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Copyright q 2012 D. Miheţ and C. Zaharia. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

By using the fixed point method, we obtain a version of a stability result of Baker in probabilistic
metric and quasimetric spaces under triangular norms of Hadžić type. As an application, we prove
a theorem regarding the stability of the additive Cauchy functional equation in random normed
spaces.

1. Introduction

The use of the fixed point theory in the study of Ulam-Hyers stability was initiated by Baker
in the paper [1]. Baker used the classical Banach fixed point theorem to prove the stability of
the nonlinear functional equation

f(x) = Φ
(
x, f

(
η(x)

))
. (1.1)

His result reads as follows.

Theorem 1.1 (see [1, Theorem 2]). Suppose S is a nonempty set, (X, d) is a complete metric space,
η : S → S, Φ : S ×X → X, λ ∈ [0, 1), and

d
(
Φ(u, x),Φ

(
u, y

)) ≤ λd
(
x, y

)
, ∀u ∈ S, x, y ∈ X. (1.2)
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Also, suppose that f : S → X, δ > 0, and

d
(
f(u),Φ

(
u, f

(
η(u)

))) ≤ δ, ∀u ∈ S. (1.3)

Then there exists a unique mapping g : S → X such that

g(u) = Φ
(
u, g

(
η(u)

))
, ∀u ∈ S,

d
(
f(u), g(u)

) ≤ δ

1 − λ
, ∀u ∈ S.

(1.4)

Starting with the papers [2, 3], the fixed point method has become a fundamental tool
in the study of Ulam-Hyers stability. In the probabilistic and fuzzy setting, this approach was
first used in the papers [4, 5] for the case of random and fuzzy normed spaces endowed with
the strongest triangular norm TM. In fact, by identifying a suitable deterministic metric, the
stability problem in such spaces was reduced to a fixed point theorem in generalized metric
spaces. This idea was adopted by many authors, see for example, [6–11]. It is worth noting
that, in applying this method, the fact that the triangular norm is TM is essential.

In this paper we study the stability of (1.1) when the unknown f takes values in a
probabilistic (quasi-) metric space endowed with a triangular norm of Hadžić type. To this
end, we employ the fixed point theory in probabilistic metric spaces, rather than that inmetric
spaces.

2. Hyers-Ulam Stability of the Equation f(x) = Φ(x, f(η(x)))
in Probabilistic Metric Spaces

In this section, we study the stability of the equation f(x) = Φ(x, f(η(x))), where the
unknown function f is a mapping from a nonempty set S to a probabilistic metric space
(X,F, T), and Φ : S ×X → X and η : S → S are given mappings.

We assume that the reader is familiar with the basic concepts of the theory of
probabilistic metric spaces. As usual, Δ+ denotes the space of all functions F : R → [0, 1],
such that F is left-continuous and nondecreasing on R, F(0) = 0, andD+ denotes the subspace
of Δ+ consisting of functions F with limt→∞ F(t) = 1. Here we adopt the terminology from
[12], hence the probabilistic metric takes values in Δ+.

We recall some facts from the fixed point theory in probabilistic metric spaces.

Definition 2.1. A t-norm T is said to be of H-type [13] if the family of its iterates {Tn}n∈N
,

given by T0(x) = 1, and Tn(x) = T(Tn−1(x), x) for all n ≥ 1, is equicontinuous at x = 1.

A trivial example of a t-norm of H-type is the t-norm TM, TM(a, b) = Min{a, b}, but
there exist t-norms of H-type different from Min [14].

The theorem below provides a characterization of continuous t-norms of H-type.

Proposition 2.2 (see [15]). (i) Suppose that there exists a strictly increasing sequence (bn)n∈N
in

[0, 1) such that limn→∞ bn = 1 and T(bn, bn) = bn. Then T is of H-type.
(ii) Conversely, if T is continuous and of H-type, then there exists a sequence as in (i).
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Definition 2.3 (see [16]). Let (X,F, T) be a probabilistic metric space. A mapping f : X → X
is said to be a Sehgal contraction (or B-contraction) if the following relation holds:

Ff(p)f(q)(kt) ≥ Fpq(t),
(
p, q ∈ X, t > 0

)
. (2.1)

Theorem 2.4 (see [17]). Let (X,F, T) be a complete probabilistic metric space with T of Hadžić-type
and f : X → X be a B-contraction. Then f has a fixed point if and only if there is p ∈ X such
that Fpf(p) ∈ D+. If Fpf(p) ∈ D+, then p∗ := limn→∞fn(p) is the unique fixed point of f in the set
Y = {q ∈ X : Fpq ∈ D+}.

The following lemma completes Theorem 2.4 with an estimation relation, in the case
T = TM.

Lemma 2.5 (see [18]). Let (X,F, TM) be a complete probabilistic metric space and f : X → X be a
k − B contraction. Suppose that Fpf(p) ∈ D+ and let p∗ = limn→∞fn(p). Then

Fpp∗(t + 0) ≥ Fpf(p)((1 − k)t), ∀t > 0. (2.2)

This lemma can be extended to the case of probabilistic metric spaces under a
continuous t-norm of H-type.

Lemma 2.6. Let (X,F, T) be a complete probabilistic metric space, with T a continuous t-norm of
H-type and (bn)n be a strictly increasing sequence of idempotents of T . Suppose f : X → X is a
B-contraction with Lipschitz constant k ∈ (0, 1). If there exists p ∈ X such that Fpf(p) ∈ D+, then
p∗ = limn→∞ fn(p) is the unique fixed point of f in the set

{
q ∈ X : Fpq ∈ D+

}
. (2.3)

Moreover, if t > 0 is so that Fpf(p)((1 − k)t) ≥ bn, then Fpp∗(t + 0) ≥ bn.

Proof. We have to prove only the last part of the theorem. We show by induction on m that
Fpf(p)((1 − k)s) ≥ bn implies Fpfm(p)(s) ≥ bn, for all m ≥ 1.

The case m = 1 is obvious. Now, suppose that Fpfm(p)(s) ≥ bn. Then

Fpfm+1(p)(s) ≥ T
(
Fpf(p)((1 − k)s), Ff(p)fm+1(p)(ks)

)

≥ T
(
Fpf(p)((1 − k)s), Fpfm(p)(s)

)

≥ T(bn, bn) = bn.

(2.4)

Let t > 0 be such that Fpf(p)((1 − k)t) ≥ bn, and let s > 0. Then

Fpp∗(t + s) ≥ T
(
Fpfm(p)(t), Ffm(p)p∗(s)

) ≥ T
(
bn, Ffm(p)p∗(s)

)
, (2.5)

for all m ≥ 1. Since (fm(p)) converges to p∗, Ffm(p)p∗(s) goes to 1 as m tends to infinity, so

Fpp∗(t + s) ≥ T(bn, 1) = bn. (2.6)
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By taking s → 0 we obtain

Fpp∗(t + 0) ≥ bn. (2.7)

In order to state our first stability result, we define an appropriate concept of ap-
proximate solution for the functional equation (1.1).

Definition 2.7. A probabilistic uniform approximate solution of (1.1) is a function f : S → X
with the property that

lim
t→∞

Ff(u)Φ(u,f(η(u)))(t) = 1 (2.8)

uniformly on S.

Example 2.8. Let (X, d) be a metric space, and let F : X ×X → D+ be defined by

Fxy(t) =
t

t + d
(
x, y

)
(
x, y ∈ X, t ≥ 0

)
. (2.9)

Then (X,F, TM) is a probabilistic metric space (the induced probabilistic metric space). One
can easily verify that f is a probabilistic uniform approximate solution of (1.1) if and only if
it satisfies relation (1.3), thus being an approximate solution in the sense of Theorem 1.1.

Theorem 2.9. Let S be a nonempty set, (X,F, T) be a complete probabilistic metric space, with T a
continuous t-norm ofH-type, and (bn)n be a strictly increasing sequence of idempotents of T . Suppose
Φ : S ×X → X is a mapping for which there exists k ∈ (0, 1) with

FΦ(u,x)Φ(u,y)(kt) ≥ Fxy(t), (2.10)

for all u ∈ S, x, y ∈ X and t > 0.
If f : S → X is a probabilistic uniform approximate solution of (1.1), then there exists a

function a : S → X which is an exact solution of (1.1), with the property that, if t > 0 is such that

Ff(u)Φ(u,f(η(u)))(t) > bn, ∀u ∈ S, (2.11)

then

Ff(u)a(u)

(
t

1 − k
+ 0

)
≥ bn, ∀u ∈ S. (2.12)
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Proof. Denote by Y the set of all mappings g : S → X, and let J : Y → Y be Baker’s operator,
given by J(g)(u) = Φ(u, g(η(u))) for all g ∈ Y, u ∈ S. We define the distribution function Fgh

by

Fgh(t) = sup
s<t

inf
u∈S

Fg(u)h(u)(s), (2.13)

for all g, h ∈ Y.
The assumptions on the space (X,F, T) ensure that (Y,F, T) is a complete probabilistic

metric space. Also,

FJ(g)J(h)(kt) = sup
s<kt

inf
u∈S

FJ(g)(u)J(h)(u)(s) = sup
s<t

inf
u∈S

FJ(g)(u)J(h)(u)(ks)

≥ sup
s<t

inf
u∈S

Fg(η(u))h(η(u))(s) ≥ Fgh(t),
(2.14)

that is, J is a Sehgal contraction on (Y,F, T).
Moreover, the relation limt→∞Ff(u)Φ(u,f(η(u)))(t) = 1, uniformly on X implies

FfJ(f) ∈ D+. (2.15)

Nowwe can apply Lemma 2.6 to obtain a fixed point of J , that is a mapping a : S → X
which is a solution of (1.1), with a(u) = limn→∞Jnf(u) for all u ∈ S.

Next, let t > 0 be such that Ff(u)Φ(u,f(η(u)))(t) > bn for all u ∈ S. Then, from the left
continuity of F, it follows that Ff(u)Φ(u,f(η(u)))(s0) > bn(u ∈ S), for some s0 ∈ (0, t). Therefore
infu∈SFf(u)Φ(u,f(η(u)))(s0) ≥ bn , so FfJ(f)(t) ≥ bn. By Lemma 2.6, Ffa(t/(1−k)+0) ≥ bn, whence
we conclude that the estimation (2.12) holds.

Remark 2.10. The result of Baker [1] can be obtained as a particular case of Theorem 2.9, by
considering in this theorem the induced probabilistic metric space (see Example 2.8).

From Theorem 2.9 one can derive a stability result for the Cauchy additive functional
equation

f
(
x + y

)
= f(x) + f

(
y
)

(2.16)

in random normed spaces.
Recall (see [12]) that a random normed space (RN-space) is a triple (X, ν, T), whereX

is a real linear space, ν is a mapping from X toD+, and T is a t-norm, satisfying the following
conditions (ν(x) will be denoted by νx):

(i) νx(t) = 1 for all t > 0 iff x = θ, the null vector of X;

(ii) ναx(t) = νx(t/|α|), for all α ∈ R, α/= 0, and all x ∈ X;

(iii) νx+y(t + s) ≥ T(νx(t), νy(s)), for all x, y ∈ X and all t, s > 0.
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Definition 2.11. A probabilistic uniform approximate solution of (2.16) is a function f : S →
X with the property that

lim
t→∞

νf(u+v)−f(u)−f(v)(t) = 1 (2.17)

uniformly on S × S.

Theorem 2.12. Let S be a real linear space, (X, ν, T) be a complete RN-space with T—a continuous
t-norm of H-type, and (bn)n be a strictly increasing sequence of idempotents of T .

If f : S → X is a probabilistic uniform approximate solution of (2.16), then there exists a
mapping a : S → X which is an exact solution of (2.16), with the property that, if t > 0 is such that

νf(u)−f(2u)/2(t) > bn, ∀u ∈ S, (2.18)

then

νf(u)−a(u)(2t + 0) ≥ bn, ∀u ∈ S. (2.19)

Proof. We apply Theorem 2.9 for Φ : S ×X → X, Φ(u, x) = x/2, and η : S → S, η(u) = 2u in
the probabilistic metric space (X,F, T)with F defined by

Fxy(t) = νx−y(t) (2.20)

for all x, y ∈ X, t > 0. Note that F satisfies (2.10) for k = 1/2, since

FΦ(u,x)Φ(u,y)

(
t

2

)
= F(x/2)(y/2)

(
t

2

)
= ν(1/2)(x−y)

(
t

2

)
= νx−y(t) = Fxy(t), (2.21)

for all u ∈ S, x, y ∈ X and t > 0.
It is easy to see that f is a probabilistic uniform approximate solution of (1.1), so there

exists an exact solution of (1.1), that is, a mapping a : S → X satisfying a(u) = (1/2)a(2u)
for all u ∈ S. The estimation (2.19) can be immediately derived from the corresponding one
in Theorem 2.9.
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It remains to show that a is additive. This follows from the fact that a(u) =
limn→∞(1/2n)f(2nu), for all u ∈ S, and f is a probabilistic uniform approximate solution
of (2.16). Namely, for all t > 0,

νa(u+v)−a(u)−a(v)(t) ≥ T

(
νa(u+v)−f(2n(u+v))/2n

(
t

4

)
, νa(u)−f(2nu)/2n

(
t

4

)
,

νa(v)−f(2nv)/2n
(
t

4

)
, νf(2n(u+v))/2n−f(2nu)/2n−f(2nv)/2n

(
t

4

))

≥ T

(
νa(u+v)−f(2n(u+v))/2n

(
t

4

)
, νa(u)−f(2nu)/2n

(
t

4

)
,

νa(v)−f(2nv)/2n
(
t

4

)
, νf(2n(u+v))−f(2nu)−f(2nv)

(
2nt
4

))
n→∞−−−−−→ 1,

(2.22)

implying a(u + v) = a(u) + a(v) for all u, v ∈ S.

3. Hyers-Ulam Stability of the Equation f(x) = Φ(x, f(η(x)))
in Probabilistic Quasimetric Spaces

The defining feature of quasimetric structures is the absence of symmetry. This allows one to
consider different notions of convergence and completeness. We state the terminology and
notations, following [19] (also see [20]).

Definition 3.1. A probabilistic quasimetric space is a triple (X, P, T), where X is a nonempty
set, T is a t-norm, and P : X ×X → Δ+ is a mapping satisfying

(i) Pxy = Pyx = ε0 if and only if x = y;

(ii) Pxy(t + s) ≥ T(Pxz(t), Pzy(s)), for all x, y, z ∈ X, for all t, s > 0.

We note that if P verifies the symmetry assumption Pxy = Pyx, for all x, y ∈ X, then
(X, P, T) is a probabilistic metric space.

If (X, P, T) is a probabilistic quasimetric space, then themappingQ : X2 → Δ+ defined
by Qxy = Pyx for all x, y ∈ X is called the conjugate probabilistic quasimetric of P .

Definition 3.2. Let (X, P, T) be a probabilistic quasimetric space. A sequence (xn)n in X is said
to be:

(i) right K-Cauchy (left K-Cauchy) if, for each ε > 0 and λ ∈ (0, 1), there exists k ∈ N
so that, for all m ≥ n ≥ k, Pxnxm(ε) > 1 − λ (Qxnxm(ε) > 1 − λ resp.);

(ii) P -convergent (Q-convergent) to x ∈ X if, for each ε > 0 and λ ∈ (0, 1), there exists
k ∈ N so that Pxxn(ε) > 1 − λ (Qxxn(ε) > 1 − λ), for all n ≥ k.

Definition 3.3. LetA ∈ {right K, left K} and B ∈ {P,Q}. The space (X, P, T) is (A−B) complete
if every A-Cauchy sequence is B convergent.

Definition 3.4. The probabilistic quasimetric space (X, P, T) has the L-US (R-US) property if
every P -(Q-) convergent sequence has a unique limit.
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The following lemma is a quasimetric analogue of Lemma 2.6.

Lemma 3.5. Let (X, P, T) be a (right K−Q)-complete probabilistic quasimetric space with the R-US
property, where T is a continuous t-norm of H-type. Let (bn)n be a strictly increasing sequence of
idempotents of T .

Suppose f : X → X is a Sehgal contraction with Lipschitz constant k ∈ (0, 1), and p is an
element of X such that Ppf(p) ∈ D+. Then p∗ := limn→∞fn(p) is a fixed point of f and if t > 0 is so
that Ppf(p)((1 − k)t) ≥ bn, then Ppp∗(t + 0) ≥ bn.

Proof. We proceed in the classical manner to show that the sequence of iterates (fn(p))n is
right K-Cauchy, therefore it is Q-convergent to p∗ ∈ X. The fact that p∗ is a fixed point of f is
a consequence of the R-US property of the space X. Next, as in the proof of Lemma 2.6 we
show by induction on m that Ppf(p)((1 − k)s) ≥ bn implies Ppfm(p)(s) ≥ bn, for all m ≥ 1.

Let t > 0 be such that Ppf(p)((1 − k)t) ≥ bn, and let s > 0. Then

Ppp∗(t + s) ≥ T
(
Ppfm(p)(t), Pfm(p)p∗(s)

) ≥ T
(
bn, Pfm(p)p∗(s)

)
, (3.1)

for all m ≥ 1. Since (fm(p)) is Q-convergent to p∗, Pfm(p)p∗(s) goes to 1 as m tends to infinity,
so

Ppp∗(t + s) ≥ T(bn, 1) = bn. (3.2)

By taking s → 0 we obtain

Ppp∗(t + 0) ≥ bn. (3.3)

The probabilistic quasimetric version of Baker’s theorem can be stated as follows.

Theorem 3.6. Let S be a nonempty set, (X, P, T) be a (right K−Q)-complete probabilistic quasimetric
space with the R-US property, with T a continuous t-norm of H-type, and (bn)n be a strictly
increasing sequence of idempotents of T . Suppose Φ : S × X → X is a mapping for which there
exists k ∈ (0, 1) with

PΦ(u,x)Φ(u,y)(kt) ≥ Pxy(t), (3.4)

for all u ∈ S, x, y ∈ X and t > 0.
If f : S → X is a probabilistic uniform approximate solution of (1.1), then there exists a

function a : S → X which is an exact solution of (1.1), with the property that, if t > 0 is such that

Pf(u)Φ(u,f(η(u)))(t) > bn, ∀u ∈ S, (3.5)

then

Pf(u)a(u)

(
t

1 − k
+ 0

)
≥ bn, ∀u ∈ S. (3.6)
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Proof. We only sketch the proof, as it is very similar to that of Theorem 2.9.
As in the mentioned proof, denote by Y the set of all mappings g : S → X, and define

the distribution function Fgh by

Fgh(t) = sup
s<t

inf
u∈S

Pg(u)h(u)(s), (3.7)

for all g, h ∈ Y and Baker’s operator J : Y → Y , J(g)(u) = Φ(u, g(η(u))) for all g ∈ Y, u ∈ S.
The assumptions on the space (X, P, T) ensure that (Y, F, T) is a (right K−Q)-complete

probabilistic quasimetric space with the R-US property and that J is a Sehgal contraction on
(Y, F, T), and the relation limt→∞Pf(u)Φ(u,f(η(u)))(t) = 1, uniformly on X implies

FfJ(f) ∈ D+. (3.8)

We can now apply Lemma 3.5 to obtain a mapping a : S → X which is a solution of
(1.1), with a(u) = limn→∞Jnf(u) for all u ∈ S.

The estimation (3.6) follows by using the left continuity of P , as in the proof of
Theorem 2.9.

Acknowledgments

The work of D. Miheţ was supported by a Grant of the Romanian National Authority for
Scientific Research, CNCS-UEFISCDI, no. PN-II-ID-PCE-2011-3-0087. The work of C. Zaharia
was supported by the strategic Grant POSDRU/CPP107/DMI1.5/S/78421, Project ID 78421
(2010), cofinanced by the European Social Fund—Investing in People, within the Sectoral
Operational Programme Human Resources Development 2007–2013.

References

[1] J. A. Baker, “The stability of certain functional equations,” Proceedings of the American Mathematical
Society, vol. 112, no. 3, pp. 729–732, 1991.

[2] V. Radu, “The fixed point alternative and the stability of functional equations,” Fixed Point Theory,
vol. 4, no. 1, pp. 91–96, 2003.
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