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We introduce a generalization of the Meir-Keeler-type contractions, referred to as generalized
Meir-Keeler-type contractions, over partial metric spaces. Moreover, we show that every orbitally
continuous generalized Meir-Keeler-type contraction has a fixed point on a 0-complete partial
metric space.

1. Introduction

In 1992, Matthews introduced the notion of a partial metric space which is a generalization
of usual metric space [1]. The main motivation behind the idea of a partial metric space is
to transfer mathematical techniques into computer science. This is mostly apparent in the
research areas of computer domains and semantics, which have many applications (see, e.g.,
[2–10]). Following this initial work, Matthews generalized the Banach contraction principle
in the context of complete partial metric spaces. He proved that a self-mapping T on a
complete partial metric space (X, p) has a unique fixed point if there exists 0 ≤ k < 1 such that
p(Tx, Ty) ≤ kp(x, y) for all x, y ∈ X. After Matthews’ innovative approach, many authors
conducted further studies on partial metric spaces and their topological properties (see, e.g.,
[2–4, 6, 11–41]).

A partial metric is a function p : X ×X → [0,∞) satisfying the following conditions:
(P1) p(x, y) = p(y, x),
(P2) if p(x, x) = p(x, y) = p(y, y), then x = y,
(P3) p(x, x) ≤ p(x, y),
(P4) p(x, z) + p(y, y) ≤ p(x, y) + p(y, z),

for all x, y, z ∈ X. Then (X, p) is called a partial metric space.



2 Abstract and Applied Analysis

Example 1.1 (see [42]). Let (X, d) and (X, p) be a metric space and partial metric space,
respectively. Mappings ρi : X ×X → R

+ (i ∈ {1, 2, 3}) defined by

ρ1
(
x, y

)
= d

(
x, y

)
+ p

(
x, y

)
,

ρ2
(
x, y

)
= d

(
x, y

)
+max

{
ω(x), ω

(
y
)}
,

ρ3
(
x, y

)
= d

(
x, y

)
+ a

(1.1)

induce partial metrics on X, where ω : X → R
+ is an arbitrary function and a ≥ 0.

Each partial metric p on X generates a T0 topology τp on X with the family of open
p-balls {Bp(x, ε) : x ∈ X, ε > 0} as a base, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε} for
all x ∈ X. Similarly, a closed p-ball is defined as Bp[x, ε] = {y ∈ X : p(x, y) ≤ p(x, x) + ε}.

In [1, page 187], Matthews gave the characterization of convergence in partial metric
space as follows: a sequence {xn} in a partial metric space (X, p) converges to x ∈ X with
respect to τp if and only if limn→∞ p(x, xn) = p(x, x).

Now we recall some basic concepts and useful facts on completeness of partial
metric spaces. A sequence {xn} in a partial metric space (X, p) is called Cauchy whenever
limn,m→∞ p(xn, xm) exists (and is finite) [1, Definition 5.2].

A partial metric space (X, p) is said to be complete if every Cauchy sequence {xn} in
X converges, with respect to τp, to a point x ∈ X such that limn,m→∞ p(xn, xm) = p(x, x) [1,
Definition 5.3].

In [35], Romaguera introduced the concepts 0-Cauchy sequence in a partial metric
space and 0-complete partial metric space as follows.

Definition 1.2. A sequence {xn} in a partial metric space (X, p) is called 0-Cauchy if
limn,m→∞ p(xn, xm) = 0. A partial metric space (X, p) is said to be 0-complete if every 0-
Cauchy sequence in X converges, with respect to τp, to a point x ∈ X such that p(x, x) = 0. In
this case, p is said to be a 0-complete partial metric on X.

Notice that each 0-Cauchy sequence is also a Cauchy sequence in a partial metric
space. In particular, each complete partial metric is a 0-complete partial metric on X. But
the converse is not true. The following example shows that there exists a 0-complete partial
metric which is not complete.

Example 1.3 (see [35, 39]). Let (Q ∩ [0,∞), p) be the partial metric space, where Q and p(x, y)
represent the set of rational numbers and the partial metric max{x, y}, respectively.

A self-mapping F on a partial metric space (X, p) is continuous at x ∈ X if and only if
for every ε > 0, there exists δ > 0 such that F(Bp(x, δ)) ⊆ Bp(Fx, ε) (see, e.g., [15]).

It is quite natural to consider characterizations of continuity of mappings in partial
metric spaces. For example, Samet et al. [43] proved the following.

Lemma 1.4. Let (X, p) be a partial metric space. F : X → X is continuous if given a sequence {xn} ∈
N and x ∈ X such that p(x, x) = limn→+∞ p(x, xn); then, p(Fx, Fx) = limn→+∞ p(Fx, Fxn).

Very recently, Samet et al. [43] also observed the relationship between the continuity
of a mapping in a partial metric space and in a metric space.
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Lemma 1.5. Consider X = [0,∞) endowed with the partial metric p : X × X → [0,∞) defined by
p(x, y) = max{x, y} for all x, y ≥ 0. Let F : X → X be a nondecreasing function. If F is continuous
with respect to the standard metric d(x, y) = |x−y| for all x, y ≥ 0, then F is continuous with respect
to the partial metric p.

In 1971, Ćirić [44] introduced orbitally continuous maps on metric spaces as follows.

Definition 1.6. Let (X, d) be a metric space. A mapping T on X is orbitally continuous if
limi→∞ Tnix = u implies limi→∞ T Tnix = Tu for each x ∈ X.

Recently, Karapınar and Erhan [28] renovated the definition above in the context of
partial metric spaces in the following way.

Definition 1.7. Let (X, p) be a partial metric space, and let T : X → X be a self-map.
One says that T is orbitally continuous whenever limi→∞ p(Tnix, z) = p(z, z) implies that
limi→∞ p(TTnix, Tz) = p(Tz, Tz) for each x ∈ X.

It is clear that continuous mappings are orbitally continuous.
We would like to point out the close relationship between metrics and partial metrics.

In fact, if p is a partial metric on X, then the function dp : X ×X → [0,∞) given by

dp
(
x, y

)
= 2p

(
x, y

) − p(x, x) − p(y, y) (1.2)

is a metric on X. Moreover,

lim
n→∞

dp(x, xn) = 0 ⇐⇒ lim
n→∞

p(x, xn) = lim
n,m→∞

p(xn, xm) = p(x, x). (1.3)

Lemma 1.8 (see, e.g., [1, 15]). Let (X, p) be a partial metric space.
(a) A sequence {xn} is Cauchy if and only if {xn} is a Cauchy sequence in the metric space

(X, dp);
(b) (X, p) is complete if and only if the metric space (X, dp) is complete.

In 1969, Meir and Keeler [45] published their celebrated paper in which an interesting
and general contraction condition for self-maps in metric spaces was considered.

Definition 1.9. Let (X, d) be a metric space, and let T be a self-map on X. Then T is called a
Meir-Keeler-type contraction whenever for each ε > 0 there exists δ > 0 such that

d
(
x, y

)
< ε + δ =⇒ d

(
Tx, Ty

)
< ε. (1.4)

Many authors have discussed several variations, generalizations, and modifications of
that condition both inmetric spaces and other related structures (see, e.g., [46–49]). Following
this trend, we introduce a generalized Meir-Keeler-type contraction on partial metric spaces.
In this paper, we show an orbitally continuous self-mapping T on a 0-complete partial metric
spaces satisfying that generalized Meir-Keeler-type contraction has a unique fixed point.
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2. Main Results

We start this section by recalling the following two lemmas ([13]), which will be frequently
used in the proofs of the main results.

Lemma 2.1. Let (X, p) be a partial metric space. Then
(a) if p(x, y) = 0, then x = y,
(b) if x /=y, then p(x, y) > 0,
(c) if xn → z with p(z, z) = 0, then limn→∞ p(xn, y) = p(z, y) for all y ∈ X.

We introduce the definition of a generalized Meir-Keeler-type contraction.

Definition 2.2. Let (X, p) be a partial metric space and T a self-map on X. Then T is called a
generalized Meir-Keeler-type contraction whenever for each ε > 0 there exists δ > 0 such that

ε ≤M(
x, y

)
< ε + δ =⇒ p

(
Tx, Ty

)
< ε, (2.1)

whereM(x, y) = max{p(x, y), p(Tx, x), p(Ty, y), (1/2)[p(Tx, y) + p(x, Ty)]}.

Remark 2.3. Note that if T is a generalized Meir-Keeler-type contraction, we have

p
(
Tx, Ty

) ≤M(
x, y

) ∀x, y ∈ X. (2.2)

IfM(x, y) = 0, it follows from (2.2) that p(Tx, Ty) = 0. On the other hand, ifM(x, y) > 0, we
get the strict inequality p(Tx, Ty) < M(x, y) by (2.1).

Now, we are ready to state and prove our main results.

Proposition 2.4. Let (X, p) be a partial metric space and T : X → X a generalized Meir-Keeler-type
contraction. Then, limn→∞ p(Tn+1x, Tnx) = 0 for all x ∈ X.

Proof. Take x ∈ X, and set x0 = x. Define xn+1 = Txn = Tn+1x0 for all n ≥ 0. If p(xn0+1, xn0) = 0
for some n0 ≥ 0, then Txn0 = xn0+1 = xn0 by Lemma 2.1. Then, p(xk+1, xk) = 0 for all k ≥ n0. In
this case, the proposition follows. In the rest of the proof, we assume that p(xn+1, xn)/= 0 for
every n ≥ 0. As a consequence, we haveM(xn+1, xn) > 0 for every n ≥ 0. By Remark 2.3,

p(xn+2, xn+1) = p(Txn+1, Txn) ≤M(xn+1, xn)

= max
{
p(xn+1, xn), p(Txn+1, xn+1), p(Txn, xn),

1
2
[
p(Txn+1, xn) + p(xn+1, Txn)

]
}

≤ max
{
p(xn+1, xn), p(xn+2, xn+1)

}
.

(2.3)

SinceM(xn+1, xn) is strictly positive for each n, we find that

p(xn+2, xn+1) < M(xn+1, xn) ≤ max
{
p(xn+1, xn), p(xn+2, xn+1)

}
(2.4)
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by the use of Remark 2.3 again. Notice that the case where

max
{
p(xn+1, xn), p(xn+2, xn+1)

}
= p(xn+2, xn+1) (2.5)

is not possible. Hence we derive that

p(xn+2, xn+1) < M(xn+1, xn) ≤ p(xn+1, xn) (2.6)

for every n. Thus, {p(xn+1, xn)}∞n=0 is a decreasing sequence which is bounded below by 0.
Hence, it converges to some ε ∈ [0,∞), that is,

lim
n→∞

p(xn+1, xn) = ε. (2.7)

In particular, we have

lim
n→∞

M(xn+1, xn) = ε. (2.8)

Notice that ε = inf{p(xn, xn+1) : n ∈ N}.
We claim that ε = 0. Suppose, to the contrary, that ε > 0. Regarding (2.8) together with

the assumption that T is generalizedMeir-Keeler-type contraction, for this ε, there exists δ > 0
and a natural numberm such that

ε ≤M(xm+1, xm) < ε + δ implies that p(Txm+1, Txm) = p(xm+2, xm+1) < ε. (2.9)

This is a contradiction since ε = inf{p(xn, xn+1) : n ∈ N}.

Theorem 2.5. Let (X, p) be a 0-complete partial metric space, and let T : X → X be an orbitally
continuous generalized Meir-Keeler-type contraction. Then, T has a unique fixed point, say z ∈ X.
Moreover, limn→∞ p(Tnx, z) = p(z, z) for all x ∈ X and p(z, z) = 0.

Proof. Take x ∈ X, and set x0 = x. Define xn+1 = Txn = Tn+1x0 for all n ≥ 0. We claim that
limm,n→∞ p(xn, xm) = 0. If this is not the case, then there exist a ε > 0 and a subsequence
{xn(i)} of {xn} such that

p
(
xn(i), xn(i+1)

)
> 2ε. (2.10)

For the same ε > 0 above, there exists δ > 0 such that ε ≤M(x, y) < ε+δwhich implies
that p(Tx, Ty) < ε. Set r = min{ε, δ} and dn = p(xn, xn+1) for all n ≥ 1. By Proposition 2.4, one
can choose a natural number n0 such that

dn = p(xn, xn+1) <
r

4
(2.11)
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for all n ≥ n0. Let n(i) > n0. We have n(i) ≤ n(i + 1) − 1. If p(xn(i), xn(i+1)−1) ≤ ε + (r/2), then by
using (P4) we derive

p
(
xn(i), xn(i+1)

) ≤ p(xn(i), xn(i+1)−1
)
+ p

(
xn(i+1)−1, xn(i+1)

) − p(xn(i+1)−1, xn(i+1)−1
)

≤ p(xn(i), xn(i+1)−1
)
+ p

(
xn(i+1)−1, xn(i+1)

)

< ε +
r

2
+ dn(i+1)−1 < ε +

3r
4
< 2ε,

(2.12)

which contradicts with assumption (2.10). Therefore, there are values of k such that n(i) ≤
k ≤ n(i + 1) and p(xn(i), xk) > ε + (r/2). Now if p(xn(i), xn(i)+1) ≥ ε + (r/2), then

dn(i) = p
(
xn(i), xn(i)+1

) ≥ ε + r

2
> r +

r

2
>
r

4
. (2.13)

This is a contradiction because of (2.11). Hence, there are values of k with n(i) ≤ k ≤ n(i +
1) such that p(xn(i), xk) < ε + (r/2). Choose the smallest integer k with k ≥ n(i) such that
p(xn(i), xk) ≥ ε + (r/2). Thus, we find p(xn(i), xk−1) < ε + (r/2). So we see that

p
(
xn(i), xk

) ≤ p(xn(i), xk−1
)
+ p(xk−1, xk) − p(xk−1, xk−1)

≤ p(xn(i), xk−1
)
+ p(xk−1, xk) < ε +

r

2
+
r

4
= ε +

3r
4
.

(2.14)

Now, we can choose a natural number k satisfying n(i) ≤ k ≤ n(i + 1) such that

ε +
r

2
≤ p(xn(i), xk

)
< ε +

3r
4
. (2.15)

Therefore, we obtain the inequalities

p
(
xn(i), xk

)
< ε +

3r
4
< ε + r, (2.16)

p
(
xn(i), xn(i)+1

)
= dn(i) <

r

4
< ε + r,

p(xk, xk+1) = dk <
r

4
< ε + r.

(2.17)

Thus, we have

1
2
[
p
(
xn(i), xk+1

)
+ p

(
xn(i)+1, xk

)]

≤ 1
2
[
p
(
xn(i), xk

)
+ p(xk, xk+1) − p(xk, xk) + p

(
xn(i)+1, xn(i)

)
+ p

(
xn(i), xk

) − p(xn(i), xn(i)
)]

≤ 1
2
[
p
(
xn(i), xk

)
+ p(xk, xk+1) + p

(
xn(i)+1, xn(i)

)
+ p

(
xn(i), xk

)]

= p
(
xn(i), xk

)
+
1
2
[
dk + dn(i)

]
< ε +

3r
4

+
1
2

[ r
4
+
r

4

]
= ε + r.

(2.18)
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Now, inequalities (2.16)–(2.18) imply that M(xn(i), xk) < ε + r ≤ ε + δ. Hence, the fact that
T is a generalized Meir-Keeler-type contraction yields p(xn(i)+1, xk+1) < ε. By using (P4), we
obtain

p
(
Tn(i)x0, T

kx0
)
≤ p

(
Tn(i)x0, T

n(i)+1x0
)
+ p

(
Tn(i)+1x0, T

kx0
)

− p
(
Tn(i)+1x0, T

n(i)+1x0
)

≤ p
(
Tn(i)x0, T

n(i)+1x0
)
+ p

(
Tn(i)+1x0, T

kx0
)

≤ p
(
Tn(i)x0, T

n(i)+1x0
)
+ p

(
Tn(i)+1x0, T

k+1x0
)

+ p
(
Tk+1x0, T

kx0
)
.

(2.19)

We combine the inequality above with (2.15) and (2.17) to conclude

p
(
xn(i)+1, xk+1

) ≥ p(xn(i), xk
) − p(xn(i), xn(i)+1

) − p(xk, xk+1)
> ε +

r

2
− r

4
− r

4
= ε,

(2.20)

which is a contradiction. Therefore, our claim is proved. So {xn} = {Tnx0} is a 0-Cauchy
sequence. Since (X, p) is 0-complete, then by Definition 1.2, the sequence {xn} converges with
respect to τp to some z ∈ X such that p(z, z) = 0. Thus

lim
n→∞

p(Tnx0, z) = p(z, z) = 0. (2.21)

Now, we will show that z is a fixed point of T .
Since T is orbitally continuous and limn→∞p(Tnx0, z) = p(z, z), we get that

lim
n→∞

p(TTnx0, Tz) = p(Tz, Tz). (2.22)

On the other hand, from Lemma 2.1, we have

lim
n→∞

p(TTnx0, Tz) = lim
n→∞

p(xn+1, Tz) = p(z, Tz) (2.23)

which follows from the fact that {xn+1} converges to z in (X, p)with p(z, z) = 0, where xn+1 =
TTnx0 = Tn+1x0. Combining this with (2.22), we get that p(z, Tz) = p(Tz, Tz).

We aim to show that p(z, Tz) = 0. Assume that p(z, Tz) > 0. Then, we obtainM(z, z) ≥
p(z, Tz) > 0. By (2.2), we have

p(Tz, Tz) < M(z, z) = max
{
p(z, z) = 0, p(z, Tz)

}
= p(z, Tz) = p(Tz, Tz), (2.24)

a contradiction. This implies Tz = z by Lemma 2.1.
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Finally, we show that T has a unique fixed point. If there existsw ∈ X such that Tw = w
and p(z,w)/= 0, then we getM(z,w) ≥ p(z,w) > 0. Since T is a generalized Meir-Keeler-type
contraction, we derive

0 < p(z,w) = p(Tz, Tw) < M(z,w)

= max
{
p(z,w), p(Tz, z), p(Tw,w),

1
2
[
p(Tz,w) + p(z, Tw)

]
}

= max
{
p(z,w), p(w,w)

}
= p(w, z),

(2.25)

which is a contradiction. Thus, we find that p(z,w) = 0. So by Lemma 2.1 we conclude that
z = w. In particular, T has a unique fixed point.

We state two examples to illustrate our results.

Example 2.6. Let (X, p) be the set [0,∞) equipped with the partial metric p(x, y) = max{x, y}.
Clearly, (X, p) is a 0-complete partial metric space. Consider T : X → X defined by Tx =
x/3(1 + x). Given ε > 0, we will show that there exists δ = δ(ε) ≥ 0 such that (2.1) holds for
all x, y ∈ X. Without loss of generality, take x ≤ y. Then, it is easy to show that

p
(
Tx, Ty

)
=

y

3
(
1 + y

)

M
(
x, y

)
= max

{
p
(
x, y

)
, p(Tx, x), p

(
Ty, y

)
,
1
2
[
p
(
Tx, y

)
+ p

(
x, Ty

)]
}

= y.
(2.26)

Thus, taking δ(ε) = 2ε, we get that (2.1) holds. Also, by Lemma 1.5, the mapping T is
continuous, and hence it is orbitally continuous. All hypotheses of Theorem 2.5 are satisfied
and z = 0 is the unique fixed point of T .

Example 2.7. Let (X, p) be the interval [0, 2] equipped with the partial metric p(x, y) =
max{x, y}. Consider T : X → X defined by

Tx =

⎧
⎪⎨

⎪⎩

x

2
if 0 ≤ x < 1,

1
2

if 1 ≤ x ≤ 2.
(2.27)

Take x ≤ y. Given ε > 0, we have the two following cases.

Case 1 (0 ≤ x ≤ y < 1). We have

p
(
Tx, Ty

)
=
y

2
, M

(
x, y

)
= y. (2.28)

Case 2 ((0 ≤ x < 1 and 1 ≤ y < 2) or (1 ≤ x ≤ y ≤ 2)). We have

p
(
Tx, Ty

)
=

1
2
, M

(
x, y

)
= y. (2.29)
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In each case, it suffices to take δ = ε in order that (2.1) holds. Again, by Lemma 1.5, the
mapping T is continuous, and hence it is orbitally continuous. All hypotheses of Theorem 2.5
are satisfied and z = 0 is the unique fixed point of T .
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[24] L. Ćirić, B. Samet, H. Aydi, and C. Vetro, “Common fixed points of generalized contractions on partial
metric spaces and an application,”Applied Mathematics and Computation, vol. 218, no. 6, pp. 2398–2406,
2011.
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