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A class of stage-structured predator-prey model with time delay and delay-dependent parameters
is considered. Its linear stability is investigated and Hopf bifurcation is demonstrated. Using
normal form theory and center manifold theory, some explicit formulae for determining the
stability and the direction of the Hopf bifurcation periodic solutions bifurcating from Hopf
bifurcations are obtained. Finally, numerical simulations are performed to verify the analytical
results.

1. Introduction

Over the past decade, a great many predator-prey models have been developed to
describe the interaction between predator and prey. Their dynamical phenomena have
been extensively studied because of the wide application in the field of biomathematics. In
particular, the appearance of a cycle bifurcating from the equilibrium of an ordinary or a
delayed predator-prey model with a single parameter, which is known as a Hopf bifurcation,
has attracted much attention due to its theoretical and practical significance [1–5]. But most
of the research literature on these models are only connected with parameters which are
independent of time delay; thus, the corresponding characteristic equations are easy to deal
with. While in most applications of delay differential equations in population dynamics, the
need of incorporation of a time delay is often the result of existence of some stage structure [6–
8]. Indeed, every population goes through some distinct life stages [9, 10]. Since the through-
stage survival rate is often a function of time delay, it is easy to conceive that thesemodels will
inevitably involve some delay-dependent parameters. Thus, the corresponding characteristic
equations dependent on the delay τ become more complicated. In view of the fact that it is
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often difficult to analytically study models with delay-dependent parameters even if only a
single discrete delay is present, we resort to the help of computer programs.

In 2008, Wang et al. [11] introduced and investigated the following predator-prey
interaction model with time delay and delay-dependent parameters:

ẋ(t) = x(t)[a − bx(t)] − cx2(t)y(t)
1 +�x2(t)

,

ẏ(t) =
cx2(t − τ)y(t − τ)
1 +�x2(t − τ) e−dτ − dy(t),

(1.1)

where x(t) and y(t) stand for prey and predator density at time t, respectively. a, b, c,� are
real positive parameters and the time delay τ is a positive constant. Wang et al. [11] obtained
the conditions that guarantee the system asymptotically stable and permanent. For more
knowledge about the model, one can see [11].

It is well known that time delays which occur in the interaction between predator-prey
will affect the stability of a model by creating instability, oscillation, and chaos phenomena.
Based on the discussion above, the main purpose of this paper is to investigate the stability
and the properties of Hopf bifurcation of the model (1.1) which involves some delay-
dependent parameters. Recently, there are few papers on the topic that involves some delay-
dependent parameters, for example, Liu and Zhang [12] investigated the stability and Hopf
bifurcation of the following SIS model with nonlinear birth rate:

İ(t) = β(N(t) − I(t)) I(t)
N(t)

− (d + ε + γ
)
I(t),

Ṅ(t) =
PN(t − τ)

1 + qN3(t − τ)e
−d1τ − dN(t) − εI(t).

(1.2)

Jiang and Wei [13] studied the stability and Hopf bifurcation of the following SIR model:

Ṡ(t) = μ − μS(t) − φI(t)S(t)
1 + I(t)

+ γI(t − τ)e−μτ ,

İ(t) =
φI(t)S(t)
1 + I(t)

− (μ + γ
)
I(t).

(1.3)

It worth pointing out that Liu and Zhang [12] investigated the Hopf bifurcation of system
(1.2) by choosing p (not delay τ) as the bifurcation parameters and Jiang and Wei [13]
studied the Hopf bifurcation of system (1.3) by choosing φ (not delay τ) as the bifurcation
parameters. In this paper, we will investigate the Hopf bifurcation by regarding the delay τ
as the bifurcation parameter which is different from the papers [12, 13]. To the best of our
knowledge, it is the first time to deal with the stability and Hopf bifurcation of system (1.1).

This paper is organized as follows. In Section 2, the stability of the equilibrium and
the existence of Hopf bifurcation at the equilibrium are studied. In Section 3, the direction of
Hopf bifurcation and the stability and periodic of bifurcating periodic solutions on the center
manifold are determined. In Section 4, numerical simulations are carried out to illustrate the
validity of the main results. Some main conclusions are drawn in Section 5.



Abstract and Applied Analysis 3

2. Stability of the Equilibrium and Local Hopf Bifurcations

Throughout this paper, we assume that the following condition

(H1) ce−dτ > d�, a2(ce−dτ − d�) > b2d holds.

The hypothesis (H1) implies that system (1.1) has a unique positive equilibrium
E∗(x∗, y∗), where

x∗ =

√
d

ce−dτ − d� , y∗ =
(a − bx∗)

(
1 +�x∗2)

cx∗ . (2.1)

The linearized system of (1.1) around E∗(x∗, y∗) takes the form

dx(t)
dt

= a1x(t) − b1y(t),

dy(t)
dt

= −dy(t) + c1x(t − τ) + d1y(t − τ),
(2.2)

where

a1 = a − 2bx∗ − 2cx∗y∗

1 +�x∗2 +
2x∗3y∗�

(1 +�x∗)2
, b1 = − cx∗2

1 +�x∗2 ,

c1 = e−dτ
[

2cx∗y∗

1 +�x∗2 − 2x∗3y∗�

(1 +�x∗)2

]

, d1 = e−dτ
cx∗2

1 +�x∗2 .

(2.3)

The associated characteristic equation of (2.2) is

P(λ, τ) +Q(λ, τ)e−λτ = 0, (2.4)

where

P(λ, τ) = λ2 + (d − a1)λ − a1d,
Q(λ, τ) = − (d1λ − a1d1 − b1c1).

(2.5)

When τ = 0, then (2.4) becomes

λ2 +
(
d − a1 − d0

1

)
λ + b1c01 − a1d − a1d0

1 = 0, (2.6)

where

c01 =

[
2cx∗y∗

1 +�x∗2 − 2x∗3y∗�

(1 +�x∗)2

]

, d0
1 =

cx∗

1 +�x∗2 . (2.7)

It is easy to obtain the following result.
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Lemma 2.1. If the condition
(H2) d − a1 − d0

1 > 0, b1c01 − a1d − a1d0
1 > 0,

holds, then the positive equilibrium E∗(x∗, y∗) of system (1.1) is asymptotically stable.

In the following, one investigates the existence of purely imaginary roots λ = iω (ω >
0) of (2.4). Equation (2.4) takes the form of a second-degree exponential polynomial in λ,
which some of the coefficients of P and Q depend on τ . Beretta and Kuang [14] established
a geometrical criterion which gives the existence of purely imaginary roots of a characteristic
equation with delay-dependent coefficients. In order to apply the criterion due to Beretta and
Kuang [14], one needs to verify the following properties for all τ ∈ [0, τmax), where τmax is the
maximum value which E∗(x∗, y∗) exists.

(a) P(0, τ) +Q(0, τ)/= 0;

(b) P(iω, τ) +Q(iω, τ)/= 0;

(c) lim sup{|Q(λ, τ)/P(λ, τ)| : |λ| → ∞,Reλ ≥ 0} < 1;

(d) F(ω, τ) = |P(iω, τ)|2 − |Q(iω, τ)|2 has a finite number of zeros;

(e) Each positive root ω(τ) of F(ω, τ) = 0 is continuous and differentiable in τ
whenever it exists.

Here, P(λ, τ) and Q(λ, τ) are defined as in (2.5), respectively.
Let τ ∈ [0, τmax). It is easy to see that

P(0, τ) +Q(0, τ) = −a1d + a1d1 + b1c1 /= 0, (2.8)

which implies that (a) is satisfied, and (b)

P(iω, τ) +Q(iω, τ) = −ω2 + iω(d − a1) − a1d − iωd1 + a1d1 + b1c1
= −ω2 − a1d + a1d1 + b1c1 + iω(d − a1 − d1)/= 0.

(2.9)

From (2.4), one has

lim
|λ|→+∞

∣∣∣∣
Q(λ, τ)
P(λ, τ)

∣∣∣∣ = lim
|λ|→+∞

∣∣∣∣
−(d1λ + a1d1 − b1c1)
λ2 + (d − a1)λ − a1d

∣∣∣∣ = 0. (2.10)

Therefore, (c) follows. Let F be defined as in (d). From

|P(iω, τ)|2 =
(
ω2 + a1d

)2
+ (d − a1)2ω2

= ω4 +
(
d2 + a21

)
ω2 + a21d

2,

|Q(iω, τ)|2 = d2
1ω

2 + (a1d1 + b1c1)
2,

(2.11)

one obtain

F(ω, τ) = ω4 +
(
d2 + a21 − d2

1

)
ω2 + a1d2 − (a1d1 + b1c1)

2. (2.12)

Obviously, property (d) is satisfied, and by implicit function theorem, (e) is also satisfied.
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Now let λ = iω (ω > 0) be a root of (2.4). Substituting it into (2.4) and separating the
real and imaginary parts yields

(a1d1 + b1c1) cosωτ − d1ω sinωτ = ω2 + a1d,

d1ω cosωτ + (a1d1 + b1c1) sinωτ = (d − a1)ω.
(2.13)

From (2.13), it follows that

sinωτ = −
(
ω2 + a1d

)
d1ω − (d − a1)ω(a1d1 + b1c1)

d2
1ω

2 + (a1d1 + b1c1)
2

,

cosωτ =

(
ω2 + a1d

)
(a1d1 + b1c1) + (d − a1)ωd1ω

d2
1ω

2 + (a1d1 + b1c1)
2

.

(2.14)

By the definitions of P and Q as in (2.5), respectively, and applying the property (a), then
(2.14) can be written as

sinωτ = Im
[
P(iω, τ)
Q(iω, τ)

]
,

cosωτ = −Re
[
P(iω, τ)
Q(iω, τ)

]
,

(2.15)

which yields |P(iω, τ)|2 = |Q(iω, τ)|2. Assume that I ∈ R+0 is the set where ω(τ) is a positive
root of

F(ω, τ) = |P(iω, τ)|2 − |Q(iω, τ)|2, (2.16)

and for τ ∈ I, ω(τ) is not definite. Then for all τ in I, ω(τ) satisfied F(ω, τ) = 0. The polynomial
function F can be written as

F(ω, τ) = h
(
ω2, τ

)
, (2.17)

where h is a second degree polynomial, defined by

h(z, τ) = z2 +
(
d2 + a21 − d2

1

)
z + a1d2 − (a1d1 + b1c1)

2. (2.18)

It is easy to see that

h(z, τ) = z2 +
(
d2 + a21 − d2

1

)
z + a1d2 − (a1d1 − b1c1)2 = 0 (2.19)

has only one positive real root if the following condition (H3) holds:

(H3) a1d2 < (a1d1 + b1c1)
2.
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One denotes this positive real root by z+. Hence, (2.17) has only one positive real root
ω =

√
z+. Since the critical value of τ and ω(τ) are impossible to solve explicitly, so one

will use the procedure described in Beretta and Kuang [14]. According to this procedure,
one defines θ(τ) ∈ [0, 2π) such that sin θ(τ) and cos θ(τ) are given by the righthand sides of
(2.14), respectively, with θ(τ) given by (2.19). This define θ(τ) in a form suitable for numerical
evaluation using standard software. And the relation between the argument θ and ωτ in
(2.18) for τ > 0 must be ωτ = θ + 2nπ , n = 1, 2, . . ..

Hence, one can define the maps: τn : I → R+0 given by

τn(τ) :=
θ(τ) + 2nπ

ω(τ)
, τn > 0, n = 0, 1, 2, . . . , (2.20)

where a positive root ω(τ) of F(ω, τ) = 0 exists in I. Let us introduce the functions Sn(τ) :
I → R,

Sn(τ) = τ − θ(τ) + 2nπ
ω(τ)

, n = 0, 1, 2, . . . , (2.21)

which are continuous and differentiable in τ . Thus, one gives the following theorem which is
due to Beretta and Kuang [14].

Theorem 2.2. Assume thatω(τ) is a positive root of (2.4) defined for τ ∈ I, I ⊆ R+0, and at some τ0 ∈
I, Sn(τ0) = 0 for some n ∈ N0. Then, a pair of simple conjugate pure imaginary roots λ = ±iω exists
at τ = τ0 which crosses the imaginary axis from left to right if δ(τ0) > 0 and crosses the imaginary
axis from right to left if δ(τ0) < 0, where δ(τ0) = sign[F ′

ω(ωτ0, τ0)] sign[(dSn(τ))/dτ |τ=τ0].

Applying Lemma 2.1 and the Hopf bifurcation theorem for functional differential
equation [5], we can conclude the existence of a Hopf bifurcation as stated in the following
theorem.

Theorem 2.3. For system (1.1), if (H1)–(H3) hold, then there exists s τ0 ∈ I such that the positive
equilibrium E∗(x∗, y∗) is asymptotically stable for 0 ≤ τ < τ0 and becomes unstable for τ staying in
some right neighborhood of τ0, with a Hopf bifurcation occurring when τ = τ0.

3. Direction and Stability of the Hopf Bifurcation

In the previous section, we obtained some conditions which guarantee that the stage-
structured predator-prey model with time delay undergoes the Hopf bifurcation at some
values of τ = τ0. In this section, we will derive the explicit formulae determining the
direction, stability, and period of these periodic solutions bifurcating from the positive
equilibrium E∗(x∗, y∗) at these critical value of τ , by using techniques from normal form
and center manifold theory [15]. Throughout this section, we always assume that system
(1.1) undergoes Hopf bifurcation at the positive equilibrium E∗(x∗, y∗) for τ = τ0, and then
±iω0 is corresponding purely imaginary roots of the characteristic equation at the equilibrium
E∗(x∗, y∗).

For convenience, let τ = τ0 +μ, μ ∈ R. Then μ = 0 is the Hopf bifurcation value of (1.1).
Thus, one will study Hopf bifurcation of small amplitude periodic solutions of (1.1) from the
positive equilibrium point E∗(x∗, y∗) for μ close to 0.
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Let u1(t) = x(t) − x∗, u2(t) = y(t) − y∗, xi(t) = ui(τt), (i = 1, 2), τ = τ0 + μ, then system
(1.1) can be transformed into an functional differential equation (FDE) in (C = C(−1, 0], R2)
as

du

dt
= Lμ(ut) + f

(
μ, ut

)
, (3.1)

where u(t) = (x1(t), x2(t))
T ∈ R2 and Lμ : C → R, f : R × C → R are given, respectively, by

Lμφ =
(
τ0 + μ

)
Bφ(0) +

(
τ0 + μ

)
Gφ(−1), (3.2)

where

B =
(
a1 −b1
0 −d

)
, C =

(
0 0
c1 d1

)
,

a1 = a − 2bx∗ − 2cx∗y∗

1 +�x∗2 +
2x∗3y∗�

(1 +�x∗)2
, b1 = − cx∗

1 +�x∗2 ,

c1 = e−dτ
[

2cx∗y∗

1 +�x∗2 − 2x∗3y∗�

(1 +�x∗)2

]

, d1 = e−dτ
cx∗

1 +�x∗2

f
(
μ, φ
)
=

(
f1
(
μ, φ
)

f2
(
μ, φ
)

)

,

(3.3)

where

f1
(
μ, φ
)
=
(
τ0 + μ

)[
m1φ

2
1(0) +m2φ1(0)φ2(0) +m3φ

3
1(0) +m4φ

2
1(0)φ2(0) + h.o.t.

]
,

f2
(
μ, φ
)
=
(
τ0 + μ

)[
n1φ

2
1(−1) + n2φ1(−1)φ2(−1) + n3φ3

1(−1) +m4φ
2
1(−1)φ2(−1) + h.o.t.

]
,

(3.4)

where

m1 =
4x∗2y∗�

(1 +�x∗)2
− cy∗

1 +�x∗2 − cx∗2y∗(4�2x∗ −�x∗2 −�)

(1 +�x∗)4
,

m2 =
2c�x∗3

(1 +�x∗2)2
− 2cx∗

1 +�x∗2 ,
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m3 =
2c�x∗y∗

(1 +�x∗2)2
− cx∗2y∗g

6
− 2cx∗y∗(4�2x∗ −�2x∗2 −�)

(1 +�x∗2)4
,

m4 =
4c�x∗2

(1 +�x∗2)2
− c

1 +�x∗ − cx∗2(4�2x∗ −�2x∗2 −�)

(1 +�x∗2)4
,

n1 = e−dτ0
[

cy∗

1 +�x∗2 +
cx∗2y∗(4�2x∗ −�x∗2 −�)

(1 +�x∗)4
− 4x∗2y∗�

(1 +�x∗)2

]

,

n2 = e−dτ0
[

2cx∗

1 +�x∗2 − 2c�x∗3

(1 +�x∗2)2

]

,

n3 = e−dτ0
[
cx∗2y∗g1

6
+
2cx∗y∗(4�2x∗ −�2x∗2 −�)

(1 +�x∗2)4
− 2c�x∗y∗

(1 +�x∗2)2

]

,

n4 = e−dτ0
[

c

1 +�x∗ +
cx∗2(4�2x∗ −�2x∗2 −�)

(1 +�x∗2)4
− 4c�x∗2

(1 +�x∗2)2

]

,

(3.5)

where

g =
18�2x∗(1 +�2x∗2)3(�2x∗4 − 4�2x∗3 + 2�x∗2 − 4�x∗ + 1

)

(1 +�x∗2)8

− 8�2(x∗ + 4x∗3 − 3�x∗2 − 4�
)

(1 +�x∗2)4
.

(3.6)

Clearly, Lμ is a linear continuous operator from C to R2. By the Riesz representation
theorem, there exists a matrix function with bounded variation components η(θ, μ), θ ∈
[−1, 0] such that

Lμφ =
∫0

−1
dη
(
θ, μ
)
φ(θ), for φ ∈ C. (3.7)

In fact, we can choose

η
(
θ, μ
)
=
(
τ0 + μ

)
(
a1 −b1
0 −d

)
δ(θ) − (τ0 + μ

)
(
0 0
c1 d1

)
δ(θ + 1), (3.8)

where δ is the Dirac delta function.
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For φ ∈ C([−1, 0], R2), define

A
(
μ
)
φ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dφ(θ)
dθ

, −1 ≤ θ < 0,

∫0

−1
dη
(
s, μ
)
φ(s), θ = 0,

R
(
μ
)
φ =

{
0, −1 ≤ θ < 0,
f
(
μ, φ
)
, θ = 0.

(3.9)

Then (1.1) is equivalent to the abstract differential equation

u̇t = A
(
μ
)
ut + R

(
μ
)
ut, (3.10)

where u = (x1, x2)
T , ut(θ) = u(t + θ), θ ∈ [−1, 0].

For ψ ∈ C([0, 1], (R2)∗), define

A∗ψ(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−dψ(s)
ds

, s ∈ (0, 1],

∫0

−1
dηT (t, 0)ψ(−t), s = 0.

(3.11)

For φ ∈ C([−1, 0], R2) and ψ ∈ C([0, 1], (R2)∗), define the bilinear form

〈
ψ, φ
〉
= ψ(0)φ(0) −

∫0

−1

∫θ

ξ=0
ψ(ξ − θ)dη(θ)φ(ξ)dξ, (3.12)

where η(θ) = η(θ, 0). We have the following result on the relation between the operators
A = A(0) and A∗.

Lemma 3.1. A = A(0) and A∗ are adjoint operators.

The proof is easy from (3.12), so we omit it.
By the discussions in Section 2, we know that ±iω0τ0 are eigenvalues of A(0), and

they are also eigenvalues of A∗ corresponding to iω0τ0 and −iω0τ0, respectively. We have the
following result.

Lemma 3.2. The vector

q(θ) =
(
1, γ
)T
eiω0τ0θ, θ ∈ [−1, 0], (3.13)

where

γ =
iω0 − a1

b1
(3.14)
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is the eigenvector of A(0) corresponding to the eigenvalue iω0τ0, and

q∗(s) = D
(
1, γ∗

)
eiω0τ0s, s ∈ [0, 1], (3.15)

where

γ∗ = − iω0a1
c1e−iωτ0

(3.16)

is the eigenvector of A∗ corresponding to the eigenvalue −iω0τ0; moreover, 〈q∗(s), q(θ)〉 = 1, where

D = 1 + γγ∗ + c1γ∗eiω0τ0 + d1γγ∗eiω0τ0 . (3.17)

Proof. Let q(θ) be the eigenvector of A(0) corresponding to the eigenvalue iω0τ0 and q∗(s) be
the eigenvector of A∗ corresponding to the eigenvalue −iω0τ0, namely, A(0)q(θ) = iω0τ0q(θ)
and A∗q∗T (s) = −iω0τ0q

∗T (s). From the definitions of A(0) and A∗, we have A(0)q(θ) =
dq(θ)/dθ and A∗q∗T (s) = −dq∗T (s)/ds. Thus, q(θ) = q(0)eiω0τ0θ and q∗(s) = q∗(0)eiω0τ0s. In
addition,

∫0

−1
dη(θ)q(θ) = τ0Bq(0) + τ0Gq(−1) = τ0A(0)q(0) = iω0τ0q(0). (3.18)

That is,

(
iω0 − a1 −b1
−c1e−iω0τ0 iω0 + d − d1e−iω0τ0

)
q(0) =

(
0
0

)
. (3.19)

Therefore, we can easily obtain

γ =
iω0 − a1

b1
. (3.20)

And so

q(0) =
(
1,
iω0 − a1

b1

)T
, (3.21)

and hence

q(θ) =
(
1,
iω0 − a1

b1

)T
eiω0τ0θ. (3.22)

On the other hand,

∫0

−1
q∗(−t)dη(t) = τ0BTq∗T (0) + τ0GTq∗T (−1) = τ0A∗q∗T (0) = −iω0τ0q

∗T (0). (3.23)
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Namely,

(−iω0 − a1 −c1e−iω0τ0

b1 −iω0 + d − d1e−iω0τ0

)
q∗T (0) =

(
0
0

)
. (3.24)

Therefore, we can easily obtain

γ∗ = − iω0a1
c1e−iω0τ0

, (3.25)

and so

q∗(0) =
(
1,− iω0a1

c1e−iωτ0

)
, (3.26)

and hence

q∗(s) =
(
1,− iω0a1

c1e−iωτ0

)
eiω0τ0s. (3.27)

In the sequel, one will verify that 〈q∗(s), q(θ)〉 = 1. In fact, from (3.12), we have

〈
q∗(s), q(θ)

〉
= D
(
1, γ∗

)(
1, γ
)T

−
∫0

−1

∫0

ξ=0
D
(
1, γ∗

)
e−iω0(ξ−θ) dη(θ)

(
1, γ
)T
eiω0ξ dξ

= D

[

1 + γγ∗ −
∫0

−1

(
1, γ∗

)
θeiω0θ dη(θ)

(
1, γ
)T
]

= D
{
1 + γγ∗ −

(
1, γ∗

)[
−τ0Ce−iω0τ0

](
1, γ
)T}

= D
[
1 + γγ∗ + c1γ

∗e−iω0τ0 + d1γγ∗e−iω0τ0
]
= 1.

(3.28)

Next, we use the same notations as those in Hassard et al. [15], and we first compute
the coordinates to describe the center manifold C0 at μ = 0. Let ut be the solution of (1.1)
when μ = 0.

Define

z(t) =
〈
q∗, ut

〉
, W(t, θ) = ut(θ) − 2Re

{
z(t)q(θ)

}
, (3.29)

on the center manifold C0, and we have

W(t, θ) =W(z(t), z(t), θ), (3.30)
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where

W(z(t), z(t), θ) =W(z, z) =W20
z2

2
+W11zz +W02

z2

2
+ · · · , (3.31)

and z and z are local coordinates for center manifold C0 in the direction of q∗ and q∗. Noting
thatW is also real if ut is real, we consider only real solutions. For solutions ut ∈ C0 of (1.1) ,

ż(t) =
〈
q∗(s), u̇t

〉
=
〈
q∗(s), A(0)ut + R(0)ut

〉

=
〈
q∗(s), A(0)ut

〉
+
〈
q∗(s), R(0)ut

〉

=
〈
A∗q∗(s), ut

〉
+ q∗(0)R(0)ut −

∫0

−1

∫θ

ξ=0
q∗(ξ − θ)dη(θ)A(0)R(0)ut(ξ)dξ

=
〈
iω0q

∗(s), ut
〉
+ q∗(0)f(0, ut(θ))

def= iω0z(t) + q∗(0)f0(z(t), z(t)).

(3.32)

That is,

ż(t) = iω0z + g(z, z), (3.33)

where

g(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ · · · . (3.34)

Hence, we have

g(z, z) = q∗(0)f0(z, z) = f(0, ut) = D
(
1, γ∗

)(
f1(0, ut), f2(0, ut)

)T
, (3.35)

where

f1(0, ut) = τ0
[
m1x

2
t (0) +m2xt(0)yt(0) +m3x

3
t (0) +m4x

2
t (0)yt(0) + h.o.t.

]
,

f2(0, ut) = τ0
[
n1x

2
t (−1) + n2xt(−1)yt(−1) + n3x3

t (−1) +m4x
2
t (−1)yt(−1) + h.o.t.

]
.

(3.36)
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Noticing ut(θ) = (xt(θ), yt(θ))
T =W(t, θ) + zq(θ) + zq(θ) and q(θ) = (1, γ)Teiω0τ0θ, we have

xt(0) = z + z +W
(1)
20 (0)

z2

2
+W (1)

11 (0)zz +W
(1)
02 (0)

z2

2
+ · · · ,

yt(0) = γz + γ z +W
(2)
20 (0)

z2

2
+W (2)

11 (0)zz +W
(2)
02 (0)

z2

2
+ · · · ,

xt(−1) = e−iω0τ0z + eiω0τ0z +W (1)
20 (−1)

z2

2
+W (1)

11 (−1)zz +W
(1)
02 (−1)

z2

2
+ · · · ,

yt(−1) = γe−iω0τ0βz + γeiω0τ0z +W (2)
20 (−1)

z2

2
+W (2)

11 (−1)zz +W
(2)
02 (−1)

z2

2
+ · · · .

(3.37)

From (3.34) and (3.35), we have

g(z, z) = q∗(0)f0(z, z) = D
[
f1(0, xt) + γ∗ f2(0, xt)

]

= Dτ0
[(
m1 +m2γ

)
+ γ∗
(
n1 + n2γ

)]
z2

+Dτ0
[
2m1 +m2

(
γ + γ∗

)(
2n1 + n2

(
γ + γ∗

))]
zz

+Dτ0
[
m1 +m2γ + γ∗

(
n1 + n2γ

)]
z2

+Dτ0

[

m1

(
W

(1)
20 (0) + 2W (1)

11 (0)
)

+m2

(
γW

(1)
20 (0)
2

+W (2)
20 (0) + γW

(1)
11 (0) +W

(2)
11 (0) + 3m3 +m4

(
γ + 2γ

)
)

+ n1
(
W

(1)
20 (−1) + 2W (1)

11 (−1)
)

+ n2

(
γW

(1)
20 (−1)
2

+W (2)
20 (−1) + γW

(1)
11 (−1)

+W (2)
11 (−1) + 3n3 + n4

(
γ + 2γ

)
)]

z2z + h.o.t,

(3.38)

and we obtain

g20 = 2Dτ0
[(
m1 +m2γ

)
+ γ∗

(
n1 + n2γ

)]
,

g11 = Dτ0
[
2m1 +m2

(
γ + γ∗

)
+ γ∗

(
2n1 + n2

(
γ + γ∗

))]
,

g02 = 2Dτ0
[
m1 +m2γ + γ∗

(
n1 + n2γ

)]
,
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g21 = 2Dτ0

[

m1

(
W

(1)
20 (0) + 2W (1)

11 (0)
)

+m2

(
γW

(1)
20 (0)
2

+W (2)
20 (0) + γW

(1)
11 (0) +W

(2)
11 (0) + 3m3 +m4

(
γ + 2γ

)
)

+ n1
(
W

(1)
20 (−1) + 2W (1)

11 (−1)
)

+ n2

(
γW

(1)
20 (−1)
2

+W (2)
20 (−1) + γW

(1)
11 (−1) +W

(2)
11 (−1) + 3n3 + n4

(
γ + 2γ

)
)]

.

(3.39)

For unknown

W
(1)
20 (0),W

(1)
20 (−1),W

(1)
11 (0),W

(2)
11 (−1),W

(2)
11 (0),W

(2)
11 (−1), (3.40)

in g21, we still need to compute them.
From (3.10) and (3.29), we have

W ′ =

⎧
⎨

⎩

W − 2Re
{
q∗(0)fq(θ)

}
, −1 ≤ θ < 0,

W − 2Re
{
q∗(0)fq(θ)

}
+ f, θ = 0 .

def= AW +H(z, z, θ),

(3.41)

where

H(z, z, θ) = H20(θ)
z2

2
+H11(θ)zz +H02(θ)

z2

2
+ · · · . (3.42)

Comparing the coefficients, we obtain

(A − 2iω0τ0)W20 = −H20(θ), (3.43)

AW11(θ) = −H11(θ), (3.44)

and we know that for θ ∈ [−1, 0),

H(z, z, θ) = −q∗(0)f0q(θ) − q∗(0)f0q(θ) = −g(z, z)q(θ) − g(z, z)q(θ). (3.45)

Comparing the coefficients of (3.42) with (3.45) gives that

H20(θ) = −g20q(θ) − g02q(θ), (3.46)

H11(θ) = −g11q(θ) − g11 q(θ). (3.47)
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From (3.43) and (3.46) and the definition of A, we get

Ẇ20(θ) = 2iω0τ0W20(θ) + g20q(θ) + g02 q(θ). (3.48)

Noting that q(θ) = q(0)eiω0τ0θ, we have

W20(θ) =
ig20
ω0τ0

q(0)eiω0τ0θ +
ig02

3ω0τ0
q(0)e−iω0τ0θ + E1e

2iω0τ0θ, (3.49)

where E1 = (E(1)
1 , E

(2)
1 )T is a constant vector.

Similarly, from (3.44) and (3.47) and the definition of A, we have

Ẇ11(θ) = g11q(θ) + g11 q(θ), (3.50)

W11(θ) = − ig11
ω0τ0

q(0)eiω0τ0θ +
ig11

ω0τ0
q(0)e−iω0θ + E2, (3.51)

where E2 = (E(1)
2 , E

(2)
2 )T is a constant vector.

In what follows, one will seek appropriate E1,E2 in (3.49) and (3.51), respectively. It
follows from the definition of A and (3.46) and (3.47) that

∫0

−1
dη(θ)W20(θ) = 2iω0τ0W20(0) −H20(0), (3.52)

∫0

−1
dη(θ)W11(θ) = −H11(0), (3.53)

where η(θ) = η(0, θ).
From (3.43), we have

H20(0) = −g20q(0) − g02 q(0) + τ0(M1,M2)T , (3.54)

where

M1 = m1 +m2γ,

M2 = n1 + n2γ.
(3.55)

From (3.44), we have

H11(0) = −g11q(0) − g11 (0)q(0) + τ0(N1,N2)T , (3.56)

where

N1 = 2m1 +m2
(
γ + γ

)
,

N2 = 2n1 + n2
(
γ + γ

)
.

(3.57)
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Noting that

(

iω0τ0I −
∫0

−1
eiω0τ0θdη(θ)

)

q(0) = 0,

(

−iω0τ0I −
∫0

−1
e−iω0τ0θdη(θ)

)

q(0) = 0,

(3.58)

and substituting (3.49) and (3.54) into (3.52), we have

(

2iω0τ0I −
∫0

−1
e2iω0τ0θdη(θ)

)

E1 = τ0(M1,M2)T . (3.59)

That is,

(
2iω0τ0I − τ0B − τ0Ge−2iω0τ0

)
E1 = τ0(M1,M2)T , (3.60)

then

(
2iω0 − a1 b1
c1e

−2iω0τ0 2iω0 + d − d1e−2iω0τ0

)(
E
(1)
1

E
(2)
1

)

=
(
m1 +m2γ
n1 + n2γ

)
. (3.61)

Hence,

E
(1)
1 =

Δ11

Δ1
, E

(2)
1 =

Δ12

Δ1
, (3.62)

where

Δ1 = det
(
2iω0 − a1 b1
c1e

−2iω0τ0 2iω0 + d − d1e−2iω0τ0

)
,

Δ11 = det
(
m1 +m2γ b1
n1 + n2γ 2iω0 + d − d1e−2iω0τ0

)
,

Δ12 = det
(
2iω0 − a1 m1 +m2γ
c1e

−2iω0τ0 n1 + n2γ

)
.

(3.63)

Similarly, substituting (3.51) and (3.56) into (3.53), we have

(∫0

−1
dη(θ)

)

E2 = τ0(N1,N2)T . (3.64)
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Then,

(B +G)E2 = (−N1,−N2)T . (3.65)

That is,

(
a1 −b1
c1 D1 − d

)(
E
(1)
2

E
(2)
2

)

=
(−N1

−N2

)
. (3.66)

Hence,

E
(1)
2 =

Δ21

Δ2
, E

(2)
2 =

Δ22

Δ2
, (3.67)

where

Δ2 = det
(
a1 −b1
c1 d1 − d

)
,

Δ21 = det
(−2m1 −m2

(
γ + γ

) −b1
−2n1 − n2

(
γ + γ

)
d1 − d

)
,

Δ22 = det
(
a1 −2m1 −m2

(
γ + γ

)

c1 −2n1 − n2
(
γ + γ

)
)
.

(3.68)

From (3.49) and (3.51), we can calculate g21 and derive the following values:

c1(0) =
i

2ω0τ0

(

g20g11 − 2
∣∣g11
∣∣2 −

∣∣g02
∣∣2

3

)

+
g21
2
,

μ2 = − Re{c1(0)}
Re{λ′(τ0)} ,

β2 = 2Re (c1(0)),

T2 = − Im {c1(0)} + μ2 Im {λ′(τ0)}
ω0τ0

.

(3.69)

These formulae give a description of the Hopf bifurcation periodic solutions of (1.1) at τ = τ0
on the center manifold. From the discussion above, we have the following result.

Theorem 3.3. The periodic solution is supercritical (subcritical) if μ2 > 0 (μ2 < 0). The bifurcating
periodic solutions are orbitally asymptotically stable with asymptotical phase (unstable) if β2 < 0
(β2 > 0). The periods of the bifurcating periodic solutions increase (decrease) if T2 > 0 (T2 < 0).
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Figure 1: The time histories and phase portrait of system (4.1) with the following parameters: a = 0.5, b =
0.5, c = 2, � = 2, d = 0.2, and τ = 1.7 < τ0 ≈ 1.7355. The positive equilibrium E∗(x∗, y∗) = (0.4928, 1.3217) is
asymptotically stable. The initial value is (0.2, 2).

4. Numerical Examples

In this section, we present some numerical results to verify the analytical predictions obtained
in the previous section. As an example, we consider the following special case of system (1.1)
with the parameters a = 0.5, b = 0.5, c = 2, � = 2, and d = 0.2. Then system (1.1) becomes

ẋ(t) = x(t)[1 − 0.5x(t)] − 2x2(t)y(t)
1 + 3x2(t)

,

ẏ(t) =
2x2(t − τ)y(t − τ)
1 + 3x2(t − τ) e−0.2τ − 0.2y(t),

(4.1)

which has a positive equilibrium E∗(x∗, y∗) = (1.4928, 1.3217). By some complicated
computation by means of Matlab 7.0, we get only one critical values of the delay τ0 ≈
1.7355, λ′(τ0) ≈ 0.2035 − 0.5423i. Thus, we derive c1(0) ≈ −1.3122 − 5.0131i, μ2 ≈ 0.6177, β2 ≈
−3.3326, T2 ≈ 9.3042. We obtain that the conditions indicated in Theorem 2.3 are satisfied.
Furthermore, it follows that μ2 > 0 and β2 < 0. Thus, the positive equilibrium E∗(x∗, y∗)
is stable when τ < τ0 which is illustrated by the computer simulations (see Figures 1(a)–
1(d)). When τ passes through the critical value τ0, the positive equilibrium E∗(x∗, y∗) loses
its stability and a Hopf bifurcation occurs, that is, a family of periodic solutions bifurcations
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Figure 2: The time histories and phase portrait of system (4.1) with the following parameters: a = 0.5, b =
0.5, c = 2, � = 2, d = 0.2, and τ = 1.8 > τ0 ≈ 1.7355. Hopf bifurcation occurs from the positive equilibrium
E∗(x∗, y∗) = (0.5014, 1.3108). The initial value is (0.2, 2).

from the positive equilibrium E∗(x∗, y∗). Since μ2 > 0 and β2 < 0, the direction of the Hopf
bifurcation is τ > τ0, and these bifurcating periodic solutions from E∗(x∗, y∗) at τ0 are stable,
which are depicted in Figures 2(a)–2(d).

5. Conclusions

In this paper, the main object is to investigate the local stability and Hopf bifurcation and also
to study the stability of bifurcating periodic solutions and some formulae for determining
the direction of Hopf bifurcation for a stage-structured predator-prey model with time delay
and delay. By choosing the delay as a bifurcation parameter, It is shown that under certain
condition, the positive equilibrium E∗(x∗, y∗) of system (1.1) is asymptotically stable for
all τ ∈ [0, τ0) and unstable for τ > τ0 and under another condition; when the delay τ
increases, the equilibrium loses its stability and a sequence of Hopf bifurcations occur at
the positive equilibrium E∗(x∗, y∗), that is, a family of periodic orbits bifurcate from the
positive equilibrium E∗(x∗, y∗). At the same time, using the normal form theory and the
center manifold theorem, the direction of Hopf bifurcation and the stability of the bifurcating
periodic orbits are discussed. Finally, numerical simulations are carried out to validate the
theorems obtained.
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