎦,

S =

⎡

⎣
3.6864 0.0321 0.6263
0.0321 6.5233 −0.9199
0.6263 −0.9199 5.3944

⎤

⎦, Z = diag
{
8.8438 8.8438 8.8438

}
,

T1 = diag
{
83.9664 83.9664 83.9664

}
, T2 =

{
29.3656 29.3656 29.3656

}
,

T3 = diag
{
54.5299 54.5299 54.5299

}
, T4 =

{
40.0839 40.0839 40.0839

}
,

T5 = diag
{
76.6716 76.6716 76.6716

}
, T6 =

{
31.5403 30.5403 30.5403

}
,

E = diag
{
56.8538 56.8538 56.8538

}
.

(4.2)

Example 4.2. Consider the following two-neuron delayed neural networks of neutral type as
[21], where

C =
[
3 0
0 3

]
, W1 =

[
0 0
0 0

]
, W2 =

[
0.6 −0.12
−0.6 0.3

]
, A =

[
0.2 −0.1
−0.2 0.1

]
, B =

[
0.2 0
0 0.2

]
,

τ(t) ≡ τ, h(t) ≡ h.

(4.3)

Then, let τ1 = 0, τ2 = 1, τd = 0, hd = 0, L1 = 0, and L2 = I. Using MATLAB LMI Control
toolbox, by Corollary 3.6, we can find that the system (3.15) is globally asymptotically stable
and the solutions of LMI (3.16) are as follows:

P =
[
201.6082 26.2458
26.2458 198.3666

]
, Q1 =

[
103.6896 −2.7859
−2.7859 103.2839

]
,

Q2 =
[
93.8975 −2.3887
−2.3887 80.3975

]
, R1 =

[
59.2873 12.1295
12.1295 57.5817

]
,

R2 =
[
91.0821 −4.2548
−4.2548 91.4235

]
, R3 =

[
91.0821 −4.2548
−4.2548 91.4235

]
,

S =
[
31.0944 7.5926
7.5926 30.4795

]
, Z = diag

{
49.1190 49.1190

}
,

T1 = diag
{
174.5230 147.5230

}
, T2 =

{
53.5516 53.5516

}
,

E = diag
{
98.5255 98.5255

}
.

(4.4)
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If τ2 = 2, the conditions in Rakkiyappan and Balasubramaniam, 2008 [21], cannot be satisfied,
but by Corollary 3.6 in this paper, one can find that system (3.15) is globally asymptotically
stable. Therefore, the proposed result is less conservative than that in Rakkiyappan and
Balasubramaniam, 2008 [21].

5. Conclusions

The problem of stability for neural networks of neutral type with discrete interval delays
and general activation functions is investigated in this paper. An integrated approach
based on a Lyapunov-Krasovskii functional and linear matrix inequality is proposed. In
the proposed approach, a corresponding Lyapunov-Krasovskii functional is constructed for
neural networks of neutral-type model. Then, by using inequality analysis technique, a
reasonably general sufficient condition is obtained in terms of LMI, which can be tested
easily using the MATLB LMI toolbox. Moreover, the proposed stability conditions extend
and improve the exiting results. Two numerical examples show that the proposed stability
result is effective, which can be used to guide engineering design.

In many real world systems, stochastic perturbations often affect the stability of neural
networks. Therefore, considering the presence of stochastic perturbations is critical to the
stability analysis of networks systems, and some recent progress has been made. In this
paper, the proposed neural network of natural type with discrete model was studied by an
integrated approach. For future researches, more theoretical analysis should be performed on
stochastic neural networks of natural type with mixed delays.
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[2] V. Miljković, S. Milosevic, R. Sknepnek, and I. Zivic, “Pattern recognition in damaged neural
networks,” Physica A, vol. 295, no. 3-4, pp. 526–536, 2001.

[3] H. Kirschner and R. Hillebrand, “Neural networks for HREM image analysis,” Information sciences,
vol. 129, no. 1–4, pp. 31–44, 2000.

[4] A. Cichocki and R. Unbehauen, Neural Networks for Optimization and Signal Processing, John Wiley &
Sons, Chichester, UK, 1993.

[5] M. Itoh and L. O. Chua, “Star cellular neural networks for associative and dynamic memories,”
International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 14, no. 5, pp. 1725–
1772, 2004.

[6] G. Labonte and M. Quintin, “Network parallel computing for SOM neural networks,” High
Performance Computing Systems and Applications, vol. 541, pp. 575–586, 2000.

[7] C. X. Huang and J. D. Cao, “Almost sure exponential stability of stochastic cellular neural networks
with unbounded distributed delays,” Neurocomputing, vol. 72, no. 13–15, pp. 3352–3356, 2009.



14 Abstract and Applied Analysis

[8] H. J. Xiang and J. D. Cao, “Almost periodic solution of Cohen-Grossberg neural networks with
bounded and unbounded delays,” Nonlinear Analysis: Real World Applications, vol. 10, no. 4, pp. 2407–
2419, 2009.

[9] S. Arik, “Global robust stability of delayed neural networks,” IEEE Transactions on Circuits and Systems
I, vol. 50, no. 1, pp. 156–160, 2003.

[10] X. F. Liao andC. D. Li, “An LMI approach to asymptotical stability ofmulti-delayed neural networks,”
Physica D, vol. 200, no. 1-2, pp. 139–155, 2005.

[11] H. D. Qi, “New sufficient conditions for global robust stability of delayed neural networks,” IEEE
Transactions on Circuits and Systems I, vol. 54, no. 5, pp. 1131–1141, 2007.

[12] V. Singh, “Improved global robust stability criterion for delayed neural networks,” Chaos, Solitons and
Fractals, vol. 31, no. 1, pp. 224–229, 2007.

[13] X. G. Liu, R. R. Martin, M. Wu, and M. L. Tang, “Global exponential stability of bidirectional
associative memory neural networks with time delays,” IEEE Transactions on Neural Networks, vol.
19, no. 3, pp. 397–407, 2008.

[14] S. Y. Xu, J. Lam, D. W. C. Ho, and Y. Zou, “Delay-dependent exponential stability for a class of neural
networkswith time delays,” Journal of Computational and AppliedMathematics, vol. 183, no. 1, pp. 16–28,
2005.

[15] Y. J. Zhang, S. Y. Xu, Y. M. Chu, and J. J. Lu, “Robust global synchronization of complex networks
with neutral-type delayed nodes,” Applied Mathematics and Computation, vol. 216, no. 3, pp. 768–778,
2010.

[16] R. Samli and S. Arik, “New results for global stability of a class of neutral-type neural systems with
time delays,” Applied Mathematics and Computation, vol. 210, no. 2, pp. 564–570, 2009.

[17] Z. Orman, “New sufficient conditions for global stability of neutral-type neural networks with time
delays,” Neurocomputing, vol. 97, pp. 141–148, 2012.

[18] J. H. Park, O. M. Kwon, and S. M. Lee, “State estimation for neural networks of neutral-type with
interval time-varying delays,” Applied Mathematics and Computation, vol. 203, no. 1, pp. 217–223, 2008.

[19] J. H. Park and O. M. Kwon, “Further results on state estimation for neural networks of neutral-type
with time-varying delay,” Applied Mathematics and Computation, vol. 208, no. 1, pp. 69–75, 2009.

[20] J. H. Park and O. M. Kwon, “Global stability for neural networks of neutral-type with interval time-
varying delays,” Chaos, Solitons and Fractals, vol. 41, no. 3, pp. 1174–1181, 2009.

[21] R. Rakkiyappan and P. Balasubramaniam, “New global exponential stability results for neutral type
neural networks with distributed time delays,” Neurocomputing, vol. 71, no. 4–6, pp. 1039–1045, 2008.

[22] J. E. Feng, S. Y. Xu, and Y. Zou, “Delay-dependent stability of neutral type neural networks with
distributed delays,” Neurocomputing, vol. 72, no. 10–12, pp. 2576–2580, 2009.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


