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This note is to investigate the growth of transcendental meromorphic functions with radially
distributed values. We generalize a more recent result of Chen et al. (2011). The paper is closely
related to some previous results due to Fang and Zalcman (2008), and Xu et al. (2009).

1. Introduction and Results

Let f : C → ̂C be a meromorphic function, where C is the whole complex plane and ̂C =
C ∪ {∞}. We shall use the basic results and notations of Nevanlinna’s value distribution
theory of meromorphic functions (see [1–3]), such as T(r, f), N(r, f), andm(r, f). Meantime,
the Nevanlinna’s deficiency δ(a, f) of f(z)with respect to a ∈ C is defined by

δ
(

a, f
)

= lim inf
r→∞

m
(

r, 1/
(

f − a
))

T
(

r, f
) = 1 − lim sup

r→∞

N
(

r, 1/
(

f − a
))

T
(

r, f
) (1.1)

and δ(∞, f) is obtained by the above formula with m(r, f) in place of m(r, 1/(f − a)), and
N(r, f) in place ofN(r, 1/(f − a)), respectively. The lower order μ and order λ are defined in
turn as follows:

μ := μ
(

f
)

= lim inf
r→∞

log T
(

r, f
)

log r
,

λ := λ
(

f
)

= lim sup
r→∞

log T
(

r, f
)

log r
.

(1.2)
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For an unbounded subset X of C and a ∈ ̂C, we denote by n(r, X, f = a) the number of
the zeros of f − a counting multiplicities in X ∩ {z : |z| ≤ r}.

In 1992, Yang [4], cf. [5] posed the following interesting conjecture.

Yang’s Conjecture

Let P be a property (or a set of properties) such that any entire (or meromorphic in C)
function satisfying P must be a constant. Suppose that f is an entire (or meromorphic in
C) function of finite lower order μ, and that Lj : arg z = θj (j = 1, 2, . . . , q; 0 ≤ θ1 < θ2 < · · · <
θq < 2π ; θq+1 = θ1 + 2π) are a finite number of rays issuing from the origin. If f satisfies P in
C \ (⋃q

j=1 Lj), then the order λ of f has the following estimation:

λ ≤ max
1≤j≤q

{

π

θj+1 − θj
, θq+1 = θ1 + 2π

}

. (1.3)

Yang’s conjecture implies that if meromorphic functions satisfy certain properties in
the vicinities of a finite number of rays, then the growth of meromorphic functions will be
restricted.

A well-known result of Clunie [6], cf. [7] is that an entire function f which satisfies
f(z)f ′(z)/= 1 in C must be constant. In [5], L. Yang and C.-C. Yang chose the property P as
f(z)f ′(z)/= 1 and verified the above conjecture. On the other hand, Fang and Zalcman [8]
considered the value distribution of f + a(f ′)n in C, where a is a nonzero finite complex
number and n ≥ 2 is a positive integer. Actually, they [8] gave an affirmative answer to
a question suggested by Ye [9]. Later on, Xu et al. [10] further generalized f + a(f ′)n to
f +a(f (k))n in C for a positive integer k with n ≥ k + 1 and investigated its value distribution.

More recently, Chen et al. [11] chose another property P as f + a(f ′)n to continue to
study Yang’s Conjecture and proved the following results.

Theorem A. Let f(z) be a transcendental meromorphic function with δ(∞, f ′) > 0 in C and let
Lj : arg z = θj (j = 1, 2, . . . , q) be a finite number of rays issued from the origin such that

−π ≤ θ1 < θ2 < · · · < θq < π, θq+1 = θ1 + 2π (1.4)

with ω = max{π/(θj+1 − θj) : 1 ≤ j ≤ q}. Set Y = C \ (⋃q

j=1 Lj). If f(z) satisfies

lim sup
r→∞

logn
(

r, Y, f + a
(

f ′)n = b
)

log r
≤ ρ (1.5)

with a positive number ρ, finite complex numbers a/= 0 and b, for any positive integer n ≥ 2, then the
order λ of f(z) has the estimation λ ≤ max{ω, ρ}.

Theorem B. Let f(z) be a transcendental meromorphic function of finite lower order μ with
δ(∞, f ′) > 0 in C. For q pairs of real numbers {αj , βj} such that

−π ≤ α1 < β1 ≤ α2 < β2 ≤ · · · ≤ αq < βq ≤ π (1.6)
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with ω = max{π/(βj − αj) : 1 ≤ j ≤ q}, suppose that

lim sup
r→∞

logn
(

r, Y, f + a
(

f ′)n = b
)

log r
≤ ρ (1.7)

with a positive number ρ, finite complex numbers a/= 0 and b, and Y =
⋃q

j=1{z : αj ≤ arg z ≤ βj}, for
any positive integer n ≥ 2, and that

q
∑

j=1

(

αj+1 − βj
)

<
4
σ
arcsin

√

δ
(∞, f ′)

2
, αq+1 = α1 + 2π (1.8)

with σ = max{ω, ρ, μ}. Then the order λ of f(z) has the estimation λ ≤ max{ω, ρ}.

Now there arises a natural question.

Question 1. What can be said if f ′ in Theorems A and B is replaced by the kth derivative f (k)?

In this paper, we will prove the following results which generalize Theorems A and B.

Theorem 1.1. Let f(z) be a transcendental meromorphic function with δ(∞, f (k)) > 0 for a positive
integer k in C and let Lj : arg z = θj (j = 1, 2, . . . , q) be a finite number of rays issued from the origin
such that

−π ≤ θ1 < θ2 < · · · < θq < π, θq+1 = θ1 + 2π (1.9)

with ω = max{π/(θj+1 − θj) : 1 ≤ j ≤ q}. Set Y = C \ (⋃q

j=1 Lj). If f(z) satisfies

lim sup
r→∞

logn
(

r, Y, f + a
(

f (k))n = b
)

log r
≤ ρ (1.10)

with a positive number ρ, finite complex numbers a/= 0 and b, for any positive integer n ≥ k + 1, then
the order λ of f(z) has the estimation λ ≤ max{ω, ρ}.

Remark 1.2. Let k = 1. Then by Theorem 1.1 we get Theorem A.

Corollary 1.3. Let f(z) be a transcendental entire function, let the notations θj (j = 1, 2, . . . , q + 1),
ω, and Y be defined as in Theorem 1.1, and suppose that the function f(z) fulfills the same condition
(1.10) as in Theorem 1.1. Then the order λ of f(z) has the estimation λ ≤ max{ω, ρ}.

Theorem 1.4. Let f(z) be a transcendental meromorphic function of finite lower order μ with
δ(∞, f (k)) > 0 for a positive integer k in C. For q pairs of real numbers {αj , βj} such that

−π ≤ α1 < β1 ≤ α2 < β2 ≤ · · · ≤ αq < βq ≤ π (1.11)
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with ω = max{π/(βj − αj) : 1 ≤ j ≤ q}, suppose that

lim sup
r→∞

logn
(

r, Y, f + a
(

f (k))n = b
)

log r
≤ ρ (1.12)

with a positive number ρ, finite complex numbers a/= 0 and b, and Y =
⋃q

j=1{z : αj ≤ arg z ≤ βj}, for
any positive integer n ≥ k + 1, and that

q
∑

j=1

(

αj+1 − βj
)

<
4
σ
arcsin

√

δ
(∞, f (k))

2
, αq+1 = α1 + 2π (1.13)

with σ = max{ω, ρ, μ}. Then the order λ of f(z) has the estimation λ ≤ max{ω, ρ}.

Remark 1.5. Let k = 1. Then by Theorem 1.4 we get Theorem B.

Corollary 1.6. Let f(z) be a transcendental entire function of finite lower order μ, let the notations
αj , βj (j = 1, 2, . . . , q), ω, σ, and Y be defined as in Theorem 1.4, and suppose that the function f(z)
fulfills the same conditions (1.12) and (1.13) as in Theorem 1.4. Then the order λ of f(z) has the
estimation λ ≤ max{ω, ρ}.

In order to prove our results, we require the Nevanlinna theory of meromorphic
functions in an angular domain. For the sake of convenience, we recall some notations and
definitions. Let f be ameromorphic function on the angular domainΩ(α, β) = {z : α ≤ arg z ≤
β}, where 0 < β − α ≤ 2π . Nevanlinna et al. [12, 13] introduced the following notations:

Aα,β

(

r, f
)

=
ω

π

∫ r

1

(

1
tω

− tω

r2ω

)

{

log+
∣

∣

∣f
(

teiα
)∣

∣

∣ + log+
∣

∣

∣f
(

teiβ
)∣

∣

∣

}dt

t
,

Bα,β

(

r, f
)

=
2ω
πrω

∫β

α

log+
∣

∣

∣f
(

reiθ
)∣

∣

∣ sinω(θ − α)dθ,

Cα,β

(

r, f
)

= 2
∑

1<|bm|<r

(

1
|bm|ω

− |bm|ω
r2ω

)

sinω(θm − α),

(1.14)

where ω = π/(β − α) and bm = |bm|eiθm are the poles of f in Ω(α, β) appearing according to
their multiplicities. The function Cα,β(r, f) is called the angular counting function (counting
multiplicities) of the poles of f in Ω(α, β), and Cα,β(r, f) is called the angular reduced
counting function (ignoring multiplicities) of the poles of f in Ω(α, β). Further, Nevanlinna’s
angular characteristic function Sα,β(r, f) is defined as follows:

Sα,β

(

r, f
)

= Aα,β

(

r, f
)

+ Bα,β

(

r, f
)

+ Cα,β

(

r, f
)

. (1.15)

Throughout the paper, we denote by R(r, ∗) a quantity satisfying

R(r, ∗) = O
{

log(rT(r, ∗))}, ∀r /∈ E, (1.16)
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where E denotes a set of positive real numbers with finite linear measure. It is not necessarily
the same for every occurrence in the context.

2. Some Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 2.1 (see [5, 12–14]). Let f be meromorphic in C. Then in Ω(α, β) for an arbitrary finite
complex number a, we have

Sα,β

(

r,
1

f − a

)

= Sα,β

(

r, f
)

+O(1), (2.1)

and for each positive integer k, we have

Aα,β

(

r,
f (k)

f

)

+ Bα,β

(

r,
f (k)

f

)

= R
(

r, f
)

. (2.2)

Lemma 2.2 (see [10]). Let n ≥ 2 and k be positive integers, let a be a nonzero finite complex number,
and let p(z) be a polynomial. Then the solution of the differential equation a[ω(k)(z)]n +ω(z) = p(z)
must be polynomial.

Lemma 2.3 (see [1, Theorem 3.1]; [1, page 33, (2.1)]). Let f be meromorphic in C, let
a1, a2, . . . , aq, where q ≥ 2, be distinct complex numbers, δ > 0, and suppose that |aμ − aν| ≥ δ
for 1 ≤ μ < ν ≤ q. Then, for each positive integer k, we have

T
(

r, f (k)
)

≤ T
(

r, f
)

+ kN
(

r, f
)

+O
(

log rT
(

r, f
))

,

m

(

r,
q

∑

ν=1

1
f − aν

)

≥
q

∑

ν=1

m

(

r,
1

f − aν

)

− qlog+
3q
δ

− log 2, ∀r /∈ E.

(2.3)

Next we slightly modify the proof of Lemma 2.4 in [10] to give the following key lemma, which is an
important generalization of Lemma 3 in [11].

Lemma 2.4. Let f be transcendental meromorphic in C, let a/= 0 and b be finite complex numbers,
and let n and k be positive integers with n ≥ k + 1. Then in Ω(α, β),

Bα,β

(

r, f (k)
)

≤ (k + 1)Cα,β

(

r,
1

f + a
(

f (k)
)n − b

)

+ R
(

r, f
)

. (2.4)

Proof. Put

g = f + a
(

f (k)
)n − b, (2.5)

φ =
g(k)

g
. (2.6)
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Then φ/≡ 0, for otherwise g would be a polynomial of degree at most k − 1. This and
(2.5) together with Lemma 2.2 imply that f must be a polynomial, a contradiction. By the
Nevanlinna’s basic reasoning, Lemmas 2.1, and 2.3, (2.5), and (2.6), we have

(

Aα,β + Bα,β

)(

r, φ
)

= R
(

r, g
)

= R
(

r, f
)

. (2.7)

Now a simple calculation for (2.5) shows that

g(k) = f (k) + a
((

f (k)
)n)(k)

= f (k)
(

1 +Q
(

f (k)
))

, (2.8)

where Q(f (k)) is a homogeneous differential polynomial in f (k) of degree n − 1 and of the
form

Q
(

f (k)
)

= a
(

f (k)
)n−k−1

×
⎛

⎝

n!
(

f (k+1))k

(n − k)!
+

k(k − 1)n!
2!(n − k + 1)!

f (k)
(

f (k+1)
)k−2

f (k+2) + · · · + n
(

f (k)
)k−1

f (2k)

⎞

⎠.

(2.9)

Then by (2.5), (2.6), and (2.8), we get

f (k)
(

1 +Q
(

f (k)
))

= φ
(

f + a
(

f (k)
)n − b

)

. (2.10)

From (2.5)–(2.10), and Lemma 2.1, it thus follows that

Cα,β

(

r,
1

f (k)

)

+ Cα,β

(

r,
1

Q
(

f (k)
)

+ 1

)

≤ Cα,β

(

r,
1
φ

)

+ Cα,β

(

r,
1

f + a
(

f (k)
)n − b

)

≤ Cα,β

(

r, φ
)

+ Cα,β

(

r,
1

f + a
(

f (k)
)n − b

)

+ R
(

r, f
)

≤ kCα,β

(

r, f
)

+ (k + 1)Cα,β

(

r,
1

f + a
(

f (k)
)n − b

)

+ R
(

r, f
)

≤ k

k + 1
Cα,β

(

r, f (k)
)

+ (k + 1)Cα,β

(

r,
1

f + a
(

f (k)
)n − b

)

+ R
(

r, f
)

.

(2.11)
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On the other hand, by the Nevanlinna’s basic reasoning, Lemmas 2.1 and 2.3, we
deduce that

(

Aα,β + Bα,β

)

(

r,
1

(

f (k)
)n−1

)

+
(

Aα,β + Bα,β

)

(

r,
1

Q
(

f (k)
)

+ 1

)

≤ (

Aα,β + Bα,β

)

(

r,
1

Q
(

f (k)
)

)

+
(

Aα,β + Bα,β

)

(

r,
Q
(

f (k))

(

f (k)
)n−1

)

+
(

Aα,β + Bα,β

)

(

r,
1

Q
(

f (k)
)

+ 1

)

≤ (

Aα,β + Bα,β

)

(

r,
1

Q
(

f (k)
) +

1
Q
(

f (k)
)

+ 1

)

+ R
(

r, f
)

≤ (

Aα,β + Bα,β

)

(

r,

(

Q
(

f (k)))′

Q
(

f (k)
) +

(

Q
(

f (k)) + 1
)′

Q
(

f (k)
)

+ 1

)

+
(

Aα,β + Bα,β

)

(

r,
1

(

Q
(

f (k)
))′

)

+ R
(

r, f
)

≤ Sα,β

(

r,
(

Q
(

f (k)
))′) − Cα,β

(

r,
1

(

Q
(

f (k)
))′

)

+ R
(

r, f
)

≤ Sα,β

(

r,Q
(

f (k)
))

+ Cα,β

(

r, f
) − Cα,β

(

r,
1

(

Q
(

f (k)
))′

)

+ R
(

r, f
)

≤ Sα,β

(

r,Q
(

f (k)
))

+
1

k + 1
Cα,β

(

r, f (k)
)

− Cα,β

(

r,
1

(

Q
(

f (k)
))′

)

+ R
(

r, f
)

.

(2.12)

This, together with Lemma 2.1, yields

(n − 1)Sα,β

(

r, f (k)
)

≤ 1
k + 1

Cα,β

(

r, f (k)
)

+ (n − 1)Cα,β

(

r,
1

f (k)

)

+ Cα,β

(

r,
1

Q
(

f (k)
)

+ 1

)

− Cα,β

(

r,
1

(

Q
(

f (k)
))′

)

+ R
(

r, f
)

.

(2.13)

Next we divide into two cases.
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Case 1 (n ≥ k + 2). Suppose that z0 is a zero of f (k) of multiplicity m. Then we can know that
z0 is a zero of (Q(f (k)))

′
of multiplicity at least (n − k − 1)m + k(m − 1) − 1 = (n − 1)m − k − 1.

Thus, we have

(n − 1)Cα,β

(

r,
1

f (k)

)

+ Cα,β

(

r,
1

Q
(

f (k)
)

+ 1

)

− Cα,β

(

r,
1

(

Q
(

f (k)
))′

)

= Cα,β

(

r,
1

(

f (k)
)n−1

)

+ Cα,β

(

r,
1

Q
(

f (k)
)

+ 1

)

− Cα,β

(

r,
1

(

Q
(

f (k)
))′

)

≤ (k + 1)Cα,β

(

r,
1

f (k)

)

+ Cα,β

(

r,
1

Q
(

f (k)
)

+ 1

)

.

(2.14)

Substituting this into (2.13) gives

(n − 1)Sα,β

(

r, f (k)
)

≤ 1
k + 1

Cα,β

(

r, f (k)
)

+ (k + 1)Cα,β

(

r,
1

f (k)

)

+ Cα,β

(

r,
1

Q
(

f (k)
)

+ 1

)

+ R
(

r, f
)

.

(2.15)

From this and (2.11) it follows that

(n − 1)Sα,β

(

r, f (k)
)

≤ k2 + k + 1
k + 1

Cα,β

(

r, f (k)
)

+ (k + 1)2Cα,β

(

r,
1

f + a
(

f (k)
)n − b

)

+ R
(

r, f
)

,

(2.16)

implying that

Sα,β

(

r, f (k)
)

≤ k2 + k + 1
(n − 1)(k + 1)

Cα,β

(

r, f (k)
)

+
(k + 1)2

n − 1
Cα,β

(

r,
1

f + a
(

f (k)
)n − b

)

+ R
(

r, f
)

.

(2.17)

Thereby, noting n ≥ k + 2, we get

Sα,β

(

r, f (k)
)

≤ k2 + k + 1

(k + 1)2
Cα,β

(

r, f (k)
)

+ (k + 1)Cα,β

(

r,
1

f + a
(

f (k)
)n − b

)

+ R
(

r, f
)

≤ Cα,β

(

r, f (k)
)

+ (k + 1)Cα,β

(

r,
1

f + a
(

f (k)
)n − b

)

+ R
(

r, f
)

,

(2.18)

so that

Bα,β

(

r, f (k)
)

≤ Aα,β

(

r, f (k)
)

+ Bα,β

(

r, f (k)
)

≤ (k + 1)Cα,β

(

r,
1

f + a
(

f (k)
)n − b

)

+ R
(

r, f
)

.

(2.19)

This is the desired result.
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Case 2 (n = k + 1). Then, by (2.11) and (2.13), we have

kSα,β

(

r, f (k)
)

≤ k2 + 1
k + 1

Cα,β

(

r, f (k)
)

+ k(k + 1)Cα,β

(

r,
1

f + a
(

f (k)
)n − b

)

+ R
(

r, f
)

, (2.20)

which leads to

Sα,β

(

r, f (k)
)

≤ k2 + 1
k(k + 1)

Cα,β

(

r, f (k)
)

+ (k + 1)Cα,β

(

r,
1

f + a
(

f (k)
)n − b

)

+ R
(

r, f
)

≤ Cα,β

(

r, f (k)
)

+ (k + 1)Cα,β

(

r,
1

f + a
(

f (k)
)n − b

)

+ R
(

r, f
)

.

(2.21)

This yields

Bα,β

(

r, f (k)
)

≤ Aα,β

(

r, f (k)
)

+ Bα,β

(

r, f (k)
)

≤ (k + 1)Cα,β

(

r,
1

f + a
(

f (k)
)n − b

)

+ R
(

r, f
)

,

(2.22)

obtaining the desired result.
This completes the proof of Lemma 2.4.

The following auxiliary results regarding Pólya peaks and the spread relation are
necessary in the proofs of our theorems.

Lemma 2.5 (see [14–16]). Let f be a transcendental meromorphic function of finite lower order μ
and order λ(0 < λ ≤ ∞) in C. Then, for an arbitrary positive number σ satisfying μ ≤ σ ≤ λ and any
set E of finite linear measure, there exist Pólya peaks {rn} satisfying the following:

(i) rn /∈ E, limn→∞(rn/n) = ∞;

(ii) lim infn→∞(log T(rn, f))/ log rn ≥ σ;

(iii) T(t, f) < (1 + o(1))(t/rn)
σT(rn, f), t ∈ [rn/n, nrn].

A sequence of {rn} satisfying (i), (ii), and (iii) in Lemma 2.5 is called a Pólya peak of order σ
of f outside E. Given a positive function Λ = Λ(r) on (0,∞) with Λ → 0 as r → ∞, we define

DΛ(r, a) =

{

θ ∈ [−π,π) | log+ 1
∣

∣f
(

reiθ
) − a

∣

∣

> Λ(r)T
(

r, f
)

}

,

DΛ(r,∞) =
{

θ ∈ [−π,π) | log+
∣

∣

∣f
(

reiθ
)∣

∣

∣ > Λ(r)T
(

r, f
)

}

.

(2.23)

Lemma 2.6 (see [17]). Let f be a transcendental meromorphic function of finite lower order μ and
order λ(0 < λ ≤ ∞) in C. Suppose that δ = δ(a, f) > 0 for some a ∈ ̂C. Then for an arbitrary
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Pólya peak {rn} of order σ(μ ≤ σ ≤ λ) and an arbitrary positive function Λ = Λ(r) with Λ → 0 as
r → ∞, we have

lim inf
n→∞

meas DΛ(rn, a) ≥ min

⎧

⎨

⎩

2π,
4
σ
arcsin

√

δ

2

⎫

⎬

⎭

. (2.24)

Now a more precise estimation of T(r, f) in terms of T(r, f (k)) is introduced as follows.

Lemma 2.7 (see [18]). Let f be transcendental meromorphic in C. Then, for a positive integer k and
a real number τ > 1, we have

T
(

r, f
)

< Kτ,kT
(

τr, f (k)
)

+ log(τr) +O(1), (2.25)

where Kτ,k is a positive number depending on only τ and k.

At last, we state the following results due to Edrei, Hayman, and Miles, respectively.

Lemma 2.8 (see [19]). Let f be a transcendental meromorphic function with δ = δ(∞, f) > 0 in C.
Then, given ε > 0, we have

measE
(

r, f
)

>
1

Tε
(

r, f
)[

log r
]1+ε

, ∀r /∈ F, (2.26)

where

E
(

r, f
)

=
{

θ ∈ [−π,π) : log+
∣

∣

∣f
(

reiθ
)∣

∣

∣ >
δ

4
T
(

r, f
)

}

(2.27)

and F is a set of positive real numbers with finite logarithmic measure (i.e.,
∫

F(dt/t) < ∞) depending
on ε only.

Lemma 2.9 (see [20]). Let f be a transcendental meromorphic function in C. Then for each K > 1
there exists a set M(K) of the lower logarithmic density at least d(K) = 1 − (2eK−1 − 1)−1 > 0, that
is,

log dens M(K) := lim inf
r→∞

1
log r

∫

M(K)∩[1,r]

dt

t
≥ d(K), (2.28)

such that, for every positive integer p, we have

lim sup
r→∞, r∈M(K)

T
(

r, f
)

T
(

r, f (p)
) ≤ 3eK. (2.29)
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3. Proofs of Theorems 1.1 and 1.4

In this section, we state the detailed proofs of Theorems 1.1 and 1.4 by using the method in
[14]. To begin with, we give the proof of Theorem 1.4. Finally the proof of Theorem 1.1 can
be derived from Theorem 1.4.

3.1. Proof of Theorem 1.4

Assume on the contrary that Theorem 1.4 does not hold. Then λ(f) > max{ω, ρ}. Now by
(1.12), we have

n
(

r,Ω
(

αj , βj
)

, f + a
(

f (k)
)n

= b
)

≤ rρ+ε, j = 1, 2, . . . , q (3.1)

for arbitrarily small ε > 0 and sufficiently large r ≥ r0. Let ξm be the zeros of f +a(f (k))n −b on
Ω(αj , βj) appearing according to their multiplicities, and setωj = π/(βj−αj). By the definition
of Cα,β(r, ∗), we deduce that

Cαj ,βj

(

r,
1

f + a
(

f (k)
)n − b

)

≤ 2
∑

1<|ξm|<r

1
|ξm|ωj

= 2
∫ r

1

dn
(

t,Ω
(

αj , βj
)

, f + a
(

f (k))n = b
)

tωj

≤ 2
n
(

r,Ω
(

αj , βj
)

, f + a
(

f (k))n = b
)

rωj
+ 2ωj

∫ r

1

n
(

t,Ω
(

αj , βj
)

, f + a
(

f (k))n = b
)

tωj+1
dt

≤ 2rρ+ε−ωj +O(1) + 2ωj

∫ r

r0

tρ+ε

tωj+1
dt

≤ Kj,εr
ρ+ε−ωj +O

(

log r
)

,

(3.2)

whereKj,ε is a positive number depending on only j and ε, which is not necessarily the same
for every occurrence in the context. From Lemma 2.4, we have

Bαj ,βj

(

r, f (k)
)

≤ (k + 1)Cαj ,βj

(

r,
1

f + a
(

f (k)
)n − b

)

+ R
(

r, f
)

. (3.3)

Thus, it follows by (3.2) and (3.3) that

Bαj ,βj

(

r, f (k)
)

≤ Kj,εr
ρ+ε−ωj +O

(

log rT
(

r, f
))

, ∀r /∈ E, (3.4)

where the exceptional set E associated with R(r, f) is of at most finite linear measure.
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Now we discuss two cases separately.

Case 1 (λ(f) > μ(f)). Then by the assumption σ = max{ω, ρ, μ} and λ(f) > max{ω, ρ}, we
have λ(f (k)) = λ(f) > σ ≥ μ(f) = μ(f (k)). Now from (1.13), we can find a real number ε > 0
such that

q
∑

j=1

(

αj+1 − βj + 2ε
)

+ 2ε <
4

σ + 2ε
arcsin

√

δ
(∞, f (k))

2
, αq+1 = α1 + 2π, (3.5)

λ
(

f (k)
)

> σ + 2ε > μ
(

f (k)
)

. (3.6)

Applying Lemma 2.5 to f (k) gives the existence of the Pólya peak {rn} of order σ + 2ε of f (k)

outside the set E. Then, noting that σ + 2ε > ωj ≥ 1/2 and 0 < δ(∞, f (k)) ≤ 1, by applying
Lemma 2.6 to the Pólya peak {rn}, for sufficiently large n we have

measDΛ(rn,∞) >
4

σ + 2ε
arcsin

√

δ
(∞, f (k))

2
− ε. (3.7)

Without loss of generality, we can assume that (3.7) holds for all the n. Set

Kn := meas

⎛

⎝DΛ(rn,∞) ∩
q
⋃

j=1

(

αj + ε, βj − ε
)

⎞

⎠. (3.8)

It then follows from (3.5) and (3.7) that

Kn ≥ meas(DΛ(rn,∞)) −meas

⎛

⎝[−π,π) \
q
⋃

j=1

(

αj + ε, βj − ε
)

⎞

⎠

= meas(DΛ(rn,∞)) −meas

⎛

⎝

q
⋃

j=1

(

βj − ε, αj+1 + ε
)

⎞

⎠

= meas(DΛ(rn,∞)) −
q

∑

j=1

(

αj+1 − βj + 2ε
)

> ε > 0.

(3.9)

By (3.9), it is easy to see that there exists a j0 such that, for infinitely many n, we have

meas
(

DΛ(rn,∞) ∩ (

αj0 + ε, βj0 − ε
)) ≥ Kn

q
>

ε

q
. (3.10)
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Without loss of generality, we can assume that (3.10) holds for all the n. Set En = DΛ(rn,∞) ∩
(αj0 + ε, βj0 − ε) and Λ(r) = [log r]−1. From the definition of DΛ(rn,∞), we deduce that

∫βj0−ε

αj0+ε
log+

∣

∣

∣f (k)
(

rne
iθ
)∣

∣

∣dθ ≥
∫

En

log+
∣

∣

∣f (k)
(

rne
iθ
)∣

∣

∣dθ

≥ ε

q

T
(

rn, f
(k))

log rn
.

(3.11)

On the other hand, by the definition of Bα,β(r, ∗) and (3.4), it follows that

∫βj0−ε

αj0+ε
log+

∣

∣

∣f (k)
(

rne
iθ
)∣

∣

∣dθ ≤ πr
ωj0
n

2ωj0 sin
(

εωj0

)Bαj0 ,βj0

(

rn, f
(k)

)

≤ Kj0,ε

(

r
ρ+ε
n + r

ωj0
n log

(

rnT
(

rn, f
))

)

,

(3.12)

where rn /∈ E, ωj0 = π/(βj0 − αj0), and Kj0,ε is a positive number depending on only j0 and ε.
Combining (3.11) with (3.12) gives

T
(

rn, f
(k)

)

≤ qKj0,ε log rn
ε

(

r
ρ+ε
n + r

ωj0
n log

(

rnT
(

rn, f
))

)

, (3.13)

implying together with (iii) in Lemma 2.5 and Lemma 2.7 that

log T
(

rn, f
(k)

)

≤ 3 log log rn +max
{

ρ + ε,ωj0

}

log rn + log log T
(

rn, f
(k)

)

+O(1). (3.14)

Thus, from (ii) in Lemma 2.5 for σ + 2ε, we have

σ + 2ε ≤ lim sup
n→∞

log T
(

rn, f
(k))

log rn
≤ max

{

ρ + ε,ωj0

} ≤ σ + ε, (3.15)

which is impossible.

Case 2 (λ(f) = μ(f)). Then by the assumption σ = max{ω, ρ, μ} and λ(f) > max{ω, ρ}, we
have σ = μ(f) = λ(f) = λ(f (k)) = μ(f (k)). By the same argument as in Case 1 with all the
σ + 2ε replaced by σ = μ(f), we can derive

μ
(

f
)

= σ ≤ max
{

ρ + ε,ωj0

}

< λ
(

f
)

, (3.16)

which is also impossible.

This completes the proof of Theorem 1.4.
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3.2. Proof of Theorem 1.1

By Theorem 1.4, it suffices to prove that the lower order μ(f) of f is finite. As in the proof of
Theorem 1.4, we have, for each j ∈ {1, 2, . . . , q},

Bθj ,θj+1

(

r, f (k)
)

≤ Kj,εr
ρ+ε−ωj +O

(

log rT
(

r, f
))

, ωj =
π

θj+1 − θj
, ∀r /∈ E, (3.17)

where the exceptional set E associated with R(r, f) is of at most finite linear measure.
For F in Lemma 2.8 and E in (3.17), log dens(F ∪ E) = 0 and hence for M(2) in

Lemma 2.9 when K = 2, log dens(M(2) \ (F ∪ E)) ≥ d(2) > 0. Applying Lemma 2.8 to f (k)

gives the existence of a sequence {rn} of positive numbers such that rn → ∞ (n → ∞),
rn ∈ M(2) \ (F ∪ E), and

measE
(

rn, f
(k)

)

>
1

Tε
(

rn, f (k)
)[

log rn
]1+ε

. (3.18)

Set

εn =
1

2q + 1
1

Tε
(

rn, f (k)
)[

log rn
]1+ε

. (3.19)

Then, from (3.18) and (3.19), it follows that

meas

⎛

⎝E
(

rn, f
(k)

)

∩
q
⋃

j=1

(

θj + εn, θj+1 − εn
)

⎞

⎠

≥ measE
(

rn, f
(k)

)

−meas

⎛

⎝

q
⋃

j=1

(

θj − εn, θj + εn
)

⎞

⎠

≥ (

2q + 1
)

εn − 2qεn = εn > 0.

(3.20)

Hence, there exists a j ∈ {1, 2, . . . , q} such that, for infinitely many n, we have

meas
(

E
(

rn, f
(k)

)

∩ (

θj + εn, θj+1 − εn
)

)

≥ εn
q
. (3.21)
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Without loss of generality, we can assume that this holds for all the n. Let En = E(rn, f (k)) ∩
(θj + εn, θj+1 − εn). Thus, by the definition of E(r, f) and (3.21), it follows that

∫θj+1−εn

θj+εn
log+

∣

∣

∣f (k)
(

rne
iθ
)∣

∣

∣dθ ≥
∫

En

log+
∣

∣

∣f (k)
(

rne
iθ
)∣

∣

∣dθ

≥ meas(En)
δ
(∞, f (k))

4
T
(

rn, f
(k)

)

≥ εnδ
(∞, f (k))

4q
T
(

rn, f
(k)

)

.

(3.22)

On the other hand, by the definition of Bα,β(r, ∗) and (3.17), we have

∫θj+1−εn

θj+εn
log+

∣

∣

∣f (k)
(

rne
iθ
)∣

∣

∣dθ ≤ πr
ωj

n

2ωj sin
(

εnωj

)Bθj ,θj+1

(

rn, f
(k)

)

≤ π2Kj,ε

4ω2
j εn

(

r
ρ+ε
n + r

ωj

n log
(

rnT
(

rn, f
))

)

,

(3.23)

where rn /∈ E ∪ F, ωj = π/(θj+1 − θj), and Kj,ε is a positive number depending on only j and
ε. Combining (3.22)with (3.23) now yields

ε2nT
(

rn, f
(k)

)

≤ qπ2Kj,ε

ω2
j δ

(∞, f (k)
)

(

r
ρ+ε
n + r

ωj

n log
(

rnT
(

rn, f
))

)

, (3.24)

so that, together with (3.19) and Lemma 2.9, we have

T1−2ε
(

rn, f
(k)

)

≤ qπ2(2q + 1
)2[log rn

]2+2ε
Kj,ε

ω2
j δ

(∞, f (k)
)

(

r
ρ+ε
n + r

ωj

n

(

log rn + log T
(

rn, f
(k)

)

+ log(6e)
))

.

(3.25)

Thus μ(f) = μ(f (k)) ≤ max{ρ + ε,ωj}/(1 − 2ε) < ∞ and so Theorem 1.1 follows from
Theorem 1.4.

This completes the proof of Theorem 1.1.

Acknowledgments

The author is extremely grateful to the referees for their many valuable suggestions to
improve the presentation. The project was supported by the National Natural Science
Foundation of China (Grant no. 11126351) and the Natural Science Foundation of Fujian
Province, China (Grant no. 2010J05003).



16 Abstract and Applied Analysis

References

[1] W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, UK, 1964.
[2] L. Yang, Value Distribution Theory, Springer, Berlin, Germany, 1993.
[3] H. X. Yi and C. C. Yang, Uniqueness Theory of Meromorphic Functions, Pure and Applied Mathematics

Monographs No. 32, Science Press, Beijing, China, 1995.
[4] L. Yang, “Some recent results and problems in the theory of value-distribution,” in Proceedings

Symposium on Value Distribution Theory in Several Complex Variables, vol. 12, pp. 157–171, University
of Notre Dame Press, 1992.

[5] L. Yang and C.-C. Yang, “Angular distribution of values of ff ′,” Science in China Series A, vol. 37, no.
3, pp. 284–294, 1994.

[6] J. Clunie, “On a result of Hayman,” Journal of the London Mathematical Society, vol. 42, pp. 389–392,
1967.

[7] W. K. Hayman, “Picard values of meromorphic functions and their derivatives,” Annals of
Mathematics, vol. 70, pp. 9–42, 1959.

[8] M. Fang and L. Zalcman, “On the value distribution of f + a(f ′)n,” Science in China, vol. 51, no. 7, pp.
1196–1202, 2008.

[9] Y. S. Ye, “A Picard type theorem and Bloch law,” Chinese Annals of Mathematics Series B, vol. 15, no. 1,
pp. 75–80, 1994.

[10] Y. Xu, F. Q. Wu, and L. W. Liao, “Picard values and normal families of meromorphic functions,”
Proceedings of the Royal Society of Edinburgh A, vol. 139, no. 5, pp. 1091–1099, 2009.

[11] S.-J. Chen, W.-C. Lin, and J.-F. Chen, “On the growth of meromorphic functions with a radially
distributed value,” Indian Journal of Pure and Applied Mathematics, vol. 42, no. 1, pp. 53–70, 2011.

[12] R. Nevanlinna, “Uber die Eigenschaften meromorpher Funktionen in einem Winkelraum,” Acta
Societatis Scientiarum Fennicae, vol. 50, pp. 1–45, 1925.

[13] A. A. Gol’dberg and I. V. Ostrovskiı̆, The Distribution of Values of Meromorphic Functions, Izdat-vo
Nauka, Moscow, Russia, 1970.

[14] J. Zheng, “On transcendental meromorphic functions with radially distributed values,” Science in
China. Series A, vol. 47, no. 3, pp. 401–416, 2004.

[15] A. Edrei, “Sums of deficiencies of meromorphic functions,” Journal d’Analyse Mathématique, vol. 14,
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