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This paper presents a combined mathematical treatment for a special automatic music tran-
scription system. This system is specially made for computer-synthesized music. The combined
mathematical treatment includes harmonic selection, matrix analysis, and probability analysis
method. The algorithm reduces dimension by PCA and selects candidates first by human auditory
model and harmonic structures of notes. It changes the multiple-F0 estimation question into a
mathematical problem and solves it in a mathematical way. It can be shown in this paper that the
experimental results indicate that this method has very good recognition results.

1. Introduction

Music transcription means an act of listening to a piece of music and writing down music
score for the piece. The traditional way of makingmusic is just like that: a performer reading a
score, playing an instrument, and thus producingmusic. Transcription of polyphonic music is
a reverse process: an acoustical waveform is converted into a parametric representation (such
as MIDI), where notes, their pitches, starting times, and durations are extracted from the
signal [1]. Automatic music transcription means converting acoustic music signals to musical
scores automatically by computer analysis technology. Automatic music transcription greatly
reduces the manual labor and time and it becomes a key technology in music signal
processing [2, 3]. Automatic music transcription can be widely used for content-based music
retrieval, low-rate coding, automatic musical accompaniment system, and so on.

Fundamental frequency (F0) is an essential descriptor of harmonic sound signals
such as speech and music, and it determines the pitch of a music note. Single-F0
estimation algorithms assume that there is at most one musical of which the F0 is to be
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extracted. Although single-F0 estimation algorithms have been considerably developed, their
applications to music signals are somehow limited because most music signals contain more
than one concurrent harmonic source. Multiple-F0 estimation algorithms are thus required
for the general case and it needs to estimate each of the sources which play together, which is
one of the most important parts of the automatic music transcription [4, 5].

The most important contribution of this paper is solving the multiple-F0 estimation
in a mathematical analysis method. The signals we need to process are wave forms in time
domain x[m]. At first we need to change it into frequency domain by

X(n, k) =
∞∑

m=−∞
x[m]w[n −m] · e−j(2π/N)km (1.1)

or cepstrum domain by

x̂c[n] =
1
2π

∫π

−π
logX(ω)ejωndω. (1.2)

And then we change the multiple-F0 estimation question into matrix linear equations.
It is an ill-posed equation, so we can solve it using a truncation completely least squares
method. Based on this, we can use a priori probability to filer the result to improve the correct
rate.

This paper is organized as follows. At first it introduces the research background
and situation of study of automatic music transcription and multiple-F0 estimation. And
then it describs our algorithm and experimental stages in detail. We focused on the effect
of harmonic structure in primary selection progress and the math model of multiple-F0
estimation. And it is followed by an experimental results display, and finally there are the
conclusion and perspective and acknowledgment.

2. Automatic Music Transcription System

The system architecture of automatic music transcription system proposed in this paper can
be found in another paper by the same author in [6]. In this system, input music signal passes
through a spectral analysis module first and then performs a multiple-F0 estimation progress
after preprocess and windowed DFT. The following multiple-F0 estimation algorithm is
performed for each music frame to predict one or more notes that appear in this time slice.
In the end, this algorithm will detect the starting time and the ending time of each note.
Through these steps, a music signal can be transcribed into note event sequence, which can
be described in MIDI form or in music score directly.

The key process of this system is multiple-F0 estimation and it is also the main
contribution of this paper. The multiple-F0 estimation algorithm has two main stages:
training and identify. It contains three main steps in training process: preprocess, PCA, and
signal normalization, and six main steps: enframe, preprocess, PCA, signal normalization,
frequency primary election, andmultiple-F0 estimation. The steps which have the same name
did the same things.
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(i) Preprocessing: it is the first step in training process. It removes the silent part in
the front and back of the notes section first and then through a windowed DFT
transformation.

(ii) Normalization: signal normalizationmeans converting the signal after preprocessing
into equivalent one with mean 0 and variance 1, and it is used to facilitate
the follow-up treatment. The signal is to be separated into two parts after
normalization. One will go into PCA step, and the other will be used to analyze
the harmonic structure.

(iii) PCA: PCAmeans principal component analysis. It makes all the notes together by a
common preextraction of principal components. That is to map all the notes from a
higher-dimensional space to a relatively low-dimensional space coordinate system.
While PCA is used to train date here, we can define a PCA score (Ipca), whichmeans
that we only retain the components whose sum of ratios is greater than the score.

(iv) Calculate Hn: in this step we need to decide the number of harmonics for each
note and the amplitude of spectrum for each harmonic. In fact, each note has
clear harmonic characteristics. It means that there will be clear impulse near
integer multiples of the fundamental frequency. The same notes played by different
instruments have harmonics at almost the same location but the margins of each
note may be different. Using this feature, we can roughly estimate a certain audio
whether contains a note. This feature can be used to select candidates for the
fundamental frequency to facilitate follow-up treatment.

(v) Enframe: the length of the music to be detected is variable; thus, an enframe
processing is needed in order to obtain a more accurate detection and estimation
of the notes. Each frame will have a detect result, which shows the notes that the
frame included.

(vi) Frequency primary selection: in order to reduce the computation and improve the
estimation accuracy of data, before the multiple fundamental frequency estimation
step, a frequency primary selection step needs to be produced. In this step, all
candidate notes are estimated. After this, it only needs to select the final notes from
these candidate ones instead of from all the notes, which can greatly benefit the
speed and estimation accuracy. The detail information will be described in the next
section.

(vii) Multiple-F0 estimation: the multiple fundamental frequency estimation here means
to estimate the consisting of notes from candidates based on the data after the
above processing. This is a core part of the whole system and we can use some
mathematical methods to solve this problem. The detailed information will be
described in the next section.

3. Using Harmonic Structure

3.1. Essential Knowledge

The timbre refers to the feeling features of the sound, such as frequency, loudness, and the
duration. The timbre has an identity function, and we can distinguish two kinds of sound
with the same pitch and intensity but coming from different musical instruments according to
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differences in sound timbre. The timbre is amultidimensional object. In addition to frequency,
loudness, and duration, it also contains amplitude envelope and spectral envelope.

Spectral envelope is an important parameter to describe the sound in frequency
domain and it is constituted with the amplitude of all harmonics. We can describe the spectral
envelope by harmonic structure, labeled asHn:

Hn = {a1, a2, . . . , an}, (3.1)

where ak is the amplitude of the kth harmonic and n is the number of harmonics.
In accordance with western musical convention, note events are ordered using a

logarithmic scale [7]. For linear frequency to MIDI conversion, the following expression can
be used:

n = 69 + 12 log2

(
f0
440

)
. (3.2)

In music notation, each note is named with one of the following symbols:

Do Re Mi Fa Sol La Ci.

A sequence of notes fromDo to Ci is called an octave. In a given octave, the fundamental
frequency of each note is an integer multiple of fundamental frequency of namesake from
previous octaves. Since the harmonics of each note are also integer multiples of fundamental
frequency, these harmonics represent namesake notes of it in next octaves [8]. For example,
the fundamental frequency of La in octave 4 (i.e., La4) is 220 (Hz). So, the frequency of its
second harmonic is 440 (Hz) that is equal to the fundamental frequency of La in octave 5 (i.e.,
La5). This is the frequency overlapping problem which we mentioned above and it is also a
key problem when performing the iterative deletion.

Spectral envelopes of different instruments have obvious differences, while the same
kind of instrument has similar spectral envelope. Music played by the same instrument
has a high degree of similarity and a stable harmonic structure. However, the computer-
synthesized music is established by the same soft wavetable. So we can believe that the
harmonic structure of computer music synthesized by the similar instrument is almost the
same. This paper assumes that the harmonic structure is unchanged when the F0 of one note
is changing weakly in a semitone.

3.2. Usage of Harmonic Structure

Based on the above characteristics, the information of harmonic structure can be used
to improve the multiple fundamental frequency estimation algorithms. In our algorithm,
the information of harmonic structure is mainly used in two places: in the training stage,
obtaining the information of harmonic structure of each note played by different instrument,
and in the identification stage, using the harmonic structure matching rate to determine
the candidate fundamental frequency, to increase the accuracy of following multiple-F0
estimation.

In the training stage, the parameters of each note can be extracted from the training
materials, each training material contains only one note, and each note can be trained
by 100 materials. We analyze the spectral envelope of each material and calculate the
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harmonic structure Hn. We set a training threshold th1. If the normalized spectral envelope
is larger than th1, the corresponding element in harmonic structure was set as the harmonic
amplitude, otherwise was set to 0.

For an in-harmonic instrument, partial frequencies Hn can further deviate from
this frequency range. As a consequence, these partials are missed or assigned erroneously
to other partials by our system [9]. However, this situation only occurs for strongly in-
harmonic instruments and at high values of parameter. Partial frequencies for an in-harmonic

instrument can be expressed by kf0n

√
1 + βk2, where β is the inharmonicity coefficient.

Typical values for coefficient β range from 10−4 to 10−3 in piano bass notes [10]. Partial
frequencies exceed the selected frequency range from k = 25 for β = 10−4, k = 11 for
β = 5 ∗ 10−4, or k = 8 for β = 10−3. The fundamental frequency f0n of the MIDI note n is
calculated as

f0n = 440 · 2(n−69)/12. (3.3)

The analysis above indicates a problem that harmonics of one note may not just be at
the integer multiple position of the fundamental frequency because of the inharmonicity.
According to this, when we calculate Hn, we use a′

k instead of ak, where a′
k is the maximum

partial amplitude found in the frequency range [kf0 · 2−(1/24), kf0 · 21/24]. When there are no
partials in the frequency range, a′

k
is set to 0.

In the identification stage, the harmonic structure matching rate can be used to
determine the candidate fundamental frequency.

When playing a note, the spectrumwill contain its entire harmonics. If the f0 is located
at the same semitone as the note n, it will have the same harmonic structure as Hn, in which
the harmonic matching ratio of the kth harmonic can be defined as the following:

r
(
f0, k

)
=

∣∣Y
(
fk
)∣∣

ak
, (3.4)

where Y (fk) is the STFT of music and ak is the k-th element inHn.
In order to remove the influence of harmonic overlap in the polyphony music, the

minimal harmonic matching ratio of all harmonic components is chosen as the harmonic
matching ratio of this note, which just as shown in

r
(
f0
)
= min

{
r
(
f0, k

)|nk=1
}
. (3.5)

And, then, in order to better describe the situation of playing the notes, the strength of notes
can be defined as follows:

S
(
f0
)
=

n∑

k=1

r
(
f0
)
ak. (3.6)

The larger S shows the larger probability of including the note which has a fundamental
frequency of f0. If S is larger than the threshold th2, the note whose fundamental frequency is
f0 will be chosen as a candidate fundamental frequency. When all the candidates are chosen,
the frequency primary selection step is completed.
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4. Other Mathematical Treatments in This Algorithm

4.1. Principal Component Analysis

In training stage and identification stage, PCA is an important step to reduce dimensions, so
we introduce the calculate process in detail here.

Principal component analysis (PCA) is a mathematical procedure that uses an
orthogonal transformation to convert a set of observations of possibly correlated variables
into a set of values of uncorrelated variables called principal components. The number
of principal components is less than or equal to the number of original variables. This
transformation is defined in such a way that the first principal component has as high a
variance as possible (i.e., accounts for as much of the variability in the data as possible), and
each succeeding component in turn has the highest variance possible under the constraint
that it be orthogonal to (uncorrelated with) the preceding components. Principal components
are guaranteed to be independent only if the data set is jointly normally distributed. PCA is
sensitive to the relative scaling of the original variables.

PCA is mathematically defined as an orthogonal linear transformation that transforms
the data to a new coordinate system such that the greatest variance by any projection of the
data comes to lie on the first coordinate (called the first principal component), the second
greatest variance on the second coordinate, and so on. PCA is a mature tool which has classic
calculation process. The implementation method of PCA can be found in [10].

The calculation steps of PCA are as follows.

(1) Calculate the correlation coefficient matrix:

R =

⎡
⎢⎢⎢⎣

r11 r12 · · · r1p
r21 r22 · · · r2p
...

...
...

...
rp1 rp2 · · · rpp

⎤
⎥⎥⎥⎦
, (4.1)

where rij (i, j = 1, 2, . . . , p) is correlation coefficient of original variables xi and xj .
The calculation formula is

rij =

∑n
k=1(xki − xi)

(
xkj − xj

)
√∑n

k=1 (xki − xi)
2 ∑n

k=1
(
xkj − xj

)2
. (4.2)

R is a real symmetric matrix, that is, rij = rji, so we only need to calculate the upper
triangular elements or lower triangular elements.

(2) Calculate the eigenvalues and eigenvectors: first, solve the characteristic equation
|λI − R| = 0. Usually the Jacobi method is used to find out the eigenvalues λi (i =
1, 2, . . . , p), and let them be arranged in order of size, that is, λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0,
and find out the eigenvectors ei (i = 1, 2, . . . , p) corresponding to the eigenvalues λi,
respectively. Here ‖ei‖ = 1, that is,

∑p

j=1 e
2
ij = 1, where eij represent the j component

of vector ei.

(3) Calculate the contribution of the main components and cumulative contribution.
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The contribution of main components zi is

λi∑p

k=1 λk

(
i = 1, 2, . . . , p

)
. (4.3)

The cumulative contribution is

∑i
k=1 λk∑p

k=1 λk

(
i = 1, 2, . . . , p

)
. (4.4)

(4) Calculate the weight of the main components:

lij = p
(
zi, xj

)
=
√
λieij

(
i, j = 1, 2, . . . , p

)
. (4.5)

After it, we can calculate the score of each main components:

Z =

⎡
⎢⎢⎢⎣

z11 z12 · · · z1m
z21 z22 · · · z2m
...

...
...

...
zn1 zn2 · · · znm

⎤
⎥⎥⎥⎦
, (4.6)

where

Zm = lm1x1 + lm2x2 + · · · + lmpxp. (4.7)

4.2. Mathematical Representation in Multiple-F0 Estimation

Multiple fundamental frequency (multiple-F0) estimation is used to estimate multiple notes
which are sounded at the same time in music. It is the core technology and the main
difficulties in automatic music transcription system. Most actual music are polyphony ones,
which means there are more than one notes at the same time. The situation is much more
complex when the spectrums of the notes are added and it makes the multiple-F0 estimation
more difficult. To improve the performance of the system, a good multiple-F0 estimation
algorithm needs to consider many factors, such as inharmonicity factor, frequency missing,
harmonic missing, frequency overlap, and frequency error [6]. The algorithm proposed in
this paper establishes a mathematical model for multiple fundamental frequency estimation.
To obtain the result of multiple-F0 estimation is equivalent to solve this math problem. In this
part, we introduce the main idea of this algorithm.

In the music division rules, there is sufficient frequency separation between notes,
and the masking effect is relatively weak among pure tones. Thus, the masking effect can
be ignored while the requirement of computational accuracy is not very highly. Ignoring
the masking effect, the loudness can be added with a linear characteristic. It means that the
loudness of the sound mixing multiple notes is the sum of the loudness of each note.
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From the above analysis we can see that the audio to be estimated is the linear
combination of standard notes. Suppose that the number of notes is n, each note includes
m features after PCA process, and then the training set S is an n × m matrix. The audio to
be estimated after preprocessing, PCA, and normalization is recorded as Y , then Y is a 1 ×m
vector, and m is the characteristic dimension. If the energy lost in PCA is recorded as Sr, we
get the following:

X · S + Sr = Y, (4.8)

where S is the result set of the training process and it is an n ×m matrix. X is a 1 × n vector,
X = [x1, x1, . . . , xn], and it presents the combination coefficient corresponding to each note. If
we regard the Sr as an error part, we can ignore it and get the next formula:

X · S ≈ Y. (4.9)

The main task of multiple-F0 estimation is to estimate the best X to make XS as more
close as Y . This is a problem of computing extreme and it can be resolved by the knowledge
of linear algebra.

Let

f(x) = XS − Y =

⎛
⎜⎝

x1s11 + x2s21 + · · · + xnsn1 − y1
...

x1s1m + x2s2m + · · · + xnsnm − ym

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

f1
f2
...
fm

⎞
⎟⎟⎟⎠,

g(x) = fT (x)f(x) = f2
1 + f2

2 + · · · + f2
m.

(4.10)

The problem is to obtain a best X to make f(x) get the maximum value. It can be
proved that g(x) and f(x) get the maximum value at the same place. So the next problem is
to calculate X to make g(x) gets the maximum value. According to the knowledge of higher
mathematics we can get

∂g(x)
∂x1

= 2f1s11 + 2f2s12 + · · · + 2fms1m = 0

∂g(x)
∂x2

= 2f1s21 + 2f2s22 + · · · + 2fms2m = 0

...

∂g(x)
∂xn

= 2f1sn1 + 2f2sn2 + · · · + 2fmsnm = 0.

(4.11)
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Equations (4.12) can be obtained after the decomposition (4.11):

(x1, x2, . . . , xn) ·
(
S1 S2 · · · Sn

)T · ST
1 − Y · ST

1 = 0

(x1, x2, . . . , xn) ·
(
S1 S2 · · · Sn

)T · ST
2 − Y · ST

2 = 0

...

(x1, x2, . . . , xn) ·
(
S1 S2 · · · Sn

)T · ST
n − Y · ST

n = 0.

(4.12)

Simplification of (4.12) can get

X · S · ST
1 − Y · ST

1 = 0

X · S · ST
2 − Y · ST

2 = 0

...

X · S · ST
n − Y · ST

n = 0.

(4.13)

Write (4.13) into the matrix form:

X · S · ST = Y · ST , (4.14)

where S and Y are known, so the X can be obtained by knowledge of linear algebra.
It should be noted that if there are some negative coefficients in X, it means that the

audio will not contain the corresponding note and we should calculate this again without
this note. It is repeated until all components of X are positive or repeated t times (to avoid an
infinite loop, you need to manually set up a number of cycles t). A threshold x0 can be set. If
xi > x0, it indicats that the note i is included in this frame. In this way, we can estimate all
the notes contained in this frame.

We can solve the function (4.9) in another way. In function (4.9), S is an n ×m matrix.
In general case, m >> n, so function (4.9) is an ill-posed matrix equation. A truncation
completely least squares method can be used to get the solution of this function because
this method is not sensitive to error. The step-by-step process is given as follows.

At first, the singular value decomposition of augmented matrix [S, Y ] needs to
calculated:

[S, Y ] = PλQT =
n+1∑

i=1

piλiqi, (λ1 > λ2 > · · · > λn+1). (4.15)

And then, select a truncation strategy k ≤ min{n, rank(S, Y )} and cut off the smaller singular
value and let

Q′ =
(
qn+1,k+1, qn+1,k+2, . . . , qn+1,n+1

)
/= 0. (4.16)
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Third, let n′ = n − k + 1, and make Q become a partitioned matrix:

Q =
[
Q11 Q12

Q21 Q22

]
, (4.17)

where Q11 ∈ Cn×k,Q12 ∈ Cn×n′
, Q21 ∈ C1×k,Q22 ∈ C1×n′

.
At last we can get the solution:

X = −Q12Q
∗
22 = −Q12Q

T
22‖Q22‖−22 , (4.18)

where Q∗
22 = QT

22‖Q22‖−22 is a generalized inverse matrix.
After we get X, the negative and smaller value components were deleted and the rest

ones are the mixing coefficients of the corresponding notes.
We can use both the ways to solve function (4.9) andmake themmutual authentication

to make an improvement.
When calculating Hn in training stage we consider with the information of frequency

missing, harmonic missing, and while in frequency primary selection stage we consider
with inharmonicity factor and frequency error. Function (4.9) can indicate the information
of frequency overlap. As a result, our algorithm has a better result than others.

4.3. Filer Based on the Music Category and Priori Probability

This content is one of the most contribution of this paper.
Just as we know, there are kinds of music actually, such as new age, rhythm and blues,

rap, rock, and jazz. Different music has different rhythm and melody and many other things.
From the audio features, they have different low short time energy ratio and nonzero pitch
ratio and other characteristics. The probability of occurrence of each note is different for
different types of music. The probability distribution of the same note in different types of
music is also different. We can use this to perform a filer based on the music category for the
previous experimental results.

It is needed to point out that to classify the music is not the research contents of this
paper. We assume that all the category of each music belongs to are known.

We only consider the most popular notes (about 72) in actual songs. Let event Aix =
{note x is included in the ith frame},A(i+1)y = {note y is included in the (i+ 1) th frame}. It is
obvious that the number of x and y is limited, and the number of event Aix or A(i+1)y is also
limited. Let eventCxy = {while current frame contains note x, the next frame contains note y}.
According to the definition of conditional probability we can get that P(Cxy)=P(A(i+1)y | Aix).
For different kind of music, the conditional probability P(A(i+1)y | Aix) is not the same for the
same note x or y. If we know the kind of the music, we can filter the following frames by
the corresponding conditional probability. In this way, we can remove the notes with small
probability and validate the notes in current frame through the relevant posterior probability.

In the training process, we can get the P(Aix) through experiment by P(Aix) = {the
number of frames including note x}/{the number of total frames}. We can also get P(Cxy) =
P(A(i+1)y | Aix) = {the number of the next frame contains note y while current frame contains
note x}/{the number of total frames}.

In the identification process we can calculate the following data.
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(i) Get the P(A(i+1)y) by querying training result set directly.

(ii) Get the P(A(i+1)y | Aix) by querying training result set directly.

(iii) Calculate the P(A(i+1)y) by the whole probability formula:

P
(
A(i+ 1)y

)
=

72∑

x= 1

P(Aix)P
(
A (i+ 1)y | Aix

)
. (4.19)

(iv) Calculate the P(Aix | A(i+1)y) by the Bayesian formula:

P
(
Aix | A (i+ 1 )y

)
=

P(Aix)P
(
A(i+ 1)y | Aix

)

∑72
x=1 P(Aix)P

(
A(i+ 1)y | Aix

) . (4.20)

Analysis of the above four probabilities can be seen. The first probability is a priori
probability without any restrictions. The second one has been considered with the relation of
the adjacent frames. The third one is calculated with the whole probability formula and the
forth is a posterior probability calculated by the Bayesian formula. The first three probabilities
are priori probabilities used to directly determine the probability of the current frame that
contained a note. The fourth one is a posterior probability used to determine the probability
of the previous frame that contained one note while the current frame contained another one.
Each probability can be used to get the result alone but we put the four probabilities together
to make the result more accurate.

Setting a probability threshold P , we consider the event A(i+1)y as true only when all
of the probabilities mentioned above are larger than P .

5. Experimental Methods and Results

According to the algorithm described in the previous section, we did simulation in Matlab.
The experiment parameters in each step are listed as follows.

(i) All audio signals are decomposed at a sampling frequency of fs = 22.5 kHz and
16 bit.

(ii) Hamming windowing.

(iii) FFT length L = 1024.

(iv) FIR High Pass Filter H(z) = 1 − αz−1, α = 0.98, used to pre-emphasis.

(v) Frame length is 100ms.

(vi) 72 notes played by piano are used to train, which from C3 (note 36) to B8 (note
107), and each note we get 100 wave-form data to train.

(vii) The number of songs used to training is 100 for each category, and do statistics and
get P(A(i+1)y) and P(A(i+1)y | Aix) base on them.

(viii) The PCA score Ipca = 80%.

(ix) The threshold of spectral envelope in frequency primary selection step th1 = 0.1.

(x) The threshold of intensity coefficient: th2 = 1.5.
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(xi) The probability threshold of filter step is P = 0.6.

(xii) We obtain note error rate (NRE) as follows:

E =
FP + FN
Notes

, (5.1)

where FP (false positives) is the number of inactive note frames transcribed as active and FN
(false negatives) is the number of active note frames transcribed as inactive.

In order to fully test the performance of the algorithm presented in this paper, we
made a lot of experiments with different types and styles of music, including classic music,
jazz, nursery rhyme, soothing music, fast-paced music, and the music which has a lot
of fundamental frequency overlapping and the music which has just a little fundamental
frequency overlapping. The size of a frame has a little influence on the recognition results of
different types of music. Analysing of the results made us found that our algorithm was not
sensitive about changes in the rhythm of music. Both fast rhythm music and slow rhythm
have similar identification results, but it is sensitive with the change rules of rhythm. The
music with more regular rhythm changes can get better recognition results.

A number of experiments show that our algorithm has an average NER about 13%.
That is a very high accuracy rate compared with some state-of-the-art algorithms described
in [11, 12]. The transcription result has no obvious impact on understanding this music for
us.

6. Conclusion and Perspective

This paper presents a compositional pattern recognition and machine learning methods for
computer-synthesized music specifically to multiple-F0 estimation and builds an efficient
automatic music transcription system. This method also considers the human auditory
model and the harmonic structure of music notes and improves the algorithm based on
this. Although using the harmonic match and iterative delete alone can finish the multiple-
F0 estimation, or deleting the frequency primary selection step in identification stage and
establishing the mathematical model and solving it can also finish the task, combining the
two methods can improve the performance of the algorithm and the recognition result.
The usage of Bayesian estimation and a priori probability improved the performance a lot.
Furthermore, for all this, something which needs to be improved must be pointed out. First,
we can improve the definition of harmonic matching to get a more accurate result. And
then, for FFT, we can consider using changeable FFT length, because the notes in the low-
frequency region are rich in harmonic components while the notes in high-frequency region
have relatively simple harmonic components. In low-frequency region, a higher frequency
resolution is needed while in high-frequency region the situation is just the opposite. Third,
the truncation threshold th1 or th2 in our algorithm can be defined in a changeable way to
get a more accurate result. In addition, because ensemble music includes many instruments,
we need to train with many kinds of notes and it has a large amount of computation. If
we can develop an unsupervised method and the prior information about the instrument is
not obtained from files of the same instrument in different music databases but is directly
obtained from the music file to be analyzed, that will be improve efficiency a lot.
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