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By using a linear scalarization method, we establish sufficient conditions for the Hölder continuity
of the solution mappings to a parametric generalized vector quasiequilibrium problem with set-
valued mappings. These results extend the recent ones in the recent literature, (e.g., Li et al. (2009),
Li et al. (2011)). Furthermore, two examples are given to illustrate the obtained result.

1. Introduction

The vector equilibrium problem has been attracting great interest because it provides a
unified model for several important problems such as vector variational inequalities, vector
complementarity problems, vector optimization problems, vector min-max inequality, and
vector saddle point problems.Many different types of vector equilibrium problems have been
intensively studied for the past years; see, for example, [1–3] and the references therein.

It is important to derive results for parametric vector equilibrium problems concerning
the properties of the solution mapping when the problems data vary. Among many
desirable properties of vector equilibrium problems, the stability analysis of solutions is an
essential topic in vector optimization theory and applications. In general, stability may be
understood as lower (upper) semicontinuity, continuity, Lipschitz and Hölder continuity
and so on. Recently, semicontinuity, especially lower semicontinuity, of solution mappings
to parametric vector variational inequalities and parametric vector equilibrium problems has
been intensively studied in the literature; see [4–12]. On the other hand, Hölder continuity
of solutions to parametric vector equilibrium problems has also been discussed recently;
see [13–22], although there are less works in the literature devoted to this property than
to semicontinuity. There have been many papers devoted to discussing the local uniqueness
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and Hölder continuity of the solutions to parametric variational inequalities and parametric
equilibrium problems; see [14–20] and the references therein. Yên [14] obtained Hölder
continuity of the unique solution of a classic perturbed variational inequality by the
metric projection method. Ait Mansour and Riahi [15] proved Hölder continuity of the
unique solution for a parametric vector equilibrium problem under the concepts of strong
monotonicity. Bianchi and Pini [16] introduced the concept of strong pseudomonotonicity
and got the Hölder continuity of the unique solution of a parametric vector equilibrium
problem. Bianchi and Pini [17] extend the results of [16] to vector equilibrium problems.
Anh and Khanh [18] generalized the main results of [16] to the vector case and obtained
Hölder continuity of the unique solutions for two classes of perturbed generalized vector
equilibrium problems. Anh and Khanh [19] further discussed uniqueness and Hölder
continuity of the solutions for perturbed generalized vector equilibrium problems, which
improved remarkably the results in [16, 18]. Anh and Khanh [20] extended the results of [19]
to the case of perturbed generalized vector quasiequilibrium problems and obtained Hölder
continuity of the unique solutions.

For general perturbed vector quasiequilibrium problems, it is well known that a
solution mapping is, in general, a set-valued one, but not a single-valued one. Naturally,
there is a need to study Hölder continuous properties of the set-valued solution mappings.
Under the Hausdorff distance and the strong quasimonotonicity, Lee et al. [21] first showed
that the set-valued solution mapping for a parametric vector variational inequality is
Hölder continuous. Recently, by virtue of the strong quasimonotonicity, Ait Mansour and
Aussel [22] discussed Hölder continuity of set-valued solution mappings for parametric
generalized variational inequalities. Li et al. [23] introduced an assumption, which is
weaker than the corresponding ones of [16, 18], and established the Hölder continuity
of the set-valued solution mappings for two classes of parametric generalized vector
quasiequilibrium problems in general metric spaces. Li et al. [24] extended the results of [23]
to perturbed generalized vector quasiequilibrium problems. Later, S. J. Li and X. B. Li [25]
use a scalarization technique to obtain the Hölder continuity of the set-valued solution
mappings for a parametric vector equilibrium problem in general metric spaces.

Motivated by the work reported in [21, 23, 25], this paper aims at establishing suffi-
cient conditions for Hölder continuity of the solution sets for a class of parametric generalized
vector quasiequilibrium problem ((PGVQEP), in short)with set-valued mapping, by using a
linear scalarization method. The main results in this paper are different from corresponding
results in [23, 24] and overcome the drawback, which requires the knowledge of detailed
values of the solution mapping in a neighborhood of the point under consideration. Our
main results also extend and improve the corresponding ones in [25].

The rest of the paper is organized as follows. In Section 2, we introduce the (PGVQEP)
and define the solution and ξ-solution to the (PGVQEP). Then, we recall some notions and
definitions which are needed in the sequel. In Section 3, we discuss Hölder continuity of the
solution mapping for the (PGVQEP) and compare our main results with the corresponding
ones in the recent literature. We also give two examples to illustrate that our main results are
applicable.

2. Preliminaries

Throughout this paper, if not other specified, ‖ · ‖ and d(·, ·) denote the norm and metric in
any metric space, respectively. Let B(0, δ) denote the closed ball with radius δ ≥ 0 and center
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0 in any metric linear spaces. Let X,Λ,M, Y be metric linear spaces. Let Y ∗ be the topological
dual space of Y . Let C ⊂ Y be a pointed, closed, and convex cone with intC/= ∅, where intC
denotes the interior of C. Let C∗ := {f ∈ Y ∗ : f(y) ≥ 0, for all y ∈ C} be the dual cone of C.
Since intC/= ∅, the dual cone C∗ of C has a weak∗ compact base. Letting e ∈ intC be given,
then B∗

e := {ξ ∈ C∗ : ‖ξ‖ = 1} is a weak∗ compact base of C∗.
Let N(λ0) ⊂ Λ and N(μ0) ⊂ M be neighborhoods of considered points λ0 and μ0,

respectively. LetK : X ×Λ ⇒ X be a set-valued mapping, and let F : X ×X ×M ⇒ Y be a set-
valued mapping. For each λ ∈ N(λ0) and μ ∈ N(μ0), consider the following parameterized
generalized vector quasiequilibrium problem of finding x0 ∈ K(x0, λ) such that

F
(
x0, y, μ

) ⊂ Y \ − intC, ∀y ∈ K(x0, λ). (PGVQEP)

For each λ ∈ N(λ0) and μ ∈ N(μ0), let

E(λ) := {x ∈ X | x ∈ K(x, λ)}. (2.1)

Let S(λ, μ) be the solution set of (PGVQEP), that is,

S
(
λ, μ
)
:=
{
x ∈ E(λ) | F(x, y, μ) ⊂ Y \ − intC, ∀y ∈ K(x, λ)

}
. (2.2)

For each ξ ∈ C∗ \ {0}, each λ ∈ N(λ0) and μ ∈ N(μ0), let Sξ(λ, μ) denote the set of
ξ-solution set to (PGVQEP), that is,

Sξ

(
λ, μ
)
:=
{
x ∈ E(λ) : inf

z∈F(x,y,μ)
f(z) ≥ 0, ∀y ∈ K(x, λ)

}
. (2.3)

Special Case

(i) When K(x, λ) = K(λ), that is, K does not depend on x, the (PGVQEP) reduces to
the parametric generalized vector equilibrium problem (PGVEP) considered by Li
et al. [23].

(ii) If F : X × X × M → R, the (PGVQEP) collapses to the quasiequilibrium problem
(QEP) considered by Anh and Khanh [26].

(iii) If K(x, λ) = K(λ) and F is a vector-valued mapping, that is, F : X × X × M → Y ,
the (PGVQEP) reduce to the parametric Ky Fan inequality (PKI) considered by
S. J. Li and X. B. Li [25].

Now we recall some basic definitions and their properties which are needed in this
paper.

Definition 2.1 (classical notion). A set-valued mapping G : M ⇒ X is said to be � · α-Hölder
continuous at μ0 if there is a neighborhood U(μ0) of μ0 such that, for all μ1, μ1 ∈ U(μ0),

G
(
μ1
) ⊆ G

(
μ2
)
+ �B

(
0, dα(μ1, μ2

))
, (2.4)

where � ≥ 0 and α > 0.
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Definition 2.2. A set-valued mapping G : X × Λ ⇒ Y is said to be (�1 · α1, �2 · α2)-Hölder
continuous at (x0, λ0) if and only if there exists neighborhoods N(x0) of x0 and N(μ0) of μ0

such that, for all x1, x2 ∈ N(x0), for all λ1, λ2 ∈ N(λ0),

G(x1, λ1) ⊆ G(x2, λ2) + (�1dα1(x1, x2) + �2d
α2(λ1, λ2))B(0, 1), (2.5)

where �1, �2 ≥ 0 and α1, α2 > 0.

Definition 2.3 (see [25]). A set-valued mapping G : M ⇒ Y is said to be (� · α)-Hölder
continuous with respect to e ∈ intC at μ0 if and only if there exists neighborhoods N(μ0)
of μ0 such that, for all μ1, μ2 ∈ N(μ0),

G
(
μ1
) ⊆ G

(
μ2
)
+ �dα(μ1, μ2

)
[−e, e], (2.6)

where � ≥ 0, α > 0 and [−e, e] = {x : x ∈ e − C, x ∈ −e + C}.

Definition 2.4. Let F : X×X×Λ ⇒ Y be a set-valuedmapping with nonempty values; F(x, ·, μ)
is called C-like convex on A(λ) if and only if for any x1, x2 ∈ X and any t ∈ [0, 1], there exists
x3 ∈ X such that

tF(x, x1, λ) + (1 − t)F(x, x2, λ) ⊂ F(x, x3, λ) + C. (2.7)

Remark 2.5. If for each μ ∈ N(μ0) and each x ∈ E(N(λ0)), F(x, ·, μ) is C-like convex on
E(N(λ0)), then F(x, E(N(λ0)), μ) + C is a convex set.

3. Main Results

In this section, we mainly discuss the Hölder continuity of the solution mappings to
(PGVQEP).

Lemma 3.1. Suppose that N(λ0),N(μ0) are the given neighborhoods of λ0, μ0, respectively.

(a) If for each x, y ∈ E(N(λ0)), F(x, y, ·) ism1 ·γ1-Hölder continuous with respect to e ∈ intC
at μ0 ∈ M, then for any ξ ∈ B∗

e, the function ϕξ(x, y, ·) = infz∈F(x,y,·)ξ(z) ism1 · γ1-Hölder
continuous at μ0.

(b) If for each x ∈ E(N(λ0)) and μ ∈ N(E(μ0)), F(x, ·, μ) is m2 · γ2-Hölder continuous with
respect to e ∈ intC on E(N(λ0)), then for each ξ ∈ B∗

e, ϕξ(x, ·, μ) = infz∈F(x,·,μ)ξ(z) is also
m2 · γ2-Hölder continuous on E(N(λ0)).

Proof. (a) By assumption, there exists a neighborhood N(μ0) of μ0, such that for all μ1, μ2 ∈
N(μ0), for all x, y ∈ E(N(λ0)) : x /=y,

F
(
x, y, μ1

) ⊂ F
(
x, y, μ2

)
+m1d

γ1
(
μ1, μ2

)
[−e, e]. (3.1)

So, for any z1 ∈ F(x, y, μ1), there exist z2 ∈ F(x, y, μ2) and e0 ∈ [−e, e] such that

z1 = z2 +m1d
γ1
(
μ1, μ2

)
e0. (3.2)



Abstract and Applied Analysis 5

Then, by the linearity of ξ, we have

ξ(z1) − ξ(z2) = m1d
γ1
(
μ1, μ2

)
ξ(e0). (3.3)

It follows from ξ(e) = 1, e0 ∈ [−e, e], and the structure of [−e, e] that

ξ(e0) ≥ −1. (3.4)

Therefore, (3.3) and (3.4) together yield that

−m1d
γ1
(
μ1, μ2

) ≤ ξ(z1) − ξ(z2). (3.5)

Since z1 is arbitrary and ξ(z2) ≥ infz∈F(x,y,μ2)ξ(z), we have

−m1d
γ1
(
μ1, μ2

) ≤ inf
z∈F(x,y,μ1)

ξ(z) − inf
z∈F(x,y,μ2)

ξ(z). (3.6)

Due to the symmetry between μ1 and μ2, the same estimate is also valid, that is,

−m1d
γ1
(
μ1, μ2

) ≤ inf
z∈F(x,y,μ2)

ξ(z) − inf
z∈F(x,y,μ1)

ξ(z). (3.7)

Thus, it follows (3.6) and (3.7) that

∣∣∣∣ inf
z∈F(x,y,μ1)

ξ(z) − inf
z∈F(x,y,μ2)

ξ(z)
∣∣∣∣ =
∣∣ϕξ

(
x, y, μ1

) − ϕξ

(
x, y, μ2

)∣∣ ≤ m1d
γ1
(
μ1, μ2

)
(3.8)

and the proof is completed.
(b) As the proof of (b) is similar to (a), we omit it. Then the proof is completed.

Lemma 3.2. If for each μ ∈ N(μ0) and each x ∈ E(N(λ0)), F(x, ·, μ) is C-like convex on E(N(λ0)),
that is, F(x, E(N(λ0)), μ) + C is a convex set, then

S
(
λ, μ
)
= ∪

ξ∈C∗\0
Sξ

(
λ, μ
)
= ∪

ξ∈B∗
e

Sξ

(
λ, μ
)
. (3.9)

Proof. In a similar way to the proof of Lemma 3.1 in [8], with suitable modifications, we can
obtain the conclusion.

Theorem 3.3. Assume that for each ξ ∈ B∗
e, the ξ-solution set for (PGVQEP) exists in a neighborhood

N(λ0)×N(μ0) of the considered point (λ0, μ0) ∈ Λ×M. Assume further that the following conditions
hold.

(i) K(·, ·) is (�1 · α1, �2 · α2)-Hölder continuous in E(N(λ0)) ×N(μ0).

(ii) For each x, y ∈ E(N(λ0)), F(x, y, ·) ism1 · γ1-Hölder continuous with respect to e ∈ intC
at μ0 ∈ M.
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(iii) For each x ∈ E(N(λ0)) and μ ∈ N(E(μ0)), F(x, ·, μ) is m2 · γ2-Hölder continuous with
respect to e ∈ intC on E(N(λ0)).

(iv) for all ξ ∈ B∗
e, μ ∈ N(μ0), for all x, y ∈ E(N(λ0)) : x /=y, there exists two constants

h > 0 and β > 0 such that

hdβ(x, y
) ≤ d

(

inf
z∈F(x,y,μ)

ξ(z),R+

)

+ d

(

inf
z∈F(y,x,μ)

ξ(z),R+

)

. (3.10)

(v) α1γ2 = β and h > 2m2�
γ2
1 .

Then, for any ξ ∈ B∗
e, there exists open neighborhoodsN(ξ) of ξ,Nξ(λ0) of λ0 andNξ(μ0) of μ0, such

that the ξ-solution set Sξ(·, ·) on N(ξ) × Nξ(λ0) × Nξ(μ0) satisfies the following Hölder condition:

for all ξ ∈ N(ξ), for all (λ1, μ1), (λ2, μ2) ∈ Nξ(λ0) ×Nξ(μ0),

d
(
xξ(λ1, μ1

)
, xξ(λ2, μ2

)) ≤
(

m1

h − 2m2�
γ2
1

)1/β

dγ1/β
(
μ1, μ2

)
+

(
2m2�

γ2
2

h − 2m2�
γ2
1

)1/β

dα2γ2/β(λ1, λ2),

(3.11)

where xξ(λi, μi) ∈ Sξ(λi, μi), i = 1, 2.

Proof. Let (λ1, μ1), (λ2, μ2) ∈ Nξ(λ0) ×Nξ(μ0) be arbitrarily given. For all ξ ∈ B∗
e, x, y ∈ X, and

μ ∈ M, we set ϕξ(x, y, ·) := infz∈F(x,y,·)ξ(z) for the sake of convenient statement in the sequel.
We prove that (3.11) holds by the following three steps.

Step 1. We first show that, for all xξ(λ1, μ1) ∈ Sξ(λ1, μ1), for all xξ(λ1, μ2) ∈ Sξ(λ1, μ2),

d
(
xξ(λ1, μ1

)
, xξ(λ1, μ2

)) ≤
(

m1

h − 2m2�
γ2
1

)1/β

dγ1/β
(
μ1, μ2

)
. (3.12)

Obviously, if xξ(λ1, μ1) = xξ(λ1, μ2), we have that (3.12) holds. So we suppose
xξ(λ1, μ1)/=xξ(λ1, μ2). Since xξ(λ1, μ1) ∈ K(xξ(λ1, μ1), λ1), xξ(λ1, μ2) ∈ K(xξ(λ1, μ2), λ1),
and by the Hölder continuity of K(·, λ1), there exists x1 ∈ K(xξ(λ1, μ1), λ1) and x2 ∈
K(xξ(λ1, μ2), λ1) such that

d
(
xξ
(
λ1, μ1

)
, x2
) ≤ �1d

α1
(
xξ
(
λ1, μ1

)
, xξ
(
λ1, μ2

))
,

d
(
xξ
(
λ1, μ2

)
, x1
) ≤ �1d

α1
(
xξ
(
λ1, μ1

)
, xξ
(
λ1, μ2

))
.

(3.13)

Since xξ(λ1, μ1), xξ(λ1, μ2) are ξ-solutions to (PGVQEP) at parameters (λ1, μ1), (λ1, μ2),
respectively, we obtain

ϕξ

(
xξ
(
λ1, μ1

)
, x1, μ1

) ≥ 0,

ϕξ

(
xξ
(
λ1, μ2

)
, x2, μ2

) ≥ 0.
(3.14)
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By virtue of (iv), we get that

hdβ
(
xξ(λ1, μ1

)
, xξ(λ1, μ2

)) ≤ d
(
φξ

(
xξ(λ1, μ2

)
, xξ(λ1, μ1

)
, μ1

)
, R+

)

+ d
(
φξ

(
xξ(λ1, μ1

)
, xξ(λ1, μ2

)
, μ1

)
, R+

)
,

(3.15)

which together with (3.14) yields that

hdβ
(
xξ(λ1, μ1

)
, xξ(λ1, μ2

)) ≤
∣
∣∣φξ

(
xξ(λ1, μ2

)
, xξ(λ1, μ1

)
, μ1

)
− φξ

(
xξ(λ1, μ2

)
, x2, μ2

)∣∣∣

+
∣
∣
∣φξ

(
xξ(λ1, μ1

)
, xξ(λ1, μ2

)
, μ1

)
− φξ

(
xξ(λ1, μ1

)
, x1, μ1

)∣∣
∣

≤
∣∣∣φξ

(
xξ(λ1, μ2

)
, xξ(λ1, μ1

)
, μ1

)
− φξ

(
xξ(λ1, μ2

)
, xξ(λ1, μ1

)
, μ2

)∣∣∣

+
∣∣∣φξ

(
xξ(λ1, μ2

)
, xξ(λ1, μ1

)
, μ2

)
− φξ

(
xξ(λ1, μ2

)
, x2, μ2

)∣∣∣

+
∣∣∣φξ

(
xξ(λ1, μ1

)
, xξ(λ1, μ2

)
, μ1

)
− φξ

(
xξ(λ1, μ1

)
, x1, μ1

)∣∣∣.

(3.16)

Then, from Lemma 3.1, (3.13), we have

hdβ
(
xξ(λ1, μ1

)
, xξ(λ1, μ2

))

≤ m1d
γ1
(
μ1, μ2

)
+m2d

γ2
(
xξ(λ1, μ2

)
, x1

)
+m2d

γ2
(
xξ(λ1, μ1

)
, x2

)

≤ m1d
γ1
(
μ1, μ2

)
+ 2m2�

γ2dα1γ2
(
xξ(λ1, μ1

)
, xξ(λ1, μ2

))
.

(3.17)

The assumption (v) yields that

d
(
xξ(λ1, μ1

)
, xξ(λ1, μ2

)) ≤
(

m1

h − 2m2�
γ2
1

)1/β

dγ1/β
(
μ1, μ2

)
. (3.18)

Hence, we have that (3.12) holds.

Step 2. Now we show that, for all xξ(λ1, μ2) ∈ Sξ(λ1, μ2), for all xξ(λ2, μ2) ∈ Sξ(λ2, μ2),

d
(
xξ(λ1, μ2

)
, xξ(λ2, μ2

)) ≤
(

2m2�
γ2
2

h − 2m2�
γ2
1

)1/β

dα2γ2/β(λ1, λ2). (3.19)
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Obviously, we only need to prove that (3.19) holds when xξ(λ1, μ2)/=xξ(λ2, μ2). By virtue of
assumption (i), there exists x′

1 ∈ K(xξ(λ2, μ2), λ1) and x′
2 ∈ K(xξ(λ1, μ2), λ2) such that

d
(
xξ(λ2, μ2

)
, x′

1

)
≤ �2d

α2(λ1, λ2),

d
(
xξ(λ1, μ2

)
, x′

2

)
≤ �2d

α2(λ1, λ2).
(3.20)

By the Hölder continuity of K(·, ·), there exists x′′
1 ∈ K(xξ(λ1, μ2), λ1) and x′′

2 ∈
K(xξ(λ2, μ2), λ2) such that

d
(
x′
1, x

′′
1

) ≤ �1d
α1
(
xξ(λ1, μ2

)
, xξ(λ2, μ2

))
,

d
(
x′
2, x

′′
2

) ≤ �1d
α1
(
xξ
(
λ1, μ2

)
, xξ
(
λ2, μ2

))
.

(3.21)

From the definition of ξ-solution for (PGVQEP), we have

φξ

(
xξ(λ1, μ2

)
, x′′

1, μ2

)
≥ 0,

φξ

(
xξ(λ2, μ2

)
, x′′

2, μ2

)
≥ 0.

(3.22)

From assumptions (ii)–(iv), (3.22), and Lemma 3.1, we have

hdβ
(
xξ(λ1, μ2

)
, xξ(λ2, μ2

))

≤ d
(
φξ

(
xξ(λ1, μ2

)
, xξ(λ2, μ2

)
, μ2

)
, R+

)
+ d
(
φξ

(
xξ(λ2, μ2

)
, xξ(λ1, μ2

)
, μ2

)
, R+

)

≤ d
(
φξ

(
xξ(λ1, μ2

)
, x
(
λ2, μ2

)
, μ2

)
− φξ

(
xξ(λ1, μ2

)
, x′′

1, μ2

))

+ d
(
φξ

(
xξ(λ2, μ2

)
, xξ(λ1, μ2

)
, μ2

)
− φξ

(
xξ(λ2, μ2

)
, x′′

2, μ2

))

≤ d
(
φξ

(
xξ(λ1, μ2

)
, x
(
λ2, μ2

)
, μ2

)
− φξ

(
xξ(λ1, μ2

)
, x′

1, μ2

))

+ d
(
φξ

(
xξ(λ1, μ2

)
, x′

1, μ2

)
− φξ

(
xξ(λ1, μ2

)
, x′′

1, μ2

))

+ d
(
φξ

(
xξ(λ2, μ2

)
, xξ(λ1, μ2

)
, μ2

)
− φξ

(
xξ(λ2, μ2

)
, x′

2, μ2

))

+ d
(
φξ

(
xξ(λ2, μ2

)
, x′

2, μ2

)
− φξ

(
xξ(λ2, μ2

)
, x′′

2, μ2

))

≤ m2d
γ2
(
x
(
λ2, μ2

)
, x′

1

)
+m2d

γ2
(
x′
1, x

′′
1

)
+m2d

γ2
(
x
(
λ1, μ2

)
, x′

2
)
+m2d

γ2
(
x′
2, x

′′
2
)
.

(3.23)
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By virtue of (3.20)–(3.21) and (3.23), we can get

hdβ
(
xξ(λ1, μ2

)
, xξ(λ2, μ2

)) ≤ m2�
γ2
2 d

α2γ2(λ1, λ2) +m2�
γ2
1 d

α1γ2
(
xξ(λ1, μ2

)
, xξ(λ2, μ2

))

+m2�
γ2
2 d

α2γ2(λ1, λ2) +m2�
γ2
1 d

α1γ2
(
xξ(λ1, μ2

)
, xξ(λ2, μ2

))
.

(3.24)

Therefore, it follows from (v) that

d
(
xξ(λ1, μ2

)
, xξ(λ2, μ2

)) ≤
(

2m2�
γ2
2

h − 2m2�
γ2
1

)1/β

dα2γ2/β(λ1, λ2) (3.25)

and the conclusion (3.19) holds.

Step 3. Finally, by the arbitrariness of xξ(λ1, μ1) ∈ Sξ(λ1, μ1), xξ(λ1, μ2) ∈ Sξ(λ1, μ2),
xξ(λ2, μ2) ∈ Sξ(λ2, μ2), (3.12) and (3.19), we can easily get that

d
(
xξ(λ1, μ1

)
, xξ(λ2, μ2

)) ≤ d
(
xξ(λ1, μ1

)
, xξ(λ1, μ2

))
+ d
(
xξ(λ1, μ2

)
, xξ(λ2, μ2

))

≤
(

m1

h − 2m2�
γ2
1

)1/β

dγ1/β
(
μ1, μ2

)
+

(
2m2�

γ2
2

h − 2m2�
γ2
1

)1/β

dα2γ2/β(λ1, λ2)

(3.26)

and the conclusion (3.11) holds. This completes the proof.

Remark 3.4. Theorem 3.3 generalizes Lemma 3.3 in S. J. Li and X. B. Li [25] from vector-
valued version to set valued version. Moreover, the assumption (H4) of Lemma 3.3 in [25] is
removed.

Now, we give an example to illustrate that Theorem 3.3 is applicable under the case
that the mapping F is set valued.

Example 3.5. Let X = Y = R,Λ = M = [0, 1], C = R+ and e = 3/2 ∈ intC. Let K : X ×M ⇒ Y
be defined by

K(x, λ) =

[
λ2 + x

16
, 1

]

(3.27)

and F : X ×X ×M ⇒ Y a set-valued mapping defined by

F
(
x, y, λ

)
=
[
(1 + λ)

(
x +

1
2

)
(
y − x

)
, 28 − 2x3/2

]
. (3.28)

Then, E(λ) = [λ2/15, 1]. Consider that λ0 = 0.5 and N(λ0) = Λ. Direct computation shows
that E(Λ) = E(N(λ0)) = [0, 1].
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It can be checked that K(·, ·) is ((1/16) · 1, (3/2) · 1)-Hölder continuous in E(N(λ0)) ×
N(μ0); for all x, y ∈ E(N(λ0)), F(x, y, ·) is 6

√
2.1-Hölder continuous with respect to e = 3/2 ∈

intC at λ0 ∈ M; for each x ∈ E(N(λ0)) and λ ∈ N(E(λ0)), F(x, ·, λ) is 3.1-Hölder continuous
with respect to e ∈ intC on E(N(λ0)). Here �1 = 1/16, α1 = 1, �2 = 3/2, α2 = 1, m1 = 6

√
2, γ1 =

1, m2 = 3, γ2 = 1. Take β = 1 and h = 1/2, for any ξ ∈ B∗
e and for all x, y ∈ E(N(λ0)) : x /=y, we

have

hdβ(x, y
) ≤ d

(

inf
z∈F(x,y,μ)

ξ(z), R+

)

+ d

(

inf
z∈F(y,x,μ)

ξ(z), R+

)

(3.29)

and also have α1γ2 = β and h > 2m2�
γ2
1 = 3/8. Hence, all assumptions of Theorem 3.3 hold,

and thus it is valid.

Theorem 3.6. Assume that for each ξ ∈ B∗
e, the ξ-solution set for (PGVQEP) exists in a neighborhood

N(λ0)×N(μ0) of the considered point (λ0, μ0) ∈ Λ×M. Assume further that the following conditions
hold:

(i) K(·, ·) is (�1 · α1, �2 · α2)-Hölder continuous in E(N(λ0)) ×N(μ0);

(ii) for each x, y ∈ E(N(λ0)), F(x, y, ·) ism1 · γ1-Hölder continuous with respect to e ∈ intC
at μ0 ∈ M;

(iii) for each x ∈ E(N(λ0)) and μ ∈ N(E(μ0)), F(x, ·, μ) is m2 · γ2-Hölder continuous with
respect to e ∈ intC on E(N(λ0));

(iv) for all ξ ∈ B∗
e, μ ∈ N(μ0), for all x, y ∈ E(N(λ0))(x /=y), there exist two constants

h > 0 and β > 0 such that

hdβ(x, y
) ≤ d

(

inf
z∈F(x,y,μ)

ξ(z), R+

)

+ d

(

inf
z∈F(y,x,μ)

ξ(z), R+

)

; (3.30)

(v) for all x ∈ E(N(λ0)), for all μ ∈ N(μ0), F(x, ·, μ) is C-like convex on E(N(λ0));

(vi) α1γ2 = β and h > 2m2�
γ2
1 .

Then there exist neighborhoods Ñ(λ0) of λ0 and Ñ(μ0) of μ0, such that the solution set S(·, ·)
on Ñ(λ0) × Ñ(μ0) is nonempty and satisfies the following Hölder continuous condition, for all
(λ1, μ1), (λ2, μ2) ∈ Ñ(λ0) × Ñ(μ0):

S
(
λ1, μ1

) ⊂ S
(
λ2, μ2

)

+

⎛

⎝
(

m1

h − 2m2�
γ2
1

)1/β

dγ1/β
(
μ1, μ2

)
+

(
2m2�

γ2
2

h − 2m2�
γ2
1

)1/β

dα2γ2/β(λ1, λ2)

⎞

⎠B(0, 1).
(3.31)
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Proof. Since the system of {N ′(ξ)}ξ∈B∗
e
, which are given by Theorem 3.3, is an open covering

of the weak∗ compact set B∗
e, there exist a finite number of points (ξi) (i = 1, 2, . . . , n.) from B∗

e

such that

B∗
e ⊂

n⋃

i=1

N ′(ξi). (3.32)

Hence, let Ñ(λ0) =
⋂n

i=1 N
′
ξi(λ0) and Ñ(μ0) =

⋂n
i=1 N

′
ξi(μ0). Then Ñ(λ0) and Ñ(μ0) are

desired neighborhoods of λ0 and μ0, respectively. Indeed, let (λ, μ) ∈ Ñ(λ0) × Ñ(μ0) be given
arbitrarily. For any ξ ∈ B∗

e, by virtue of (3.32), there exists i0 ∈ {1, 2, . . . , n} such that ξ ∈ N ′(ξi0).
From the construction of the neighborhoods Ñ(λ0) and Ñ(μ0), one has

(
λ, μ
) ∈ N ′

ξi0
(λ0) ×N ′

ξi0

(
μ0
)
. (3.33)

Then, from the assumption of existence for ξ-solution set and Lemma 3.2, S(λ, μ) =⋃
ξ∈B∗

e
Sξ(λ, μ) is nonempty.
Now, we show that (3.31) holds. Indeed, taking any (λ1, μ1), (λ2, μ2) ∈ Ñ(λ0) × Ñ(μ0),

we need to show that for any x1 ∈ S(λ1, μ1), there exists x2 ∈ S(λ2, μ2) satisfying

d(x1, x2) ≤
(

m1

h − 2m2�
γ2
1

)1/β

dγ1/β
(
μ1, μ2

)
+

(
2m2�

γ2
2

h − 2m2�
γ2
1

)1/β

dα2γ2/β(λ1, λ2). (3.34)

Since x1 ∈ S(λ1, μ1) =
⋃

ξ∈B∗
e
Sξ(λ1, μ1), there exists ξ̂ ∈ B∗

e such that

x1 = xξ̂(λ1, μ1
) ∈ Sξ̂

(
λ1, μ1

)
. (3.35)

It follows from (3.32) that there exists i0 ∈ {1, 2, . . . , n} such that ξ̂ ∈ N ′(ξi0). Thus, by the
construction of the neighborhoods Ñ(λ0) and Ñ(μ0), we have

(
λ1, μ1

)
,
(
λ2, μ2

) ∈ Nξi0
(λ0) ×Nξi0

(
μ0
)
. (3.36)

Obviously, thanks to Theorem 3.3, we have

d
(
xξ̂(λ1, μ1

)
, xξ̂(λ2, μ2

)) ≤
(

m1

h − 2m2�
γ2
1

)1/β

dγ1/β
(
μ1, μ2

)
+

(
2m2�

γ2
2

h − 2m2�
γ2
1

)1/β

dα2γ2/β(λ1, λ2).

(3.37)

Let x2 = xξ̂(λ2, μ2). Then, (3.34) holds, and the proof is complete.

Remark 3.7. Theorem 3.6 generalizes, and improves the corresponding results of
S. J. Li and X. B. Li [25] in the following three aspects.
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(i) The vector-valued mapping F(x, y, μ) is extended to set-valued, and the parametric
vector equilibrium problem is extended to the parametric vector quasiequilibrium
problem.

(ii) The assumption (H4) of Theorem 3.1 in [25] is removed.

(iii) The C-convexity of F(x, ·, μ) (see Theorem 3.1 in [25]) is extended to C-convexlike-
ness.

In addition, it is easy to see that the assumption (iv) of Theorem 3.6 is different form
the assumption (H1) of Theorem 3.1 in S. J. Li and X. B. Li [25].

Moreover, we also can see that the obtained result extends the ones of [23]. Now, we
give the following example to illustrate the case.

Example 3.8. LetX = Y = R,Λ = M = [0, 1], C = R+, and e =
√
2/2 ∈ intC. LetK : X×M ⇒ Y

be defined by K(x, λ) = [λ2, 1], and let F : X × X ×M ⇒ Y be a set-valued mapping defined
by

F
(
x, y, λ

)
=
[(

3
4
+ 2λ

)
(
y + 3

)(
x − y

)
, 20 − |x|1/2

]
. (3.38)

Consider that λ0 = 0.5 and N(λ0) = Λ. Then, E(λ) = [λ2, 1] and E(Λ) = E(N(λ0)) = [0, 1].

Obviously, K(·, ·) is (0.1,√2 · 1)-Hölder continuous in E(N(λ0)) ×N(μ0); for all x, y ∈
E(N(λ0)), F(x, y, ·) is 7

√
2 · 1-Hölder continuous with respect to e =

√
2/2 ∈ intC at λ0 ∈ M;

for each x ∈ E(N(λ0)) and λ ∈ N(E(λ0)), F(x, ·, λ) is 9
√
5·1-Hölder continuous with respect to

e ∈ intC on E(N(λ0)). Here �1 = 0, α1 = 1, �2 =
√
2, α2 = 1, m1 = 7

√
2, γ1 = 1, m2 = 9

√
5, γ2 = 1.

Take β = 1 and h = 3/4, for any ξ ∈ B∗
e and for all x, y ∈ E(N(λ0))(x /=y), we have

hdβ(x, y
) ≤ d

(

inf
z∈F(x,y,μ)

ξ(z),R+

)

+ d

(

inf
z∈F(y,x,μ)

ξ(z),R+

)

(3.39)

and also have α1γ2 = β and h = 3/4 > 2m2�
γ2
1 . Therefore, all assumptions of Theorem 3.3 hold,

and thus it is applicable.
However, the assumption (ii) of Theorem 3.1 (or (ii’) of Theorem 4.1) in [23] does not

hold. In fact, for any λ ∈ Λ, for any h > 0 and β > 0, there exists y0 = 0 ∈ E(N(λ0)) \ Sξ(λ, μ)
such that

F
(
y0, x, λ

)
+ hB

(
0, dβ

(
x, y0

))
=
[
−
(
3
4
+ 2λ

)
(x + 3)x, 20 − |x|1/2

]
+ hB

(
0, dβ(0, x)

)

/⊆ − R+

(3.40)

for all x ∈ Sξ(λ, μ). Thus, Theorems 3.1 and 4.1 in Li et al. [23] are not applicable.

Acknowledgments

The author would like to thank the anonymous referees for valuable comments and sug-
gestions, which helped to improve the paper. This work was supported by the Natural



Abstract and Applied Analysis 13

Science Foundation of China (no. 10831009. 11001287), the Natural Science Foundation
Project of ChongQing (no. CSTC, 2010BB9254. 2011AC6104), and the Research Grant of
Chongqing Key Laboratory of Operations and System Engineering.

References

[1] F. Giannessi, Ed., Vector Variational Inequalities and Vector Equilibria: Mathematical Theories, vol.
38 of Nonconvex Optimization and Its Applications, Kluwer Academic Publishers, Dordrecht, The
Netherlands, 2000.

[2] F. Giannessi, A. Maugeri, and P. M. Pardalos, Equilibrium Problems: Nonsmooth Optimization and
Variational Inequality Methods, Kluwer Acad. Publ., Dordrecht, The Netherlands, 2001.

[3] G.-Y. Chen, X. Huang, and X. Yang, Vector Optimization: Set-Valued and Variational Analysis, vol. 541 of
Lecture Notes in Economics and Mathematical Systems, Springer, Berlin, Germany, 2005.

[4] Y. H. Cheng and D. L. Zhu, “Global stability results for the weak vector variational inequality,” Journal
of Global Optimization, vol. 32, no. 4, pp. 543–550, 2005.

[5] L. Q. Anh and P. Q. Khanh, “Semicontinuity of the solution set of parametric multivalued vector
quasiequilibrium problems,” Journal of Mathematical Analysis and Applications, vol. 294, no. 2, pp. 699–
711, 2004.

[6] L. Q. Anh and P. Q. Khanh, “On the stability of the solution sets of general multivalued vector
quasiequilibrium problems,” Journal of Optimization Theory and Applications, vol. 135, no. 2, pp. 271–
284, 2007.

[7] N. J. Huang, J. Li, and H. B. Thompson, “Stability for parametric implicit vector equilibrium
problems,”Mathematical and Computer Modelling, vol. 43, no. 11-12, pp. 1267–1274, 2006.

[8] C. R. Chen, S. J. Li, and K. L. Teo, “Solution semicontinuity of parametric generalized vector
equilibrium problems,” Journal of Global Optimization, vol. 45, no. 2, pp. 309–318, 2009.

[9] C. R. Chen and S. J. Li, “On the solution continuity of parametric generalized systems,” Pacific Journal
of Optimization, vol. 6, no. 1, pp. 141–151, 2010.

[10] X. H. Gong and J. C. Yao, “Lower semicontinuity of the set of efficient solutions for generalized
systems,” Journal of Optimization Theory and Applications, vol. 138, no. 2, pp. 197–205, 2008.

[11] X. H. Gong, “Continuity of the solution set to parametric weak vector equilibrium problems,” Journal
of Optimization Theory and Applications, vol. 139, no. 1, pp. 35–46, 2008.

[12] K. Kimura and J.-C. Yao, “Sensitivity analysis of solution mappings of parametric vector quasi-
equilibrium problems,” Journal of Global Optimization, vol. 41, no. 2, pp. 187–202, 2008.

[13] L. Q. Anh and P. Q. Khanh, “Sensitivity analysis for weak and strong vector quasiequilibrium
problems,” Vietnam Journal of Mathematics, vol. 37, no. 2-3, pp. 237–253, 2009.
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