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We consider an optimal fourth-order method for solving nonlinear equations and construct
polynomials such that the rational map arising from the method applied to these polynomials
has an attracting periodic orbit of any prescribed period.

1. Introduction

Recently, an optimal fourth-order iterative method to find a simple root ρ, that is, f(ρ) = 0
and f ′(ρ)/= 0, of a nonlinear equation f(x) = 0, which is given by

xn+1 = xn −
16f(xn)f ′(xn)

−5f ′2(xn) + 30f ′(xn)f ′(yn

) − 9f ′2(yn

) , (1.1)

where yn = xn − (2/3)(f(xn)/f ′(xn)) was proposed in [1] and its dynamics behavior was
investigated and analyzed in detail. By an optimal method, we mean a multipoint method
without memory which requires n + 1 functional evaluations per iteration, but achieves the
order of convergence 2n [2].

The method (1.1) may be used to approximate both real and complex roots of the
nonlinear equation with x0 ∈ C. If the initial guess x0 is chosen sufficiently near a zero of
f , then an iterative method is expected to converge. This is, however, not true in general
if there exists an attracting periodic orbit or cycle of period k ≥ 2 (whose definition will
be introduced below). If the initial guess happens to be chosen from the basin of attraction
of an attractive periodic cycle, the sequence {xn}∞n=0 converges to the attractive cycle, not
to a zero of f since any root of f(x) = 0 may be considered as a period orbit of period 1.
Thus the existence of attracting periodic cycles of period greater than or equal to 2 could
interfere with an iterative method searching for a root of the nonlinear equation. As a result,
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it has been an important concern from practical aspect in iteration theory to construct specific
polynomials for a given method such that the map arising from the iterative method applied
to the polynomials has an attractive periodic orbit. In this direction there was some result
in [3] where attractive periodic orbits of any prescribed period were constructed for some
classical third-order methods. Motivated by this, in this paper we extend the construction of
attractive periodic cycles of any prescribed period to higher-order iterative methods. To this
end, we will recall some preliminaries, see for example Milnor [4], Amat et al. [5], and Chun
et al. [1]. Let R : Ĉ → Ĉ be a rational map on the Riemann sphere.

Definition 1.1. For z ∈ Ĉ we define its orbit as the set

orb(z) =
{
z, R(z), R2(z), . . . , Rn(z), . . .

}
. (1.2)

Definition 1.2. A point z0 is a fixed point of R if R(z0) = z0.

Definition 1.3. Aperiodic point z0 of periodm is such thatRm(z0) = z0 wherem is the smallest
such integer. The set of the m distinct points {z, R(z), R2(z), . . . , Rm−1(z)} is called a periodic
cycle.

Remark 1.4. If z0 is periodic of period m then it is a fixed point for Rm.

Definition 1.5. If z0 is a periodic point of period m, then the derivative (Rm)′(z0) is called the
eigenvalue of the periodic point z0.

Remark 1.6. By the chain rule, if z0 is a periodic point of period m, then its eigenvalue is the
product of the derivatives of R at each point on the orbit of z0, and we have

(Rm)′(z0) = (Rm)′(z1) = · · · = (Rm)′(zn−1), (1.3)

that is, all the points of a cycle have the same eigenvalue.

We classify the fixed points of a map based on the magnitude of the derivative.

Definition 1.7. A point z0 is called attracting if |R′(z0)| < 1, repelling if |R′(z0)| > 1, and neutral
if |R′(z0)| = 1. If the derivative is zero then the point is called superattracting.

Definition 1.8. The Julia set of a nonlinear map R(z), denoted J(R), is the closure of the set of
its repelling periodic points. The complement of J(R) is the Fatou set F(R).

By its definition, J(R) is a closed subset of Ĉ. A point z0 belongs to the Julia set if
and only if dynamics in a neighborhood of z0 displays sensitive dependence on the initial
conditions, so that nearby initial conditions lead to wildly different behavior after a number
of iterations. As a simple example, consider the map R(z) = z2 on Ĉ. The entire open disk
is contained in F(R), since successive iterates on any compact subset converge uniformly
to zero. Similarly the exterior is contained in F(R). On the other hand if z0 is on the unit
circle than in any neighborhood of z0 any limit of the iterates would necessarily have a jump
discontinuity as we cross the unit circle. Therefore J(R) is the unit circle. Such smooth Julia
sets are exceptional.



Abstract and Applied Analysis 3

Lemma 1.9 (Invariance lemma (Milnor [4])). The Julia set J(R) of a holomorphic mapR : Ĉ → Ĉ

is fully invariant under R. That is, z belongs to J if and only if R(z) belongs to J .

Lemma 1.10 (Iteration Lemma). For any k > 0, the Julia set J(Rk) of the k-fold iterate coincides
with J(R).

Definition 1.11. IfO is an attracting periodic orbit of periodm, we define the basin of attraction
to be the open set A ∈ Ĉ consisting of all points z ∈ Ĉ for which the successive iterates
Rm(z), R2m(z), . . . converge towards some point of O.

The basin of attraction of a periodic orbit may have infinitely many components.

Definition 1.12. The immediate basin of attraction of a periodic orbit is the connected compo-
nent containing the periodic orbit.

Lemma 1.13. Every attracting periodic orbit is contained in the Fatou set of R. In fact the entire basin
of attraction A for an attracting periodic orbit is contained in the Fatou set. However, every repelling
periodic orbit is contained in the Julia set.

2. Attractive Cycles Results

Let us consider the map Rf associated to f

Rf(z) = z +
16f(z)f ′(z)

5f ′2(z) − 30f ′(z)f ′(y
)
+ 9f ′2(y

) , (2.1)

where

y = z − 2
3
f(z)
f ′(z)

, (2.2)

for which the optimal method (1.1) is written as

xn+1 = Rf(xn), n ≥ 0. (2.3)

Toward the aim to construct periodic orbits of any prescribed period for the method
(1.1), we have the following characterization.

Proposition 2.1. Let Ω = {x1, x2, . . . , xn} be a set of n distinct complex numbers, and let f be a
complex analytic function. Then Ω is periodic orbit of period n of iteration function Rf if and only if

16f ′(xi)f(xi)
xi+1 − xi

= 5f ′2(xi) − 30f ′(xi)f ′(yi

)
+ 9f ′2(yi

)
, i = 1, 2, . . . , n − 1,

16f ′(xn)f(xn)
x1 − xn

= 5f ′2(xn) − 30f ′(xn)f ′(yn

)
+ 9f ′2(yn

)
,

(2.4)

where yi = xi − (2/3)(f(xi)/f ′(xi)), i = 1, 2, . . . , n.
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Proof. Assume that Ω is a periodic orbit of Rf . Then Rf(xi) = xi+1 for i = 1, 2, . . . , n − 1 and
Rf(xn) = x1. We have

xi+1 = xi +
16f ′(xi)f(xi)

5f ′2(xi) − 30f ′(xi)f ′(yi

)
+ 9f ′2(yi

) , i = 1, 2, . . . , n − 1,

x1 = xn +
16f ′(xn)f(xn)

5f ′2(xn) − 30f ′(xn)f ′(yn

)
+ 9f ′2(yn

) .

(2.5)

Therefore, we obtain

xi+1 − xi =
16f ′(xi)f(xi)

5f ′2(xi) − 30f ′(xi)f ′(yi

)
+ 9f ′2(yi

) , i = 1, 2, . . . , n − 1,

x1 − xn =
16f ′(xn)f(xn)

5f ′2(xn) − 30f ′(xn)f ′(yn

)
+ 9f ′2(yn

) .

(2.6)

Conversely, suppose that f satisfies condition (2.4). Then we easily have

Rf(xi) = xi +
16f ′(xi)f(xi)

(
16f ′(xi)f(xi)

)
/(xi+1 − xi)

= xi+1, i = 1, 2, . . . , n − 1,

Rf(xn) = xn +
16f ′(xn)f(xn)

(
16f ′(xn)f(xn)

)
/(x1 − xn)

= x1.

(2.7)

Proposition 2.2. For any positive integer n ≥ 2, there exists a polynomial f(x) of degree less than or
equal to 3n − 1 for which Rf has a periodic orbit of period n.

Proof. Let x1, x2, . . . , xn be a given a set of n distinct complex numbers, let z1, z2, . . . , zn be a
set of n nonzero complex numbers, and let s1, s2, . . . , sn be another set of nonzero complex
numbers such that

yi /=yj ∀i /= j,

yi /=xj ∀i, j = 1, 2, . . . , n,

152 − 9
(
5s2i −

16sizi
xi+1 − xi

)
≥ 0, i = 1, 2, . . . , n − 1,

152 − 9
(
5s2n −

16snzn
x1 − xn

)
≥ 0,

(2.8)

where yi = xi − (2/3)(zisi).
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Assume that there exists a polynomial f(x) such that

f(xi) = zi, i = 1, 2, . . . , n,

f ′(xi) = si, i = 1, 2, . . . , n,

9f ′2(yi

) − 30sif ′(yi

)
+ 5s2i =

16sizi
xi+1 − xi

, i = 1, 2, . . . , n − 1,

9f ′2(yn

) − 30snf ′(yn

)
+ 5s2n =

16snzn
x1 − xn

.

(2.9)

Then by Proposition 2.1, Ω = {x1, x2, . . . , xn} is a periodic orbit of period n of Rf . Using (2.9)
and condition (2.8) yields

f ′(yi

)
=

15 ±
√
152 − 9

(
5s2i − (16sizi/(xi+1 − xi))

)

9
i = 1, 2, . . . , n − 1,

f ′(yn

)
=

15 ±
√
152 − 9

(
5s2n − (16snzn/(x1 − xn))

)

9
.

(2.10)

We now show that such a polynomial exists. For this, we use the Hermite interpolation
procedure. We begin the construction by writing f(x) as

f(x) =
3n∑

i=1

aifi(x), (2.11)

where the functions fi(x) are polynomials defined as follows:

f1(x) = 1,

f2(x) = (x − x1),

f3(x) = (x − x1)2,

f4(x) = (x − x1)2
(
x − y1

)2
,

f5(x) = (x − x1)2
(
x − y1

)2(x − x2),

f6(x) = (x − x1)2
(
x − y1

)2(x − x2)2,

f7(x) = (x − x1)2
(
x − y1

)2(x − x2)2
(
x − y2

)2
,

...

f3n(x) = (x − x1)2
(
x − y1

)2(x − x2)2
(
x − y2

)2 · · · (x − xn)2.

(2.12)
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To determine the polynomial f(x) we must find suitable coefficients ai for i = 1,
2, . . . , 3n. For this we must solve a linear system of 3n equations with 3n unknown of the
form AX = B. The matrix A associated with the linear system of equations is given by

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜⎜⎜⎜⎜
⎝

f1(x1) f2(x1) f3(x1) · · · f3n(x1)

f ′
1(x1) f ′

2(x1) f ′
3(x1) · · · f ′

3n(x1)

f ′
1

(
y1
)

f ′
2

(
y1
)

f ′
3

(
y1
) · · · f ′

3n

(
y1
)

f1(x2) f2(x2) f3(x2) · · · f3n(x2)

f ′
1(x2) f ′

2(x2) f ′
3(x2) · · · f ′

3n(x2)

f ′
1

(
y2
)

f ′
2

(
y2
)

f ′
3

(
y2
) · · · f ′

3n

(
y2
)

· · · · · · · · · · · · · · ·
f ′
1

(
yn

)
f ′
2

(
yn

)
f ′
3

(
yn

) · · · f ′
3n

(
yn

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟⎟⎟⎟⎟
⎠

(2.13)

and the column vectors X,B ∈ R
n are given by X = (a1, a2, . . . , a3n)

T and B =
(f(x1), f ′(x1), f ′(y1), . . . , f(xn), f ′(xn), f ′(yn))

T . The components of the upper triangle of the
matrixA are zero, and the components of the diagonal ofA are nonzero. Therefore, the linear
system AX = B has a unique solution.

Example 2.3. Let us construct a polynomial f(x) for which the iterative method Rf has a
periodic orbit of period 2. For this, we let x1 = 0, x2 = 1, z1 = f(x1) = 2, z2 = f(x2) =
2, s1 = f ′(x1) = 2 and s2 = f ′(x2) = 2. Then we have y1 = x1 − (2/3)(z1/s1) = −2/3, y2 =

x2 − (2/3)(z2/s2) = 1/3, f ′(y1) = (15 ±
√
152 − 9(5s21 − 16s1z1/(x2 − x1)))/9 = 22/3,−2/3,

and f ′(y2) = (15 ±
√
152 − 9(5s22 − 16s2z2/(x1 − x2)))/9 = 14/3, 2. We construct a polynomial

f(x) =
∑6

i=1 aifi(x), where f1(x) = 1, f2(x) = x, f3(x) = x2, f4(x) = x2(x + (2/3))2, f5(x) =
x2(x + (2/3))2(x − 1), f6(x) = x2(x + (2/3))2(x − 1)2. Then matrix A is given by

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

f1(x1) 0 0 0 0 0

f ′
1(x1) f ′

2(x1) 0 0 0 0

f ′
1

(
y1
)

f ′
2

(
y1
)

f ′
3

(
y1
)

0 0 0

f1(x2) f2(x2) f3(x2) f4(x2) 0 0

f ′
1(x2) f ′

2(x2) f ′
3(x2) f ′

4(x2) f ′
5(x2) 0

f ′
1

(
y2
)

f ′
2

(
y2
)

f ′
3

(
y2
)

f ′
4

(
y2
)

f ′
5

(
y2
)

f ′
6

(
y2
)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (2.14)
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By evaluating A we obtain

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0

0 1 0 0 0 0

0 1 −4
3

0 0 0

1 1 1
25
9

0 0

0 1 2
80
9

25
9

0

0 1
2
3

8
9

−13
27

20
81

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.15)

Now we consider the system of linear equations AX = B, where X = (a1, a2, a3,
a4, a5, a6)

T and B = (f(x1), f ′(x1), f ′(y1), f(x2), f ′(x2), f ′(y2))
T . Here, we can take B =

(2, 2, 22/3, 2, 2, 14/3)T . Hence we have the following system:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0

0 1 0 0 0 0

0 1
−4
3

0 0 0

1 1 1
25
9

0 0

0 1 2
80
9

25
9

0

0 1
2
3

8
9

−13
27

20
81

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1

a2

a3

a4

a5

a6

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2

2

22
3
2

2

14
3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2.16)

whose solution is X = (2, 2,−4, 18/25, 72/125, 12582/625)T . Therefore, the polynomial f is
given by f(x) = 2 + 2x − 4x2 + (18/25)x2(x + (2/3))2 + (72/125)x2(x + 2/3)2(x − 1) +
(12582/625)x2(x + 2/3)2(x − 1)2 = 2 + 2x + (3132/625)x2 − (14808/625)x4 + (5872/625)x3 −
(8028/625)x5 + (12582/625)x6. From (2.1), we obtain Rf(0) = 1 and Rf(1) = 0. So, Ω = {0, 1}
is a periodic orbit of period 2 for the method Rf(x).

Proposition 2.4. Let f(x) be a polynomial for which Rf has a periodic orbit of period n, say Ω =
{x1, x2, . . . , xn}. If f ′′(xi) = 0 = f ′′(yi) and f ′(xi) = f ′(yi) or f ′′(xi) = 0 = f ′′(yi) and 7f ′(xi) =
3f ′(yi) for some i = 1, 2, . . . , n, then Ω is an superattracting periodic orbit of period n for Rf .

Proof. Without loss of generality, we may assume that f ′′(x1) = 0 = f ′′(y1) and f ′(x1) = f ′(y1).
By the chain rule, we have

(
Rn

f

)′
(x1) = R′

f(xn)R′
f(xn−1)R′

f(xn−2) · · ·Rf ′(x1). (2.17)
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Note that on differentiating (2.1)we have

Rf ′(x) =
[
f ′(x)

(
5f

′2(x) − 30f ′(x)f ′(y
)
+ 9f

′2(y
))2

]−1

×
[
f ′(x)

(
5f

′2(x) − 30f ′(x)f ′(y
)
+ 9f

′2(y
))(

21f ′(x)2 − 30f ′(x)f ′(y
))

+ 9f
′2(y

)
+ 16f(x)f ′′(x)

− 16f(x)
[
10f

′3(x)f ′′(x) − 30f
′2(x)f ′′(x)f ′(y

)

−2
(
f

′2(x) + 2f(x)f ′′(x)
)(

5f ′(x)f ′′(y
) − 3f ′(y

)
f ′′(y

))]]
.

(2.18)

We therefore obtain R′
f(x1) = 0. By (2.17)we conclude that (Rn

f)
′(x1) = 0.
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