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A hybrid system with state-based switchings is proposed to describe the fed-batch production of
1,3-propandiol from glycerol in our previous work. However, the on-off switching of alkali is too
frequent, which greatly increases the computational cost of the numerical solution to the system
so as to locate the state-based switchings in strict time order and implement the correct mode
changes. To deal with this problem, we consider the switching of alkali pump as an impulsive
event and present a nonlinear impulsive switching system to describe the fed-batch culture. It
is proved that the impulsive switching system is non-Zeno. Some basic properties of solutions
to the impulsive switching system are also explored. In order to overcome the discontinuities of
the system, the Skorohod topology is induced and a specific form of λ is constructed to prove
the main theorem. Additionally, a numerical simulation is carried out to show that the proposed
system can describe the fed-batch culture properly and the essential difference with the previous
work.

1. Introduction

Glycerol can be converted to 1,3-PD by several microorganisms [1–3]. This bioconversion
process is of technical interest since the product 1,3-PD has numerous applications in
polymers, cosmetics, food, lubricants, and medicines [4]. The fermentation of glycerol by
K. pneumoniae under anaerobic conditions is a complex bioprocess, since microbial growth
is subjected to multiple inhibitions of substrate and products [5]. Almost all of the existing
culture techniques, including batch culture, fed-batch culture, and continuous culture, have
been practiced. By the fed-batch fermentation of glycerol, due to greatly eliminating substrate
inhibition, more glycerol is used and more biomass is obtained, resulting in high 1,3-PD
concentration and productivity [6]. Therefore, a lot of experimental researches have been
done on this culture [7–10].
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Many biological phenomena and their optimal controls cannot be formulated due to
continuous processes using ordinary or partial differential equations merely. The applications
of the impulsive differential equations emerge in pharmacokinetics, population dynamics,
mathematical in epidemiology, optimal management of renewable resources, and so forth.
[11]. Impulsive dynamical systems, which can be viewed as a subclass of hybrid systems,
consist of three components: a continuous-time differential equation, which governs the
motion of the dynamical system between impulsive and resetting events; a difference
equation, which characterizes the jump behavior of the system states when a resetting
event occurs; and a condition for determining when the states of the system are to be reset
[12].

During the fed-batch fermentation, glycerol and alkali are discontinuously added to
the reactor at constant rates, so as to keep the substrate concentration and the pH in the
desirable levels. In order to describe the open loop glycerol input and pH logic control,
the hybrid system based on an output equation of the pH was firstly established [13].
However, in the real process of fermentation, the effect of alkali feeding to the pH value
is much bigger than the effect of glycerol feeding on the order of magnitude. Additionally,
in the numerical simulation, the dwell time of alkali feeding is shortest among the four
possible modes. So the stepsize has to be very small. The cost of calculation will rise and
it is disadvantage for further study on the parameter identification and optimal control of
the hybrid system in which the hybrid system should be repeatedly computed. To overcome
this difficulty, the process of alkali feeding can be described by an impulsive process. It can
greatly reduce the cost of numerical calculation and describe the fed-batch culture properly.
When the impulsive switching system is applied to describe the fed-batch culture, it will
be found that the continuous dependence of the solution on the initial state or the kinetic
parameters fails to be satisfied in the common L2-norm [13], which is inconsistent with the
actual physical system of the fed-batch fermentation. The reason for this discontinuity is that
the time scale of the impulsive switching solutions with different initial state or parameters is
inconsistent [13] and L∞-norm is invalid for exploring the continuity property in this sense.
In this work, we overcome the structural weaknesses by inducing the Skorohod topology.
Skorohod topology was presented in 1960s [14], it grew matured, and had some important
properties in theory. However, in the aspect of applied science, it is not trivial to construct
the specific form of the λ. In this paper, we construct a specific form of λ to prove the main
theorem.

This paper is organized as follows. In Section 2, the background, impulsive switching
system of microbial fed-batch fermentation and its properties are introduced. In Section 3,
we discuss themain theorem about continuous dependence on parameters and initial state by
inducing the Skorohod topology, and a specific form of λ is constructed to prove it. Numerical
simulation of a fed-batch experiment is carried out in Section 4. Discussions and conclusions
are presented at the end of this paper.

2. Background, Dynamics, and Property

2.1. Model Formulation

The fed-batch culture begins with batch fermentation, then batch-fed glycerol and alkali are
poured into the reactor in order that the concentration of glycerol keeps in a proper range
and the pH of the solution in the desirable level.
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According to the factual experiments, we make the following assumptions.

(H1) The concentrations of reactants are uniform in reactor, while time delay and
nonuniform space distribution are ignored.

(H2) The feeding media includes only fixed concentrations of glycerol and alkali.

In the laboratory, the effect of alkali feeding on the pH value is much bigger than the
effect of glycerol feeding on the order of magnitude, and the time of alkali feeding is
relatively shorter than the whole experiment time. The impulsive switching system is fitter
for describing the actual process than the continuous system.

According to the above description, in this paper, we let FN = 0 in [13], that is, the
flow rate of alkali is zero. Glycerol feeding strategy is determined by a preassigned times
sequence. Let t0 = t0 < t1 < t2 < · · · < t2N = T be a partition of I := [t0, T]. [t0, t1] is a period of
time of batch fermentation, ti, i ∈ {1, 3, . . . , 2N − 1} is the moment of starting the inlet flow of
glycerol, and ti+1 is the moment of ending this input. So, for convenience, we let

j(t) =

⎧
⎪⎨

⎪⎩

0, t ∈
[
ti, ti+1

)
⇐⇒ FG = v,

1, t ∈
[
ti+1, ti+2

)
⇐⇒ FG = 0,

i ∈ {1, 3, . . . , 2N − 1}. (2.1)

Under the assumptions (H1) and (H2), the fed-batch process can be formulated by

dx1(t)
dt

=
(
μ − d

)
x1(t) − FG

x7(t)
x1(t) := f

j(t)
1

(
t, x, p

)
,

dx2(t)
dt

= −q2x1(t) +
FG

x7(t)
(Cs0 − x2(t)) := f

j(t)
2

(
t, x, p

)
,

dx3(t)
dt

= q3x1(t) − FG

x7(t)
x3(t) := f

j(t)
3

(
t, x, p

)
,

dx4(t)
dt

= q4x1(t) − FG

x7(t)
x4(t) := f

j(t)
4

(
t, x, p

)
,

dx5(t)
dt

= q5x1(t) − FG

x7(t)
x5(t) := f

j(t)
5

(
t, x, p

)
,

dx6(t)
dt

= − FG

x7(t)
x6(t) := f

j(t)
6

(
t, x, p

)
,

dx7(t)
dt

= FG := f
j(t)
7

(
t, x, p

)
,

(2.2)

where x := (x1, x2, x3, x4, x5, x6, x7) is the continuous state vector; p := (d, μm, ks, m2, m3,
m4, m5, Y2, Y3, Y4, Y5, Δ2, Δ3, Δ4, Δ5, K∗

2, K
∗
3, K

∗
4, K

∗
5, γ) is the parameter vector. The specific

growth rate of cells μ, specific consumption rate of substrate q2, and specific formation rate
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of products qi, i = 3, 4, 5, are expressed by the following equations based on previous works
[5, 13, 15]:

μ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

μm
x2

x2 + ks

(

1 − x1

x∗
1

)(

1 − x2

x∗
2

)(

1 − x3

x∗
3

)(

1 − x4

x∗
4

)(

1 − x5

x∗
5

)

,

if 0 ≤ xi ≤ x∗
i , i = 1, 2, 3, 4, 5,

0, otherwise

q2 = m2 +
μ

Y2
+ Δ2

x2

x2 +K∗
2
,

q3 = m3 + μY3 + Δ3
x2

x2 +K∗
3
,

q4 = m4 + μY4 + Δ4
x2

x2 +K∗
4
,

q5 = m5 + μY5 + Δ5
x2

x2 +K∗
5
.

(2.3)

According to the factual experiments, we only discuss the fermentation under acidic
environment in this paper. Since the added NaOH is the only basic source, we can make the
following assumption.

(H3) During the whole process of fed-batch culture, there exists a constant M > 0 such
that x4 − γx6 ≥ M.

For mathematical convenience, we let Pad :=
∏20

i=1[p
l
i, p

u
i ] ⊂ R

20 is the admissible set of
parameter vector;Wad := [0, x∗

1]× [0, x∗
2]× [0, x∗

3]× [0, x∗
4]× [0, x∗

5]× [0, x∗
6]× [0, x∗

7] ⊂ R
7
+ is the

admissible set of the continuous state vector x.
Under the assumptions (H1)–(H3), the pH at time t(∈ I) can be formulated by the

following output equation according to Dang [16]:

pH(t) = ypH(x(t))

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

pKa − lg
x4 − γx6

γx6
if x6 ≥ ε0,

−lg

⎛

⎜
⎝

−Ka +
√

K2
a + 4Kax4/

(
1000γ

)

2
+
√
K−

w

⎞

⎟
⎠ otherwise.

(2.4)

Here pKa = −lg(Ka); K−
w = 1 × 10−14; ε0 is a sufficient small constant, below which the

concentration of NaOH can be ignored while computing the pH.
To ensure that the pH is restricted in its admissible range, the following two

inequalities must hold during the entire fermentation time:

h0(x(t)) := pH∗ − ypH(x(t)) ≥ 0,

h1(x(t)) := ypH(x(t)) − pH∗ ≥ 0.
(2.5)
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2.2. Impulsive Switching System and Properties

Now, we also need to identify the rule which is the volume of alkali at each impulsive instant.
In this paper, the volume of alkali can exactly make the value of pH from pH∗ to pH∗. Thus,
we can deduce the specific form of impulsive volume. Then, we can describe the process of
fed-batch fermentation with open loop glycerol input and pH logic control by the following
impulsive switching system.

Defining surface Sk := {(τk, x(τk)) | h1(x(τk)) = 0}, on the basis of (H3), we have
τk < τk+1 and τk → ∞, while k → ∞,

ẋ(t) = fj(t)(t, x, p
)
=
(
f
j(t)
1 (t, x), . . . , f j(t)

7 (t, x)
)T

, (t, x(t)) ∈ Sk,

Δx = I
(
t, x, p

)
, (t, x(t))∈Sk,

x
(
t+0
)
= x0,

(2.6)

where I(t, x, p) = (x1(t)ΔV/(V +ΔV ), . . . , x1(t)ΔV/(V +ΔV ), (ρ−x6(t))ΔV/(V +ΔV ),ΔV )T .
The solution of system (2.6) corresponding to a parameter vector is denoted by x(t; p).

Given any j ∈ {0, 1}, it is easy to verify that the function fj in (2.6) satisfies the
following property referring [17, 18].

Property 1. The functions fj , j ∈ {0, 1}, and I defined in (2.6) satisfy

(i) fj is Lipschitz in x on X and continuous in p on Pad;

(ii) there exists positive constant α such that the linear growth condition holds, that is,

∥
∥
∥fj(t, x, p

)∥∥
∥ ≤ α(‖x‖ + 1) ∀x ∈ X, p ∈ Pad,

∥
∥I
(
t, x, p

)∥
∥ ≤ α(‖x‖ + 1) ∀x ∈ X,

(2.7)

where ‖ · ‖ is the Euclidean norm.

Property 2. Under the assumptions (H1)–(H3), given p ∈ Pad, the system (2.6) needs at most
finitely many times of switchings over the time interval I. That is, the system is non-Zeno.

Proof. On the basis of the proof of Property 2 in [13], we only need to prove that the number
of impulsive instants is finite.

Without loss of generality, consider a period of time with the moment to start alkali
pump as initial time and the next moment to start alkali pump as end time, and assume that
glycerol pump is running during this phase. The fermentation process in this phase can be
described by the following subsystem:

ẋ = fj(t)(t, x, p
)
, x(τk) = x

(
τ−k
)
+ I
(
τk, x, p

)
, t ∈ [τk, τk+1). (2.8)
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t′1 = λ(t1) t′m = λ(tm)

Figure 1: Comparison of two solutions with same initial data and different parameters.

According to Property 1 and the classical theory of differential equations, there exists a
unique solution to the subsystem (2.8) on the time interval [τk, τk+1), denoted by xt(·;xτk),
which is given by

xt(·;xτk) = x
(
τ−k
)
+
∫ t

τk

f j(s)(s, x, p
)
ds, ∀t ∈ [τk, τk+1). (2.9)

According to the impulsive rule of the alkali, τk and τk+1 are, respectively, the instants that
the pH reaches its allowable upper and lower bounds. Thus, the total variation of pH(·) over
[τk, τk+1), V

τk+1
τk (pH), is given by

V τk+1
τk

(
pH
) ≥ pH∗ − pH∗ � ΔpH. (2.10)

Consequently, we can follow the method in [13] step by step to prove the desired
results.

3. Skorohod Topology and Regularity Properties

It should be mentioned that impulsive dynamical systems can be viewed as a subclass of
hybrid systems [12]. According to our similar analysis about Property 2 and the proofs of
Theorems 1 and 2 in [13], we can verify that the time viable is of continuous dependence
on parameters and initial state. However, the property of continuous dependence about the
solution of the impulsive switching system is not trivial. For example, we can see from
Figure 1, intuitively, it is a common property that the trajectory of the parameter p′ should
continuously approach the trajectory of the parameter p. But, the property is obviously failed
in the L∞-norm. The nature of these discontinuities is that the time scale of the impulsive
switching solutions with different parameters is inconsistent. So, we overcome the structural
weaknesses by inducing the following Skorohod topology.
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Figure 2: Comparison of biomass concentration between experimental data and computational results.

Since we can never expect to have the continuity of x(t; p) with respect to p at t∗ =
τk(x(t∗; p)) for some k ≥ 1, we have the definition of continuous dependence on parameters of
impulsive dynamical system as follows, which is similar definition of continuous dependence
on initial value of impulsive dynamical system in [11].

Definition 3.1. The solutions x(t; p) of system (2.6) are said to have continuous dependence
relative to p if and only if

(a)

lim
p′ → p

x
(
t; p′
)
= x
(
t; p
)
if t /= τk

(
x
(
t; p
)) ∀k ≥ 1, (3.1)

(b) for any ε > 0 there is a closed set Jε ⊂ J and a δ > 0 such that m(J/Jε) < ε and

∥
∥x
(
t, p′
) − x

(
t, p
)∥
∥ < ε, t ∈ Jε (3.2)

provided

∥
∥p′ − p

∥
∥ < δ, (3.3)

where m denotes the Lebesgue measure.

In (3.2), t and t′ may be different in response to different parameters. The impulsive
instant is based on the feedback of the state, which is not preassigned. So, in order to prove
the continuous dependence on parameters, the general Euclidean norm cannot give us the
desired result, we also need the Skorohod topology defined in [14].

LetD = D[t0,tf ] be the space of functions x on [t0, tf] that are right-continuous and have
left limits.Λ denotes the class of strictly increasing, continuousmappings of [t0, tf] onto itself.
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Figure 3: Comparison of glycerol concentration between experimental data and computational results.
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Figure 4: Comparison of 1,3-PD concentration between experimental data and computational results.

If λ ∈ Λ, then λ(0) = 0 and λ(tf) = tf . For x and y in D, define the Skorohod topology to be
the infimum of those positive ε for which there exists in Λ a λ such that

sup
t

|λ(t) − t| ≤ ε,

sup
t

∣
∣x(t) − y(λ(t))

∣
∣ ≤ ε.

(3.4)

Here, λ is kind of time scaling, we can use it to compare the different solution with
respect to the different parameters. With the above preparation, we can prove the next
theorem.
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Figure 5: Comparison of acetic acid concentration between experimental data and computational results.
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Figure 6: Comparison of ethanol concentration between experimental data and computational results.

Remark 3.2. Skorohod topology was presented in 1960s [14]; it grew matured and had some
important properties in theory. However, in the aspect of applied science, it is not trivial to
construct the specific form of the λ.

Theorem 3.3. Under the assumptions (H1)–(H3), given p ∈ Pad and glycerol switching signal vector
σ, the solution of system (2.6)is of continuous dependence on parameters. That is, (3.2) is satisfied.

Proof. On the basis of Property 2, without loss of generality, we only need to prove the
theorem for a special situation showed in Figure 1, that is, the number of impulsive instant
of the solutions x(t, p) is one more time than the solution x(t, p′); furthermore, x(t, p) has a
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Figure 7: Comparison of Na+ ions concentration between experimental data and computational results.

impulsive instant at the final time tf . Consequently, a formulation of λ is presented as follows:

λ(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t0
(
p′
)
+
t1
(
p′
) − t0

(
p′
)

t1
(
p
) − t0

(
p
)
(
t − t0

(
p
))
, t ∈ [t0

(
p
)
, t1
(
p
)]
,

...

ti
(
p′
)
+
ti+1
(
p′
) − ti

(
p′
)

ti+1
(
p
) − ti

(
p
)
(
t − ti

(
p
))
, t ∈ [ti

(
p
)
, ti+1
(
p
)]
,

...

tm
(
p
)
+
tm
(
p′
) − tm−1

(
p′
)

tm
(
p
) − tm−1

(
p
)
(
t − tm−1

(
p
))
, t ∈ [tm−1

(
p
)
, tm
]
,

tf , t ∈ [tm, tf
]
.

(3.5)

In view of the definition of λ(t), the time scale of different impulsive instant is
transformed to be consistent, so we only need to prove the desired result on the time interval
[tm, tf]. For different parameters p and p′, we have

x
(
t+f , p
)
= x
(
t−f , p
)
+ Δx

(
tf
)
,

x
(
λ(t), p′

)
= x
(
t−M, p′

)
+ Δx

(
t−m
)
+
∫ t

tm

ẋds,
(3.6)

while p′ → p, tm → tf . By virtue of implicit function theorem, we can easily obtain that
Δx(t−m) → Δx(tf).

Summing up the above, we can obtain our desired result.
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Table 1: Glycerol feeding strategy.

Time period 0 h–10 h 10 h–12 h 12 h–15 h 15 h–18 h 18 h–20 h

Feeding time (s/100 s) 0 1.25 1.61 1.65 2.22

Time period 20 h–22 h 22 h–24 h 24 h–26 h 26 h–28 h 28 h–30 h

Feeding time (s/100 s) 2.32 1.77 1.89 1.23 1.0

Time period 30 h–32 h 32 h–34 h 34 h–36 h 36 h–39 h

Feeding time (s/100 s) 0.76 0.97 1.58 0.89

Table 2: Parameters values of each reactant in the impulsive switching system.

Reactant μm ks x∗
i mi Yi Δi Ki

Biomass 0.67 0.28 10

Glycerol 2039 2.20 0.0082 28.58 11.43

1,3-PD 1300 −2.69 67.69 26.59 15.50

Acetic acid 026 −0.97 33.07 5.74 85.71

Ethanol 360.9 −0.97 33.07 5.74 85.71

4. Numerical Simulation of Microbial Fed-Batch Culture

A fed-batch fermentation was carried out under anaerobic conditions at 37◦C starting from
the batch process (i.e., j0 = 0) with initial continuous state vector x0 = (0.155, 434.783, 0.0,0.0,
0.0, 0.0, 2.0). The pH was controlled in 6.48–6.52, that is, pH∗ = 6.48 and pH∗ = 6.52. The
total fermentation time was 39 hours, which was divided into time units of 100 seconds,
that is, there were 39 × 36 time units. The flow rate of glycerol was v = 0.80 L/h, and the
corresponding concentrations were Cs0 = 12888mmol/L and ρ = 5000mmol/L, respectively.
Glycerol feeding strategy is shown in Table 1.

The solution was sampled l(= 18) times during the fermentation process to measure
the concentrations of biomass, glycerol, 1,3-PD, acetic acid, and ethanol, accompanied
with on-line measurement of the volume of the solution. The concentration of Na+

ions was directly calculated from the mount of added NaOH and the volume of the
solution.

The parameters d and γ were roughly estimated based on the experimental data.
The other parameters were referred to [5] listed in Table 2. The impulsive switching system
was numerical solved by using the Euler method. The step size of the Euler method was
1/72000 h, which was derived empirically after several times of numerical experiments.

The numbers of times and the volumes of feeding glycerol and alkali were calculated.
The feeding time of glycerol is 0.4151 h. The numbers of times of feeding glycerol and alkali
are 1044 and 6160, respectively. The feeding volumes of feeding glycerol and alkali are
0.3326 L−1 and 0.1887 L−1, respectively. Figures 2, 3, 4, 5, 6, 7, and 8 show the comparison
of all components between experimental data and computational results, where the stars
denote the experimental data and the solid lines denote the computational curves. Figure 9
shows that the pH is controlled within the desirable region during most of the fermentation
time. There is no much difference between our results and previous ones in [13]. That is the
total fermentation time was divided into time units of 100 seconds, it is not noticeable to
see the impulsive effect from Figures 1–8. Therefore, for example, in the case of simulation
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Figure 8: Comparison of the volume of solution between experimental data and computational results.
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Figure 9: Simulation of the pH during 30–33 hours of fed-batch culture.

of the pH, we plot the value of pH during 30–33 hours on the step size of the Euler
method to show the impulsive effect in Figure 10. It is essential difference between the two
systems.

5. Discussions and Conclusions

In this paper, a nonlinear impulsive switching system based on [13] is developed to
describe the fed-batch culture with open loop glycerol input and pH logic control. To be
distinct from [13], the pH logic control, that is, the process of alkali feeding is described
by impulsive process according to the factual fermentation. We consult the method of
proof in [13] to prove some basic properties of the solution to the system, including the
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Figure 10: Simulation of the pH during 30–33 hours of fed-batch culture.

existence, uniqueness, boundedness, and continuous dependence with respect to initial-
state-parameter pair. Numerical simulation of a factual experiment is carried out, illustrating
that the proposed system can describe the concentrated fed-batch culture properly and the
essential difference with the previous work.

Our current work accommodate the simulation of the fermentation process. In a future
work, we will consider the stability and reachability of the impulsive switching model.
Additionally, the objective of our efforts is to delve into the optimal control of the impulsive
switching system.

Nomenclature

Cs0 : Concentration of glycerol in feed medium (mmol L−1)
d: Specific decay rate of cells (h−1)
FG: Flow rates of glycerol (Lh−1))
ks: Monod saturation constant for substrate (mmolL−1)
Ka: The averaged dissociation constant of acid byproducts
K−

w: Dissociation constant of water
K∗

i : Saturation constants for substrate and product in kinetic equations with excess terms
(mmol L−1), i = 2, 3, 4, 5

mi: Maintenance term of substrate consumption and product formation under
substrate-limited conditions (mmol g−1 h−1), i = 2, 3, 4, 5

x1: Biomass concentration (gL−1)
x2: Substrate (glycerol) concentration (mmol L−1)
xi: Product (1,3-PD, EtOH, HAc) concentration (mmolL−1), i = 3, 4, 5
x6: Concentration of Na+ ions coming from the added NaOH
x7: Volume of feed medium (L)
x∗
1: Carrying capacity of the environment (gL−1)

x∗
2: Maximum residual substrate concentration (mmolL−1)

x∗
i : Maximum product (1,3-PD, EtOH, HAc) concentration (mmolL−1), i = 3, 4, 5
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x∗
6: Critical concentration of NaOH

x∗
7: Maximum working volume for the

bioreactor
Y2, Yi: Maximum growth yield (gmmol−1)

and product yield (mmol g−1)
i = 3, 4, 5.

Greek Letters

μ, μm: Specific and maximum specific growth rates (h−1)
ρ: Concentration of NaOH in feed medium
γ : Ratio of acetic acid concentration to the total acid byproducts concentration
Δi: Maximum increment of substrate consumption rate and product formation rate

under substrate-sufficient conditions (mmol g−1)h−1), i = 2, 3, 4, 5.
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