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We deal with g-Euler numbers and g-Bernoulli numbers. We derive some interesting relations for g-
Euler numbers and polynomials by using their generating function and derivative operator. Also,
we derive relations between the g-Euler numbers and g-Bernoulli numbers via the p-adic g-integral
in the p-adic integer ring.

1. Preliminaries

Imagine that p is a fixed odd prime number. Throughout this paper we use the following
notations, where Z, denotes the ring of p-adic rational integers, Q denotes the field of rational
numbers, Q, denotes the field of p-adic rational numbers, and C, denotes the completion of
algebraic closure of Q,. Let N be the set of natural numbers and N* = N U {0}.

The p-adic absolute value is defined by

1
lpl, = o 1.1)
In this paper, we will assume that |g — 1| < 1 as an indeterminate.
[x], is a g-extension of x, which is defined by
1-g*
[x], = T—q" (1.2)

We note that limqql[x]q = x (see [1-12]).
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We say that f is a uniformly differentiable function at a point a € Z,, if the difference
quotient

Fr(x,y) = %j;(y), (1.3)

has a limit f'(a) as (x,y) — (a, a) and denote this by f € UD(Z,).
Let UD(Z,) be the set of uniformly differentiable function on Z,. For f € UD(Z,), let
us start with the expression

1

S f@d= Y F@u(+rNz,), (1.4)

[ N] q 0<é<pN 0<¢g<pN

which represents p-adic g-analogue of Riemann sums for f. The integral of f on Z, will be
defined as the limit (N — oo) of these sums, when it exists. The p-adic g-integral of function
f € UD(Z,) is defined by Kim

_ R T =
Ii(f) = IZF f(@)dug(@) = Nhinw[p—% g £(&)g (1.5)

The bosonic integral is considered as a bosonic limit g — 1, I1(f) = limy_11,4(f).
Similarly, the fermionic p-adic integral on Z, is introduced by Kim as follows:

Lo(9) = Jim 1,(7) = | F@diey@ 16)

(for more details, see [9-12]).
In [6], the g-Euler polynomials with weight 0 are introduced as

Eyq(x) = fz (x+y) dpq(y)- (1.7)
From (1.7), we have

Ba0 = 3 (1)xEria 18

1=0

where En,q(O) = En,q are called g-Euler numbers with weight 0. Then, g-Euler numbers are
defined as

g n ~ _ [Z]q, lf n= 0,
q(Eq+1> +Epg= {0’ £ 020, (1.9)

where the usual convention about replacing (Eq)n by En,q is used.
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Similarly, the g-Bernoulli polynomials and numbers with weight 0 are defined,
respectively, as

LS o)
lim x+y)'q
n_)oo[pn]q yZO

[ Grvam ), (110

By q(x)

Bug = f y"dpy (y)
ZF’

(for more information, see [4]).

We, by using the Kim et al. method in [2], will investigate some interesting identities
on the g-Euler numbers and polynomials arising from their generating function and
derivative operator. Consequently, we derive some properties on the g-Euler numbers and
polynomials and g-Bernoulli numbers and polynomials by using g-Volkenborn integral and
fermionic p-adic g-integral on Z,.

2. On the g-Euler Numbers and Polynomials

Let us consider Kim’s g-Euler polynomials as follows:

(2],
get +

0o tn
1exf = Z()En,q(x)—. (2.1)
n=|

Fi=Fu(t) = o

Here x is a fixed parameter. Thus, by expression of (2.1), we can readily see the
following:

qe'Fi + Fi = [2] e (2.2)

Last from equality, taking derivative operator D as D = d/dt on the both sides of (2.2).
Then, we easily see that

ge' (D + I)*F} + D*F} = [2] x*e, (2.3)
where k € N* and I is identity operator. By multiplying e on both sides of (2.3), we get
q(D +I)*F] + e D*F} = [2] x*e™ ", (2.4)
Let us take derivative operator D™ (m € N) on both sides of (2.4). Then we get

qe'D™(D + I)*F} + DN(D - )" F}l = [2] x* (x - 1)"e™. (2.5)
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Let G[0] (not G(0)) be the constant term in a Laurent series of G(t). Then, from (2.5),

we get
K
j=0 j=0
By (2.1), we see
(DNFI0)[0] = Eng(x),  (e'DVFL®)[0] = Eng ().

By expressions of (2.6) and (2.7), we see that

manm [q( >+( 1)1< >]Ek+m_]q(x) [2] % (x = 1)"™.

From (2.1), we note that

n-1

d /~ n-1N\= 1 ~
= (Ena®) =1 ( 1 )E,,qx = ().

1=0

By (2.9), we easily see

. (1) +1 [2] -1~
E d n+1 q n Aq __ q E )
JO nq(¥)dx = n+1 nt1 A

Now, let us consider definition of integral from 0 to 1 in (2.8), then we have

T 4 TORRYE

= [Z]q(—l)’”B(k +1,m+1)

Ek+m—j+1,q
k+m—-j+1

I'(k+1)I(m+1)
I'k+m+2)

= [21,(-D)"

where B(m, n) is beta function which is defined by

1
B(m,n) = f x™ (1 - x)" ldx
0
= %, m>0, n>0.

As a result, we obtain the following theorem.

2(7) e trzo)ons (7)) (o) ol - ol

(2.6)

2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)
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Theorem 2.1. For n € N, one has

EG) ()

B (_1)m+1 ~
~ kv me 1) ()

Ek+m—j+1,q
k+m-j+1

Ek+m+1,q
Tk+m+1

(2]
Substituting m = k + 1 into Theorem 2.1, we readily get

S (5

O o
~ Tk +2) ()

E2k+2—j,q
2k+2-]

E2k+2,q
12k +2°

(2]

By (2.1), it follows that

max{k,m}

3 (kem-)) [a(5) + 0 ()| Bt

= [2], 2 (x = )" ((k + m)x — k).

Let m = k in (2.1), we see that
2 [1(5) + 0 ()| st = -

Last from equality, we discover the following;:

]

[k/2] ~ (k/2] B
2], Z (Z)EZk—ZM(X) +(g-1) ]Z::O <2]-I:_ 1>E2k—2j—1,q(x) = [2]qu(x -k

=0

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

Here [-] is Gauss’ symbol. Then, taking integral from 0 to 1 in both sides of last

equality, we get

[k/2] E . [k/2] L .
k E2k—2]+1,q k E2k—2],q
~ 12l 2 ;O (2j> 2k—2j+1 " (21 (1-4) ]ZO <2j + 1) 2k - 2j

= [2],(-1)*B(k+ 1,k +1)

_2]DF
CQk+1)(3F)

Consequently, we derive the following theorem.

(2.18)
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Theorem 2.2. The following identity

[k/2] [k/2] r .
k\ Exx- —2j+14q Enk-2jq
21, Z<2]>2k 2j+1 +(q- 1)Z<]+1>2k 2]

~ q(—l)k+1
T (2k+1)(%)

(2.19)

is true.

In view of (2.1) and (2.17), we discover the following applications:

k+1[q< >+( 1)]<k;1>
= [2]qE2k+1,q(x) + [(k+1)/2] [q <2]> <2k]> ’ <2f’(— 1>] Bavr1-2ja (%)
. k+1)/2] [q<2] ¢ 1) <2in 1) _ (;)] Enkajq(x)
= [Ikz/z] <2k])E2k 2j,4(x) + (11+ (11 [kz/ﬂ (2].11 1>Ezk—2j+1(x)]
p=

[k/2] [k/2]

+[2], Z <2k].>E2k+12j,q(x) Z <2] 1>E2k+1 27,4 (%)

=0 j=1

E2k+1—j,q(x)

(2.20)

[k/2]

3 g-1821 N -
+(q-1) Z <2] N 1>Ezk 2j4(X) + 7—— 1 P Z <2]- N 1>Ezk—zj+1(x)~

By expressions (2.17) and (2.20), we have the following theorem.

Theorem 2.3. For k € N, one has

_ [(k/2] _
(2], Z <2k]> Enki1-2j,4(x) + ]; <2jk_ 1)E2k+1—2j,q(x)

[(k/2]
+(q-1) Z ( ) [EZk 2j,4(x) + 1 ! qEzk 2j+1(x) @21)

= xF(x - 1)k<[2]qx— q).
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3. p-adic Integral on Z, Associated with Kim’s g-Euler Polynomials

In this section, we consider Kim’s g-Euler polynomials by means of p-adic g-integral on Z,.
Now we start with the following assertion.
Let m, k € N. Then by (2.8),

h= 12, | 1))

P

21 S (™Y ey [ ap
2,5 (7) 0 o (31)

14

_ z]qg (T)(—l)’""ﬁz+k,q.

On the other hand, in right hand side of (2.8),

max {k,m} k+m j k+m— _
o (ORGSR R
z
' (3.2)
maka k+m] k+m—j _ _
SE) e (E (7
Equating I; and I, we get the following theorem.
Theorem 3.1. For m, k € N, one has
max{k,m} k+m~—j .
k ; k+m—-j\x ~
£ OO E Tt
=0 ] J 1=0
(3.3)

B (T e

Let us take fermionic p-adic g-integral on Z, in left hand side of (2.21), we get

L= | a0 (2 - q)dny ()

Zy

- 2]q§kj<’,‘)<—1>k-’j x’”’”dy-q<x>—quJ('l‘)(—l)"‘l [ a0 @

1=0 Zy 1=0 P

k k
k s k s
- 2]%;( (S qz< ) By
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In other words, we consider right hand side of (2.21) as follows:

[k/2] 2k-2j+1
k 2k -2j+1
I4 = [Z]q z_(; <2]> Z < l] >E2k+l —-2j- qu xld#—q(x)

1=0 Z,

[k/2] 2k-2j+1

k 2k -2j+1

T X ) LN g
1=0 Zy

2k-2j
2k - 2j
/21, (a-1) Z < >Ezk -2j- qu‘ xld,u_q(x)
> <2j + 1) s &
j= 2k-2j+1
e +£1] Z ( l] i >E2k —-2j— l+1J' xldy_q(x)
9 3 z,

[k/2] 2k-2j+1
k 2k —2j+1
= [Z]q 2_0 <2]> E < l] >E2k+l —-2j- lquq

1=0

[k/2] 2k-2j+1
2k-2j+1
! Z<2]—1) , ( ] >E2"” 2jtaFig

=0

(3.5)

+ J=
— 2]+1) _12k 2]+ 2k 2 +1
=0 1 ( l] >E2k —2j- l+1Elq

Equating I3 and I, we get the following theorem.

Theorem 3.2. For k € N, one has

k
k _ ~ ~
Z <l> (—1)k l{ [2]qu+l+1,q - qu+l,q}
1=0
Tk/2] 2%-2j+1
k 2k-2j+1
=[2], > < > > ( l]+ )E2k+1 i14E1

=0 2j 1=0

[k/2] 2k-2j+1
k ) <2k 2]+1> (3.6)
+ ( , Es10j-14E1
j=1 2j-1 % ! e
222 12k -2
(g-1) Z < ]>E2k 2i-14E1L

[k/2]< k

+

. 2]'+1) 4 12"21+1 2k -2j+1

=0 T*5)E E
1+q1§3< ] >2k2]l+1 lq
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Now, we consider (2.8) and (2.1) by means of g-Volkenborn integral. Then, by (2.8),
we see

21, [ =1 )
_ < [m _qym-1 l+k
= [2]ql§<l>( 1) IZ X dpg (x) (3.7)

4

= Z]qg (T) (-1)""Brikg.

On the other hand,

z o) (N E 1] s

P

(3.8)
maka m k+m—j k+m— i\ & _
[51< ) + (—1)]< >] < )Ek+m—j—l,qu,q-
i/ 5
Therefore, we get the following theorem.
Theorem 3.3. For m, k € N, one has
20,31 ) 0™ By
1=0
. (3.9)
max{km m k+m-—j k+m—j _ _
£h) - E e
U =
By using fermionic p-adic g-integral on Z, in left hand side of (2.21), we get
= 2, %= D2 = )
p
- (k k-1 k41 - (k k-1 K+l
= [Z]qZ<l>(—1) I XAy (x) - ), <l>(—1) j x " dpg(x) (3.10)
1=0 Zp 1=0 Zyp

k

= [21,2] (Il(> (-1 " Bisrsr g - qg <Il<> (=15 B

1=0
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Also, we consider right hand side of (2.21) as follows:

[k/2] 2%k-2j+1
k 2k-27+1
Ie = [2], Zo (2]-) Z ( l] >E2k+1 -2j- qu xld#q(x)
i=

1=0 Zp
[k/2] 2k-2j+1
k 2k —2j+1
+ Z (2]'—1) Z ( l] )E2k+1 -2j- qu xldyq(x)
j=1 1=0 Zp
2k-2j
2k - 2j
[k/2] k 1) Z ( >E2k -2j- quZ xld‘uq(x)
SRS |
i \2j +1 12k= 2]+1
=0 q- 2k -2j+1
! +m % < l] >E2k 2j-1+1 fz,, xld#q(x)
3.11
[k/2) /1 \ 2R 2 o 2j+1 (3.11)
= [2], Z (2]-) Z ( I >E2k+1 —2j- qulq
j=0 1=0
[k/2] 2k-2j+1
k 2k —2j+1
+ Z <2]_1> Z ( l] >E2k+1 2] qulq
j=1 1=0
2k-2j
2k - 2j
[k/2]< K -1) Z ( >E2k ~2j- qulq
2, 2]'+1> 22 2%k -2j+1 '
’ +(11Tq Z < l] >E2k 2j-141Big
1=0
Equating I5 and I, we get the following corollary.
Corollary 3.4. For k € N, one gets
k ~ ~
Z( >( 1)k l{ 2] Bk+1+1,q—qu+1,q}
1=0
[k/2] 2k-2j+1
k 2k -2j+1
=[2], Z <2j> Z < l] >E2k+1 -2j- qulq
=0 1=0
[k/2] 2k-2j+1
k 2k —-2j+1
+ <2] ) Z < l] >E2k+1 -2j- qulq (312)
1=0

2k-2j

2k - 2j
(q 1) Z ( >E2k —2j- qulq

2k -2j+1
+— Z < l] )Ezk —2j- 1+1qu
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