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We are interested in studying a second order of accuracy implicit difference scheme for the solution
of the elliptic-parabolic equation with the nonlocal boundary condition. Well-posedness of this
difference scheme is established. In an application, coercivity estimates in Holder norms for
approximate solutions of multipoint nonlocal boundary value problems for elliptic-parabolic
differential equations are obtained.

1. Introduction

Methods of solutions of nonlocal boundary value problems for mixed-type differential equa-
tions have been studied extensively by various researchers (see, e.g., [1-19] and the references
therein).

In [20], we considered the well-posedness of the following multipoint nonlocal bound-
ary value problem:

2
_dd”:gt) Y Au(t) = g(t), (0<t<1),
WO auty = f1, (1<1<0),

(1.1)
J
u(l) = > au(k) + ¢,
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1< <l <<l <o <Ly L0,
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in a Hilbert space H with the self-adjoint positive definite operator A under assumption
J
S| <1. (1.2)
i=1

The well-posedness of multipoint nonlocal boundary value problem (1.1) in Holder
spaces with a weight was established. Moreover, coercivity estimates in Holder norms for
the solutions of nonlocal boundary value problems for elliptic-parabolic equations were
obtained.

In [21], we studied the well-posedness of the first order of accuracy difference scheme
for the approximate solution of boundary value problem (1.1) under assumption (1.2).

Throughout this work, we consider the following second order of accuracy difference
scheme:

2
—T “(Ups1 — 2Uk + Ug—1) + Allge = g,

gk:g(tk), tk:kT,lkaN—l, NT:l/
T T
7:1 (uk - uk—l) - <I + EA)Auk_1 = <I + EA)fk, fk = f(tk—l/z)/
tk-1/2 = <k - %)T, ~(N-1)<k<0, (1.3)

up —4uq + 31/[0 = —3110 +4u 1 —u_,,

J

Ai
Un = a; <”[A,»/r1 + <)ti - [;]T) (fia/m) + Auu,-/rl)> + ¢,

k=1

for the approximate solution of boundary value problem (1.1) under assumption (1.2).

The well-posedness of difference scheme (1.3) in Holder spaces with a weight is
established. As an application, the stability, almost coercivity stability, and coercivity stability
estimates for solutions of second order of accuracy difference scheme for the approximate
solution of the nonlocal boundary elliptic-parabolic problem are obtained.

2. Main Theorems

Throughout the paper, H is a Hilbert space and we denote B = (1/2)(TA + VA4 + 72A)),
where A is a self-adjoint positive definite operator. Then, it is clear that B is the self-adjoint
positive definite operator and B > 6§'/2 where 6 > 6y > 0,and R = (I+7B) ", which is defined
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on the whole space H, is a bounded operator. Here, I is the identity operator. The following
operators

~ (TA)? ~ T2A ~ T ~ 4
D—<I+TA+T, G=(I1-5-) P—<I+§A>, R=(I+7B)",

T, = <1 + B-1A<I +TA+ gp-2>1<<1 - RZN‘1> + GKP2R2N-1

_GKP2(2I + TB)RN I:En:“i <I + <Ai - [%] T) A>D /7] uo])‘l
i=1

(2.1)

exist and are bounded for a self-adjoint positive operator A. Here,

B - %<TA+\/m>, K= <I+2TA+Z(TA)2>1. 2.2)

Furthermore, positive constants will be indicated by M which can differ in time. On
the other hand M;(a, f,...) is used to focus on the fact that the constant depends only on
a,p, ... and the subindex i is used to indicate a different constant.

First of all, let us start with some auxiliary lemmas from [16, 22-24] that are essential
below.

Lemma 2.1. For a self-adjoint positive operator A, the following estimates are satisfied:

[, <M@arent, [, <.
M;(6) _ M;(6)
L IS e L P L TC T Ty I -
2.3
o], < M0 oewy], sm
(L <M sy 550
H—H k
From these estimates, it follows that
<1 + B‘1A<I +TA+ %P‘2>K<I - R2N-1> + GKP2R™N-1 _ GKP2(2I + 7B)
(2.4)

-1
< M(6).
H—H

o [So(o (o))
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Lemma 2.2. Forany g, 1 <k < N-1and fi,—N +1 < k <0, the solution of problem (1.3) exists,
and the following formulas hold:

Uy = <I - R2N>_1

% {[Rk _ RZN—k]uO + [RN—k _ RN+k]

0

x I:g“i [(I + <J\i - [%] T>A> <D Wi/ — Tsz[AiZ/T]+1st—[Ai/T]fs>
+<)"' - [%]T>fu,-/r]] + (p]

N-1
~[RNK - RNK| (14 wB) 21 + 7B) B Y [RNT - RN gsT}
s=1
N-1
+(I+7B)(2l +7B)'B Y [R'k‘5| - Rk+5] g1, 1<k<N,
s=1

0
ug =D ug—7 > PD"*f,, -N<k<-1,
s=k+1

1 ~
Uy = ETTKP 2

x {(21—7214) x {(2+TB)RN
| S <I+<A»—[£]T>A)
- - i i -
0
x| DWwrug—7 3 PDTWIIS
s=[\i/T]+1

(= (2] ssa] ]

N-1 N-1
_RNle—lz [RN—S _ RN+S]gST + <I _ R2N>B—lZRS—1gST}
s=1

s=1

+(1-RN) (1 +7B) (7B g1 ~4PB™ fo+ PDB™ fo + PBf 1) }
T, = <I + B-1A<1 +TA+ EP‘2>K(I - RZN-1> + GKP2R2N-1

~ GKP2(2I + 7B)RN [Zn:ai<1+ </\i - [%]T>A>Dui/ﬂuoj|>1

i=1

(2.5)
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Now, we study well-posedness of prob}gm (1.3). Let F.(H) = F([a,b],, H) be the
linear space of mesh functions ¢* = {(pk}g defined on [a,b], = {tx = kh, N <
k < ﬁ, Nt = a, ﬁT = b} with values in the Hilbert space H. NNext, on F.(H)
we denote C([a, bl,, H), C%,([-1,11,, H), CZ,([-1,01,, H), C&([0,1],, H), C%,([-1,1],, H),
and Cj([-1,0],, H), 0 < a < 1 Banach spaces with the following norms:

”‘PTHC([a,b],,H) = N{‘f}N ”‘Pk”H'

o™ ”cm( H) = ||(10T”C([—1,1]T,H)+ sup || ¢pieer = il o (k)"
—~N<k<k+r<0

+  sup  ||@ker — k|| (K +7)T)* (N = k)*r°,
1<k<k+r<N-1

ll¢” Ca([-1,01, = |l¢” ”C( [-10],H) T Sup lpker = il g (=K)* 7™,
N<k<k+r<0
ll¢” cz (o], = ll¢” ”C(Ol H)
(2.6)
+  sup e — pille((k + 1)) (N = k)™,
1<k<k+r<N-1
llo” ”cm( H) = ”‘PT”C([—l,l]T,H) + _N<iuf2 <0”‘Pk+Zr = x| g (=k)*(2r) ™"
+  sup ||k — k|| ((k + 7)) (N - k)" r™,
1<k<k+r<N-1
ll¢” Ca([-1,01, = |lo” "C( [-1,0],,H)
+  sup  ||@ke2r — k|| o (=k)*(2r) 7", respectively.
~N<k<k+2r<0
Theorem 2.3. Nonlocal boundary value problem (1.3) is stable in C([-1,1],, H) space.
Proof. By [22], we have
” {”k}ll\l_lnc([o 0. H) M3(6) [”g lccony, i *+ 181e + ”‘F”H]f (2.7)
for the solution of the following boundary value problem:
77 (Ups1 — 2 + Up-1) + Atk = gk,
Sk=g(tx), tk=kr, 1<k<N-1, (2.8)

uy = ¢, UN = .

By [24], we have

03| sy S MO Neor, ey + 1] (29)
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for the solution of an inverse Cauchy difference problem:

7 Uk — Uk1) — (I + §A> At = (I - §A>fk' (2.10)

“(N-1)<k<0, u=2

Then, the proof of Theorem 2.3 is based on stability inequalities (2.7) and (2.9) and on the
following estimates:

6l < Ms(6) [”fT”C([—l,O]T,H) + ”gT”C([O,l]T,H) + ”‘P“H]' 211)
2.11

1111 < Me@{ I Neronim + 18 leqonim + el

for the solution of boundary value problem (1.3). Estimates (2.11) follow from estimates (2.3)
and (2.4) and formula (2.5). This finishes the proof of Theorem 2.3. O

Theorem 2.4. Assume that ¢ € D(A) and fo, f-1, g1 € D(I+7B). Then, for the solution of difference
problem (1.3), the following almost coercivity inequality holds:

N-1
+
c((o,1],,H)

T 0
|{<I + EA) Auk—l}_N+1 Lo (2.12)

. 1
< M;7(6) [mm{ln ;,1 +|In[[Allg = g } [”fT”C([—l,O]T,H) + ”gT”C([O,l]T,H)]

HlAplly + 1T +7B) folly + 1T+ 7B)&1 |y + |2+ 7B) fal ]

{T_l(uk - uk—l)}o

-N+1

{T_Z (U1 — 2uy + uk—l)}
1 C([-1,0],,H)

N-1
* ||{A“k}1 “c([o,lle) '

Proof. We have

{T_Z(ukﬂ = 2uk + Uk-1) }TH + ” {Aug) ™! ”

c([01],,H) (01 H) (2.13)
. 1
< Ms() [min 1 2, 1+ I U4 ol IS eqony o * 1480+ A0
for the solution of boundary value problem (2.8) (see [22]), and we get
{rt -} {1+ Za) auca)
N+l H) 2 -N+tlle-1,. 1) (2.14)

(1 .
< Mo() [min 1 2, 1+ WA ol H oy + 1481
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for the solution of inverse Cauchy difference problem (2.10) (see [24]). Then, the proof of
Theorem 2.4 is based on almost coercivity inequalities (2.13) and (2.14) and on the following
estimates:

. 1
14811 < M@ [ Apll, + 10+ 7B foll, -+ min{n 2,1+ in Al

X[”fT”C([—l,O]T,H) + ”gT”C([O,l]T,H)]]’
(2.15)

. 1
40l < M@ [[Apll, + 10+ 7B foll + min{1n 2,1+ in Al

X[”fT”C([—l,O]T,H) + ”gT”C([O,l]T,H)]]

for the solution of boundary value problem (1.3). Proofs of these estimates follow the
scheme of the papers [23, 24] and rely on both formula (2.5) and estimates (2.3) and (2.4).
Theorem 2.4 is proved. O

Theorem 2.5. Let assumptions of Theorem 2.5 be satisfied. Then, boundary value problem (1.3) is
well-posed in Holder spaces Cg,([-1,1],, H), and Cg,([-1,1],, H), and the following coercivity
inequalities hold:

0
+

S N-1
{T (U1 — 2uy + uk—l)}
b lles (o1, 1)

{T_l(uk - uk—l)}

“N+L|| G ([-1,01,,H)

0
ca (011, H) * “ { (I * EA> Auk‘l}_ml

1 - T
< M12(6) [m [”f lesqvon,m +1l8

+ ”{Auk}llv_l

Ca([-1,01,,H)

e o] + 149l + [T+ B foll 4
A+ B+ I+ TB) Ll

+
Cs([01],,H)

{Tﬁl(uk - uk—l)}o

) 5 N-1
T (u —2Uj + Up— }
{ (ks = 2wk +uk1) Nat

Ca([-1,0],,H)

0
C, (011, H) “ {1+ §A> At N+

< Mqy3(6) [ﬁ[”ﬁ

+ || tAug

Ca([-1,0],,H)

G100, H) t ls™ cgJ([o,l]T,H)] +[|Ag|| 4

AN+ B folly + 10+ Bl + 10+ 7B Ll
(2.16)
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Proof. By [22,24], we have

N N-1
{T (Uis1 — 2Ug + Ug-1) }1

+ || fAwa

Co1([0,1],H) €51 ([01],H)

(2.17)
1
< Mus(6) | s 187 oy 1420+ A0
for the solution of boundary value problem (2.8), and
{7 (s~ i) ) (1 Za) A )
Nl Es 0, H) 2 N+l Es (1,0, 1) (218)
) .
< Mis(8) |—— £l Aéllyl,
< Mis(8) | =5 1 g, * 1480
{T_l(uk_uk—l)}o + {(I+ IA)Au;ﬁl}o
N+l .0, H) 2 N+l (1.0, 1) 219)

1 T
< Mig(6) | s I e, in + 1480

for the solution of inverse Cauchy difference problem (2.10), respectively. Then, the proof of
Theorem 2.5 is based on coercivity inequalities (2.17)—(2.19) and the following estimates:

148l < Mir(®) |~ [l

T
éx(-101,01) t g cgJ([o,l]T,H)]

| Agll g + [|(T+7B) folly + [T+ TB)g1[| 5 + | (T + 7B) f1 ”H]’
(2.20)

1 T T
| Agll; < Mis(6) [m[ﬂf & 101,00 * 118 ||C6‘,1<[0r1]wH)]
+HAlla + I(I +7B) follm + I(I + TB) gl + 11 + TB)f—lllH]
for the solution of difference scheme (1.3). Proofs of these estimates follow the scheme of the

papers [22, 24] and rely on both estimates (2.3) and (2.4) and formula (2.5). This concludes
the proof of Theorem 2.5. O
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3. An Application
In this section, an application of these abstract Theorems 2.3, 2.4, and 2.5 is considered.

In [-1,1] x Q, let us consider the following boundary value problem for multidimensional
elliptic-parabolic equation:

—Uy — Z(ar(x)uxy)xr =g(tx), 0<t<l, xeQ,
r=1

u+ D (a4 (0uy,), = f(t,x), -1<t<0,x€Q,

r=1

t/ =O/ S/_lstgll
u(t, x) X € (3.1)

J J
u(l,x) = Zaiu()ti/x) + (P(x)r Zlai| <1,
i1

i=1

—1S)L1<)L2<"'<)Li<"'<)(]§0,

u(0+,x) = u(0—,x), u(0+,x)=u(0-,x), x€ ﬁ,

where a,(x) (x € Q),p(x) (¢(x) = 0,x € S), g(t,x) (t € (0,1),x € Q), and ft,x) (t €
(-1,0), x € Q) are given smooth functions. Here, € is the unit open cube in the n-dimensional
Euclidean space R" (0 < xx <1,1 < k < n) with boundary S, Q=QuUS, and ar(x) =2 a>0.

The discretization of problem (3.1) is carried out in two steps. In the first step, let us
define the following grid sets:

éh = {x =Xm = (hlmlz---/hnmn)/m = (ml,.-.,mn)/
0<m, <N, h,N,=1,r=1,...,n}, (3.2)

QhZQhﬂQ, ShZQhﬂS.
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We introduce the Hilbert spaces Lo, = L(Qy), W), = W1 (Qy), and W2, = W2(Qy) of
the grid functions (ph(x) = {¢p(himy, ..., hym,)} defined on Q, equipped with the following

norms:
1/2
ol - ( Sl ) ,
xeQy,

ol (23

(" )x,

oIl (23 n>

1/2
(58 n)”
erhr 1

To the differential operator A generated by problem (3.1), we assign the difference
operator A} by formula

(3.3)

(<Ph)x,

Aju h = i(ar(x)u > (3.4)

Xy, M
r=1 r

acting in the space of grid functions u"(x), satisfying the conditions u"(x) = 0 for all x € Sj,.
With the help of A, we arrive at the following nonlocal boundary value problem:

d2uh(t, x
- dt(2 ) +A2uh(t,x):gh(t,x), O<t<l, xeQy,
h
du—;:’ﬂ ‘Aiuh(t,x) = fi(t,x), -1<t<0, x€Qy,
(3.5)
uh (1, x) thku (A, x) + " ( Z|ak| <1, xeQ,
k=1

du" (0+, x) : du"(0-, x)
a  dt 7

uh (0+,x) = u" (0-,x), X € ﬁh,

for an infinite system of ordinary differential equations.
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In the second step, we replace problem (3.5) by difference scheme (1.3) accurate to the
following second order (see [22, 24]):

_uZH(x) - ZuZ (x) + uZﬁl(x)

3 + A (x) = gi/(x),

g(x) = g"(te,x), te=kr, 1<k<N-1, Nr=1, x€Q,
ult(x) —up_ (x)

T

(Ax+ (AD)")uly(x) = <I+%A;§> i),
(3.6)
f]]:(x)th(tk—l/ZIx)/ tko1/2 = <k—%>T, -N+1<k<0, xeQy,

—u’zl(x) + 4u§’(x) - 3ué’ (x) = 3ug(x) - 4uﬁ1(x) + u’fz (x), x€ Q,

ul;(x) = éai <”hu,-/ﬂ (x) + <)Lk - [%] T> flm +Aju h[”ﬂ (x)>> +¢(x), xeQy.

Theorem 3.1. Let 7 and |h| = \/h? + - - + h3 be sufficiently small positive numbers. Then, solutions
of difference scheme (3.6) satisfy the following stability and almost coercivity estimates:

h N-1 h N-1 h
{uk} < M@ ||| {7t} +||{st} o]l |
“Nlleq-1,11,,Lan) N+ c([-1,01,,Lan) 1 C([0,1],,Lon) Lon
N-1 N-1
{T_Z <uz+1 - Zuf(’ + uf(’_1> } + {uZ}
o, Lo U leqoan, wz)
0 0
+ {T‘1<u’,§—u2_l>} + {uZ_l}
“N+le (1,01, Lan) “N+le-10,mw3)
M) |2, + 75, + [, +] 172l + 72y +olst]
<M ( )[ fo Ly, 4 Loy &1 Loy |l fo Wi T\ f4 T|(81 W
N-1
ein— A (1) +||{s2) .
+|h|[ N+l e(-1,01, Low) I lleqon,

(3.7)

The proof of Theorem 3.1 is based on Theorem 2.3, Theorem 2.4, the symmetry
property of the difference operator A; defined by formula (3.4), the estimate

(3.8)

mm{ln —1+ |ln ||Ax||L2h_>L2h

1
< R
}_M21(6)II’IT |h|,

and the following theorem on the coercivity inequality for the solution of elliptic difference
equation in Lyy,.
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Theorem 3.2. For the solution of the following elliptic difference problem:
Al (x) =w(x), xeQu,  u'(x)=0, x€S, (3.9)

the following coercivity inequality holds [25]:

()
XpXp,my

Theorem 3.3. Let T and |h| be sufficiently small positive numbers. Then, solutions of difference
scheme (3.6) satisfy the following coercivity stability estimates:

(3.10)

n
2
r=1

< M22(5)||wh

Lon Lop

N-1
~2( . h h o h
{T <uk+1—2uk+uk71>}1
0
71< h_ h )}
T (U —u
{ ko k1) ) N
ful}.
k1] N1

< M0 o

€5, (10,11, Lan)

+
Co ([-1,017,L2n)

N-1
3

u

{ kfq

Cg, (1011, W3,)

+

Cx([-1,0],W3)

h h h
ey, el + 7l
wg, " TIOl, *TI g, 78Tl
1 H -1 N-1
h h
et | 18 +| st}
k k
[X(l - [X) -N+1 CO"([—LO]T,Lzh) 1
N-1 0
—2( h h h h
TN, —2u+u )} {u }
{ k+1 k k-1) [, k=1 N1
0 N-1
(- ul ul
k k-1 -N+1 k 1 « 2
C§,([01],,W3,)
h h
v 5] vl
W, W, W,
N-1
‘)
{gk 1

|1
1 )
a(l-a) [ {fk }—N+1 cg/l([o,l]T,Lz;l)H

The proof of Theorem 3.3 is based on the abstract Theorem 2.5, Theorem 3.2, and the
symmetry property of the difference operator A; defined by formula (3.4).

(311
CSJ ( [Ofl]r/LZh):| ] ( )

+
Co1 (10,117, Lan)

Ca([-1,01,W3)

+ +

Ca([-1,01,Lon)

<420 o w7l

+
Co ([-1,0];,Lan)
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