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We investigate the existence and uniqueness of positive solutions of the following nonlinear
fractional differential equation with integral boundary value conditions CDαu(t) + f(t, u(t)) = 0,
0 < t < 1, u(0) = u′′(0) = 0, u(1) = λ

∫1
0 u(s)ds, where 2 < α < 3, 0 < λ < 2 and CDα is the Caputo

fractional derivative and f : [0, 1] × [0,∞) → [0,∞) is a continuous function. Our analysis relies
on a fixed point theorem in partially ordered sets. Moreover, we compare our results with others
that appear in the literature.

1. Introduction

Many papers and books on fractional differential equations have appeared recently (see, for
example, [1–22]). The interest of the study of fractional-order differential equations lies in the
fact that fractional-order models are more accurate than integer-order models, that is, there
are more degrees of freedom in the fractional-order models.

Integral boundary conditions have various applications in chemical engineering,
thermo-elasticity, population dynamics, and so forth. For a detailed description of the integral
boundary conditions, we refer the reader to some recent papers (see, [23–30]) and the
references therein. Recently, Cabada and Wang in [31] investigated the existence of positive
solutions for the fractional boundary value problem

CD
α
u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u′′(0) = 0, u(1) = λ
∫1

0
u(s)ds,

(1.1)
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where 2 < α < 3, 0 < λ < 2, CDα is the Caputo fractional derivative and f : [0, 1] × [0,∞) →
[0,∞) is a continuous function.

The main tool used in [31] is the well-known Guo-Krasnoselskii fixed point theorem
and the question of uniqueness of solutions is not treated. We consider our paper as an
alternative answer to the results of [31]. The fixed point theorem in partially ordered sets
is the main tool used in our results. The existence of fixed points in partially ordered sets has
been considered recently (see, e.g. [32–34]).

2. Preliminaries and Basic Facts

For the convenience of the reader, we present in this section some notations and lemmas
which will be used in the proofs of our results. For details, see [35, 36].

Definition 2.1. The Caputo derivative of fractional order α > 0 of a function f : [0,∞) → R is
defined by

CDαf(t) =
1

Γ(n − α)
∫ t

0
(t − s)n−α−1f (n)(s)ds, (2.1)

where n = [α] + 1 and [α] denotes the integer part of α.

Definition 2.2. The Riemman-Liouville fractional integral of order α > 0 of a function f :
(0,∞) → R is defined by

Iαf(t) =
1

Γ(α)

∫ t

0
(t − s)α−1f(s)ds, (2.2)

provided that such integral exists.

Definition 2.3. The Riemman-Liouville fractional derivative of order α > 0 of a function f :
(0,∞) → R is given by

Dαf(t) =
1

Γ(n − α)
(
d

dt

)n ∫ t

0
(t − s)n−α−1f(s)ds, (2.3)

where n = [α] + 1, provided that the right hand side is pointwise defined on (0,∞).

Lemma 2.4. Let α > 0 then the fractional differential equation

CDαu(t) = 0, (2.4)

has

u(t) =
[α]∑

j=0

u(j)(0)
j!

tj , (2.5)

as unique solution.
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Lemma 2.5. Let α > 0 then

Iα CDαu(t) = u(t) −
[α]∑

j=0

u(j)(0)
j!

tj . (2.6)

In [31], the authors obtain the Green’s function associated with Problem (1.1). More
precisely, they proved the following result.

Theorem 2.6 (see [31]). Let 2 < α < 3 and λ/= 2. Suppose that f ∈ C[0, 1] then the unique solution
of

CD
α
u(t) + f(t) = 0, 0 < t < 1,

u(0) = u′′(0) = 0, u(1) = λ
∫1

0
u(s)ds

(2.7)

is u(t) =
∫1
0 G(t, s)f(s)ds, where

G(t, s) =
1

(2 − λ)Γ(α + 1)

{
2t(1 − s)α−1(α − λ + λs) − (2 − λ)α(t − s)α−1, 0 ≤ s ≤ t ≤ 1,
2t(1 − s)α−1(α − λ + λs), 0 ≤ t ≤ s ≤ 1.

(2.8)

In [31], the following lemma is proved.

Lemma 2.7. Let G(t, s) be the Green’s function associated to Problem (2.7), which has the expression
(2.8). Then:

(i) G(t, s) > 0 for all t, s ∈ (0, 1) if and only if λ ∈ [0, 2).

(ii) G(t, s) ≤ 2/(2 − λ)Γ(α) for all t, s ∈ [0, 1] and λ ∈ [0, 2).

(iii) For 2 < α < 3 and λ/= 2G(t, s) is a continuous function on [0, 1] × [0, 1].

In the sequel, we present the fixed point theoremwhich wewill be use later. This result
appears in [32].

Theorem 2.8 (see [32]). Let (X,≤) be a partially ordered set and suppose that there exists a metric
d in X such that (X, d) is a complete metric space. Let T : X → X be a nondecreasing mapping such
that there exists an element x0 ∈ X with x0 ≤ Tx0.

Suppose that

d
(
Tx, Ty

) ≤ d(x, y) − ψ(d(x, y)) for x, y ∈ X with x ≥ y, (2.9)

where ψ : [0,∞) → [0,∞) is a continuous and nondecreasing function, ψ is positive on (0,∞) and
ψ(0) = 0.

Assume that either T is continuous or X is such that

if {xn} is a nondecreasing sequencein X such that xn → x then xn ≤ x, ∀n ∈ N. (2.10)
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Besides, if

for each x, y ∈ X there exists z ∈ X which is comparable to x and y, (2.11)

then T has a unique fixed point.

Remark 2.9. Notice that the condition limt→∞ψ(t) = ∞ is superfluous in Theorem 2 of [32].

Remark 2.10. If we look at the proof of Theorem 2.2 in [32]we notice that the condition about
the continuity of ψ is redundant.

In fact, from x0 ≤ Tx0 the authors generate the sequence {Tnx0} and if we put xn+1 =
Tnx0 it is proved that

d(xn+1, xn) = d(Txn, Txn−1) ≤ d(xn, xn−1) − ψ(d(xn, xn−1)) ≤ d(xn, xn−1). (2.12)

Consequently, {d(xn+1, xn)} is a nonnegative decreasing sequence of real numbers and
hence {d(xn+1, xn)} posseses a limit ρ∗.

Taking limit when n → ∞ in the last inequality, we obtain

ρ∗ ≤ ρ∗ − lim
n→∞

ψ(d(xn, xn−1)) ≤ ρ∗, (2.13)

and, therefore,

lim
n→∞

ψ(d(xn, xn−1)) = 0. (2.14)

Suppose that ρ∗ > 0, since {d(xn+1, xn)} is a decreasing sequence ρ∗ ≤ d(xn+1, xn) for all
n ∈ N, and, since ψ is a nondecreasing function, we have ψ(ρ∗) ≤ ψ(d(xn+1, xn)) for all n ∈ N.

As ψ is positive on (0,∞), 0 < ψ(ρ∗) ≤ ψ(d(xn+1, xn)) for all n ∈ N and, therefore,

0 < ψ
(
ρ∗
) ≤ limψ(d(xn+1, xn)). (2.15)

This contradicts to (2.14). Consequently, ρ∗ = 0.
The rest of the proof works well and the condition about the continuity of ψ is not

used.

Theorem 2.11. Theorem 2.8 is valid without the assumption ψ : [0,∞) → [0,∞) is continuous.

In our considerations, we will work in the Banach space C[0, 1] = {x : [0, 1] →
R, continuous}with the classical metric given by d(x, y) = sup0≤t≤1{|x(t) − y(t)|}.

Notice that this space can be equipped with a partial order given by

x, y ∈ C[0, 1], x ≤ y ⇐⇒ x(t) ≤ y(t) for t ∈ [0, 1]. (2.16)

In [33] it is proved that (C[0, 1],≤) satisfies condition (2.10) of Theorem 2.8. Moreover,
for x, y ∈ C[0, 1], as the function max{x, y} ∈ C[0, 1], (C[0, 1],≤) satisfies condition (2.11) of
Theorem 2.8.
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3. Main Result

Our starting point in this section is to present the class of functionA which we will use later.
ByAwewill denote the class of those functions φ : [0,∞) → [0,∞)which are nondecreasing
and such that if ϕ(x) = x − φ(x) then the following conditions are satisfied:

(a) ϕ : [0,∞) → [0,∞) and ϕ is nondecreasing.

(b) ϕ(0) = 0.

(c) ϕ is positive on (0,∞).

Examples of such functions are φ(x) = arctanx and φ(x) = x/(1 + x).
In what follows, we formulate our main result.

Theorem 3.1. Suppose that 2 < α < 3, 0 < λ < 2 and f : [0, 1] × [0,∞) → [0,∞) satisfies the
following assumptions:

(i) f is continuous.

(ii) f(t, x) is nondecreasing respect to the second argument for each t ∈ [0, 1].

(iii) There exist 0 < ρ ≤ (2 − λ)Γ(α)/2 and φ ∈ A such that

f
(
t, y

) − f(t, x) ≤ ρφ(y − x), (3.1)

for x, y ∈ [0,∞) with y ≥ x and t ∈ [0, 1].

Then Problem (1.1) has a unique nonnegative solution.

Proof. Consider the cone

P = {u ∈ C[0, 1] : u ≥ 0}. (3.2)

Notice that, as P is a closed set ofC[0, 1], P is a complete metric with the distance given
by d(x, y) = sup0≤t≤1{|x(t) − y(t)|} satisfying conditions (2.10) and (2.11) of Theorem 2.8.

Now, for u ∈ P we define the operator T by

(Tu)(t) =
∫1

0
G(t, s)f(s, u(s))ds, (3.3)

where G(t, s) is the Green’s function defined by (2.8).
By Lemma 2.7 and assumption (i), it is clear that T applies P into itself.
In the sequel, we will check that the assumptions of Theorem 2.11 are satisfied.
Firstly, the operator T is nondecreasing. In fact, by (ii), for u ≥ v we have

(Tu)(t) =
∫1

0
G(t, s)f(s, u(s))ds ≥

∫1

0
G(t, s)f(s, v(s))ds = (Tv)(t). (3.4)
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Besides, for u ≥ v and taking into account our assumptions, we can obtain

d(Tu, Tv) = max
0≤t≤1

{|(Tu)(t) − (Tv)(t)|}

= max
0≤t≤1

{Tu(t) − Tv(t)}

= max
0≤t≤1

[∫1

0
G(t, s)

(
f(s, u(s)) − f(s, v(s)))ds

]

≤ max
0≤t≤1

[∫1

0
G(t, s)ρφ(u(s) − v(s))ds

]

.

(3.5)

Since φ is nondecreasing and u ≥ v, we have

φ(u(s) − v(s)) ≤ φ(d(u, v)), (3.6)

and, from the last inequality it follows

d(Tu, Tv) ≤ ρφ(d(u, v))max
0≤t≤1

∫1

0
G(t, s)ds. (3.7)

By Lemma 2.7(ii) and since ρ ≤ (2 − λ)Γ(α)/2, we can obtain

d(Tu, Tv) ≤ φ(d(u, v)) = d(u, v) − [
d(u, v) − φ(d(u, v))]. (3.8)

Since φ ∈ A, ψ(x) = x − φ(x) satifies the properties (a), (b), and (c) mentioned at the
beginning of this section, for u ≥ v we have

d(Tu, Tv) ≤ d(u, v) − ψ(d(u, v)). (3.9)

Finally, taking into account that the zero function, 0 ≤ T0 (where T0 = Tuwith u(t) = 0
for all t ∈ [0, 1]), by Theorem 2.11, Problem (1.1) has a unique nonnegative solution.

Now, we present a sufficient condition for the existence and uniqueness of a positive
solution for Problem (1.1) (positive solutionmeans a solution satisfying x(t) > 0 for t ∈ (0, 1)).

Theorem 3.2. Under assumptions of Theorem 3.1 and adding the following condition

f(t0, 0)/= 0 for certain t0 ∈ [0, 1], (3.10)

we obtain existence and uniqueness of a positive solution for Problem (1.1).

Proof. Consider the nonnegative solution x(t) for Problem (1.1) whose existence is guaran-
teed by Theorem 3.1.
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Notice that x(t) satisfies

x(t) =
∫1

0
G(t, s)f(s, x(s))ds. (3.11)

In what follows, we will prove that x(t) > 0 for t ∈ (0, 1).
In fact, in contrary case we can find 0 < t∗ < 1 such that x(t∗) = 0, and therefore,

x(t∗) =
∫1

0
G(t∗, s)f(s, x(s))ds = 0. (3.12)

Since x ≥ 0 and G(t, s) ≥ 0 (see, Lemma 2.7) and, taking into account the nondecreas-
ing character with respect to the second argument of the function f , from the last inequality
it follows

0 = x(t∗) =
∫1

0
G(t∗, s)f(s, x(s))ds ≥

∫1

0
G(t∗, s)f(s, 0)ds ≥ 0. (3.13)

Thus,
∫1
0 G(t

∗, s)f(s, 0)ds = 0. This fact and the nonnegative character of the functions
G(t∗, s) and f(s, 0) give us

G(t∗, s)f(s, 0) = 0 a.e. (s). (3.14)

Since G(t∗, s) > 0 for s ∈ (0, 1), we get

f(s, 0) = 0 a.e. (s). (3.15)

By (3.10), since f(t0, 0)/= 0 for certain t0 ∈ [0, 1], this means that f(t0, 0) > 0, and taking
into account the continuity of f , we can find a set Ω ⊂ [0, 1]with t0 ∈ Ω and μ(Ω) > 0 (where
μ is the Lebesgue measure) such that f(t, 0) > 0 for any t ∈ Ω. This contradicts to (3.15).

Therefore, x(t) > 0.

Remark 3.3. In Theorem 3.2, the condition f(t0, 0)/= 0 for certain t0 ∈ [0, 1] seems to be a strong
condition in order to obtain a positive solution for Problem (1.1), but when the solution is
unique we will see that the condition is very adjusted one. In fact, under the assumption that
Problem (1.1) has a unique nonnegative solution x(t)we have that

f(t, 0) = 0 for any t ∈ [0, 1] iff x(t) ≡ 0. (3.16)

Indeed, if f(t, 0) = 0 for any t ∈ [0, 1] then it is easily seen that the zero function is a
solution for Problem (1.1) and the uniqueness of solution gives us x(t) ≡ 0.

The reverse implication is obvious.

Remark 3.4. Notice that assumptions in Theorem 3.1 are invariant by nonnegative and
continuous perturbations. More precisely, if f(t, 0) = 0 for any t ∈ [0, 1] and f satisfies
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conditions (i), (ii), and (iii) of Theorem 3.1 then g(t, x) = f(t, x) + a(t), where a : [0, 1] →
[0,∞) continuous and a/= 0 satisfies assumptions of Theorem 3.2 and, consequently, the
boundary value problem

CD
α
u(t) + g(t, u(t)) = 0, 0 < t < 1, 2 < α < 3

u(0) = u′′(0) = 0, u(1) = λ
∫1

0
u(s)ds,

(3.17)

with 0 < λ < 2, has a unique positive solution.

Example 3.5. Now, consider the following boundary value problem

CD
α
u(t) + t +

γu(t)
1 + u(t)

= 0, 0 < t < 1, 2 < α < 3, γ > 0

u(0) = u′′(0) = 0, u(1) =
sin 1

1 − cos 1

∫1

0
u(s)ds.

(3.18)

In this case, f(t, u) = t + (γu/(1 + u)). Obviously, f : [0, 1] × [0,∞) → [0,∞) and f is
continuous. Since ∂f/∂u = γ/(1 + u)2 > 0, f satisfies condition (ii) of Theorem 3.1.

Moreover, for u ≥ v and t ∈ [0, 1] we have

f(t, u) − f(t, v) = t + γu

1 + u
− t − γv

1 + v

= γ
( u

1 + u
− v

1 + v

)
= γ

(
u − v

(1 + u)(1 + v)

)

≤ γ u − v
1 + u − v = γφ(u − v),

(3.19)

where φ(x) = x/(1+x). It is easily seen that φ belongs to the classA. In this case, λ = sin 1/(1−
cos 1) ≈ 1, 83048, consequently 0 < λ < 2, and for 0 < γ ≤ (2 − λ)/2 · Γ(α) ≈ 0, 08476Γ(α),
Problem (3.18) satisfies (iii) of Theorem 3.1. Since f(t, 0) = t /= 0 for t /= 0, Theorem 3.2 says
that Problem (3.18) has a unique positive solution for 0 < γ ≤ 0, 08476Γ(α), where 2 < α < 3.

4. Some Remarks and Examples

In [31] the authors consider Problem (1.1).
In order to present the main result of [31] we need the following notation. Denote by

f0 and f∞ the following limits:

f0 = lim
u→ 0+

{
min
t∈[0,1]

f(t, u)
u

}
, f∞ = lim

u→∞

{
max
t∈[0,1]

f(t, u)
u

}
. (4.1)

The main result of [31] is the following theorem.
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Theorem 4.1. Assume that one of the two following conditions is fulfilled:

(i) (sublinear case) f0 = ∞ and f∞ = 0,

(ii) (superlinear case) f0 = 0, f∞ = ∞ and there exist μ > 0 and θ > 0 for which f(t, ρx) ≥
μρθf(t, x) for all ρ ∈ (0, 1].

Then, Problem (1.1) has at least one positive solution that belongs to

P =
{
u ∈ C[0, 1] : u

id[0,1]
∈ C[0, 1], u(t) ≥ tλ(α − 2)

2α
‖u‖ ∀t ∈ [0, 1]

}
, (4.2)

where id[0,1] is the identity mapping on [0, 1].

Notice that in Example 3.5, f(t, u) = t + (γu/(1 + u)) and in this case we have

min
t∈[0,1]

f(t, u)
u

=
γ

1 + u
. (4.3)

Consequently,

f0 = lim
u→ 0+

{
min
t∈[0,1]

f(t, u)
u

}
= lim

u→ 0+

γ

1 + u
= γ. (4.4)

Therefore, for 0 < γ ≤ 0, 08476Γ(α) Example 3.5 cannot be treated by Theorem 4.1.

Example 4.2. Consider the following boundary value problem

CD
α
u(t) + c + γ arctan u(t) = 0, 0 < t < 1, c > 0, γ > 0, 2 < α < 3,

u(0) = u′′(0) = 0, u(1) =
1
2

∫1

0
u(s)ds,

(4.5)

In this case, 0 < λ = (1/2) < 2, f(t, u) = c + γ arctanu.
It is easily proved that f satisfies condition (i) and (ii) of Theorem 3.1. In [37], it is

proved that if u ≥ v ≥ 0

arctan u − arctan v ≤ arctan(u − v). (4.6)

Using this fact, for u ≥ v ≥ 0 and t ∈ [0, 1], we have

f(t, u) − f(t, v) = γ(arctan u − arctan v) ≤ γ arctan(u − v) = γφ(u − v), (4.7)

where φ(x) = arctanx. It is easily proved that φ ∈ A.
Then, for 0 < γ ≤ (3/4)Γ(α), the function f satisfies condition (iii) of Theorem 3.1.

Moreover, since f(t, 0) = c > 0, Theorem 3.2 gives us the existence and uniqueness of a
positive solution for Problem (4.5)when 0 < γ ≤ (3/4)Γ(α).
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On the other hand, we have

max
t∈[0,1]

f(t, u)
u

= min
t∈[0,1]

f(t, u)
u

=
c + γ arctan u

u
,

f0 = lim
u→ 0+

c + γ arctan u

u
= ∞, f∞ = lim

u→∞
c + γ arctan u

u
= 0.

(4.8)

Consequently, this example corresponds to the sublinear case of Theorem 4.1.
Therefore, Theorem 4.1 gives us the existence of at least one positive solution for 0 < γ ≤
(3/4)Γ(α). The question of uniqueness of solutions is not treated in [31].
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