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Let F be a Riesz algebra with an extended norm || · ||u such that (F, || · ||u) is complete. Also, let || · ||v
be another extended norm in F weaker than || · ||u such that whenever (a) xn → x and xn · y → z
in || · ||v , then z = x · y; (b) yn → y and x · yn → z in || · ||v, then z = x · y. Let ε and δ > be two
nonnegative real numbers. Assume that a map f : F → F satisfies ||f(x + y) − f(x) − f(y)||u ≤ ε
and ||f(x · y) − x · f(y) − f(x) · y||v ≤ δ for all x, y ∈ F. In this paper, we prove that there exists a
unique derivation d : F → F such that ||f(x) − d(x)||u ≤ ε, (x ∈ F). Moreover, x · (f(y) − d(y)) = 0
for all x, y ∈ F.

1. Introduction

Let E and E′ be Banach spaces and let δ > 0. A function f : E → E′ is called δ-additive
if ||f(x + y) − f(x) − f(y)|| < δ for all x, y ∈ E. The well-known problem of stability of
functional equation f(x + y) = f(x) + f(y) started with the following question of Ulam [1].
Does there exist for each ε > 0, a δ > 0 such that, to each δ-additive function f of E into E′

there corresponds an additive function l of E into E′ satisfying the inequality ||f(x)− l(x)|| ≤ ε
for each x ∈ E? In 1941, Hyers [2] answered this question in the affirmative way and showed
that δ may be taken equal to ε. The answer of Hyers is presented in a great number of articles
and books. For the theory of the stability of functional equations see Hyers et al [3].

Let F be an algebra. A mapping d : F → F is called a derivation if and only if it
satisfies the following functional equations:

d(a + b) = d(a) + d(b), (1.1)

d(ab) = ad(b) + d(a)b, (1.2)

for all a, b ∈ F.
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The stability of derivations was first studied by Jun and Park [4]. Further, approximate
derivations were investigated by a number of mathematicians (see, e.g., [5–7]).

The aim of the present paper is to examine the stability problem of derivations for
Riesz algebras with extended norms.

2. Preliminaries

A vector space F with a partial order ≤ satisfying the following two conditions:

(1) x ≤ y ⇒ αx + z ≤ αy + z for all z ∈ F and 0 ≤ α ∈ R,

(2) for all x, y ∈ F, the supremum x∨y and infimum x∧y exist in F (hence, themodulus
|x| := x ∨ (−x) exists for each x ∈ F),

is called a Riesz space or vector lattice. Typical examples of Riesz spaces are provided by the
function spaces. C(K) the spaces of real valued continuous functions on a topological space
K, lp real valued absolutely summable sequences, c the spaces of real valued convergent
sequences, and c0 the spaces of real valued sequences converging to zero are natural examples
of Riesz spaces under the pointwise ordering. A Riesz space F is called Archimedean if 0 ≤
u, v ∈ F and nu ≤ v for each n ∈ N imply u = 0. A subset S in a Riesz space F is said to be
solid if it follows from |u| ≤ |v| in F and v ∈ S that u ∈ S. A solid linear subspace of a Riesz
space F is called an ideal. Every subset D of a Riesz space F is included in a smallest ideal
FD, called ideal generated byD. A principal ideal of a Riesz space F is any ideal generated by
a singleton {u}. This ideal will be denoted by Iu. It is easy to see that

Iu = {v ∈ F : λ ≥ 0 such that |v| ≤ λ|u|}. (2.1)

Let F be a Riesz space and 0 ≤ u ∈ F. Firstly, we give the following definition.

Definition 2.1. (1) The sequence (xn) in F is said to be u-uniformly convergent to the element
x ∈ F whenever, for every ε > 0, there exists n0 such that |xn0+k − x| ≤ εu holds for each k.

(2) The sequence (xn) in F is said to be relatively uniformly convergent to xwhenever
xn converges u-uniformly to x ∈ F for some 0 ≤ u ∈ F.

When dealing with relative uniform convergence in an Archimedean Riesz space F, it
is natural to associate with every positive element u ∈ F an extended norm || · ||u in F by the
following formula:

‖x‖u = inf{λ ≥ 0 : |x| ≤ λu} (x ∈ F). (2.2)

Note that ||x||u < ∞ if and only if x ∈ Iu. Also |x| ≤ δu if and only if ||x||u ≤ δ.
A Banach lattice is a vector lattice F that is simultaneously a Banach space whose norm

is monotone in the following sense.
For all x, y ∈ F, |x| ≤ |y| implies ||x|| ≤ ||y||. Hence, ||x|| = ‖|x|‖ for all x ∈ F.

The sequence (xn) in (F, || · ||u) is called an extended u-normed Cauchy sequence, if for
every ε > 0 there exists k such that ||xn+k −xm+k||u < ε for allm,n. If every extended u-normed
Cauchy sequence is convergent in F, then F is called an extended u-normed Banach lattice.
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A Riesz space F is called a Riesz algebra or a lattice ordered algebra if there exists an
associative multiplication in F with the usual algebra properties such that 0 ≤ u · v for all
0 ≤ u, v ∈ F.

For more detailed information about Riesz spaces, the reader can consult the book
Riesz Spaces by Luxemburg and Zaanen [8]. In the sequel, all the Riesz spaces are assumed to
be Archimedean.

3. Main Result

Recently, Polat [9] generalized the Hyers’ result [2] to Riesz spaces with extended norms and
proved the following.

Theorem 3.1. Let E be a linear space and F a Riesz space equipped with an extended norm || · ||u such
that the space (F, || · ||u) is complete. If, for some δ > 0, a map f : E → (F, || · ||u) is δ-additive, then
limit l(x) = limn→∞f(2nx)/2n exists for each x ∈ E. l(x) is the unique additive function satisfying
the inequality ||f(x) − l(x)||u ≤ δ for all x ∈ E.

By using Theorem 3.1, we give the main result of the paper as follows.

Theorem 3.2. Let F be a Riesz algebra with an extended norm || · ||u such that (F, || · ||u) is complete.
Also, let || · ||v be another extended norm in F weaker than || · ||u such that whenever

(a) xn → x and xn · y → z in || · ||v, then z = x · y;
(b) yn → y and x · yn → z in || · ||v, then z = x · y.

Let ε and δ be two nonnegative real numbers. Assume that a map f : F → F satisfies

∥
∥f

(

x + y
) − f(x) − f

(

y
)∥
∥
u ≤ ε, (3.1)

∥
∥f

(

x · y) − x · f(y) − f(x) · y∥∥v ≤ δ, (3.2)

for all x, y ∈ F. Then, there exists a unique derivation d : F → F such that ||f(x) − d(x)||u ≤ ε,
(x ∈ F). Moreover, x · (f(y) − d(y)) = 0 for all x, y ∈ F.

Proof. By Condition (3.1), Theorem 3.1 shows that there exists a unique additive function
d : F → F such that

∥
∥f(x) − d(x)

∥
∥
u ≤ ε, (3.3)

for each x ∈ F. It is enough to show that d satisfies Condition (1.2). The inequality (3.3)
implies that

∥
∥f(nx) − d(nx)

∥
∥
u ≤ ε (x ∈ F, n ∈ N). (3.4)

By the additivity of d, we then have

∥
∥
∥
∥

1
n
f(nx) − d(x)

∥
∥
∥
∥
u

≤ 1
n
ε (x ∈ F, n ∈ N), (3.5)
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which means that

d(x) = lim
n→∞

1
n
f(nx), (x ∈ F), (3.6)

with respect to || · ||u norm and so is with respect to || · ||v norm. Condition (3.2) implies that
the function r : F ×F → F defined by r(x, y) = f(x ·y)−x · f(y)− f(x) ·y is bounded. Hence

lim
n→∞

1
n
r
(

nx, y
)

= 0,
(

x, y ∈ F
)

, (3.7)

with respect to || · ||v norm. Applying (3.6) and (3.7), we have

d
(

x · y) = x · f(y) + d(x) · y, (

x, y ∈ F
)

. (3.8)

Indeed, we have the following with respect to || · ||v norm,

d
(

x · y) = lim
n→∞

1
n
f
(

n
(

x · y)) = lim
n→∞

1
n
f
(

(nx) · y)

= lim
n→∞

1
n

(

nx · f(y) + f(nx) · y + r
(

nx, y
))

= lim
n→∞

(

x · f(y) + f(nx)
n

· y +
r
(

nx, y
)

n

)

= x · f(y) + d(x) · y, (

x, y ∈ F
)

.

(3.9)

Let x, y ∈ F and n ∈ N be fixed. Then using (3.8) and additivity of d, we have

x · f(ny) + nd(x) · y = x · f(ny) + d(x) · ny = d
(

x · ny)

= d
(

nx · y) = nx · f(y) + d(nx) · y
= nx · f(y) + nd(x) · y.

(3.10)

Therefore,

x · f(y) = x · f
(

ny
)

n
,

(

x, y ∈ F, n ∈ N
)

. (3.11)

Sending n to infinity, by (3.6), we see that

x · f(y) = x · d(y), (

x, y ∈ F
)

. (3.12)

Combining this formula with (3.8), we have that d satisfies (1.2) which is the desired result.
Moreover, the last formula yields x · (f(y) − d(y)) = 0 for all x, y ∈ F.
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