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We introduce a notion of attractivity for delay equations which are defined on bounded time
intervals. Our main result shows that linear delay equations are finite-time attractive, provided
that the delay is only in the coupling terms between different components, and the system is
diagonally dominant. We apply this result to a nonlinear Lotka-Volterra system and show that
the delay is harmless and does not destroy finite-time attractivity.

1. Introduction

Finite-time dynamical systems generated by nonautonomous differential equationswhich are
defined only on a compact interval of time have recently become an active field of research,
see, for example, [1–3] and the references therein.

A key ingredient of a qualitative theory is the notion of hyperbolicity of solutions.
Finite-time versions of hyperbolicity are introduced and discussed, for example, in [4–8].
Finite-time attractivity is a special case of finite-time hyperbolicity, in case the unstable
direction is missing. So far finite-time attractivity has been discussed only for ordinary
differential equations, see [9, 10]. For a closely related notion, namely, finite-time stability,
we refer to [11, 12] and the references therein for an overview. In this paper we go one step
further to extend and investigate finite-time attractivity for delay equations.

For a nonnegative number r ≥ 0, let C := C([−r, 0],Rd) denote the space of all
continuous functions ϕ : [−r, 0] → R

d. For γ ∈ R, the norm ‖ · ‖γ,∞ on C is defined as follows:

∥
∥ϕ

∥
∥
γ,∞ := max

{

eγs
∥
∥ϕ(s)

∥
∥
∞ : s ∈ [−r, 0]}, (1.1)



2 Abstract and Applied Analysis

where ‖x‖∞ = max{|xi| : i = 1, . . . , d} for all x = (x1, . . . , xd)
T ∈ R

d. Consider a finite-time
delay differential equation

ẋ = f(t, xt) for t ∈ [0, T], (1.2)

where f : [0, T]×C → R
d is assumed to be continuous and Lipschitz in the second argument.

For each ϕ ∈ C, let x(·, ϕ) denote the solution of (2.1) satisfying the initial condition x(s) =
ϕ(s) for all s ∈ [−r, 0]. The evolution operator S : [0, T]×C → C generated by (1.2) is defined
as

(

S(t)ϕ
)

(s) = x
(

t + s, ϕ
) ∀s ∈ [−r, 0], t ∈ [0, T]. (1.3)

Motivated by recent results on finite-time hyperbolicity (see, e.g., [4, 6, 7]), we introduce in
the following an analog notion of finite-time attractivity for delay equations.

Definition 1.1 (finite-time attractivity). The solution S(·, ϕ) is called finite-time attractive on
[0, T]with respect to the norm ‖ · ‖γ,∞ if there exist positive constants α and η such that for all
t, s ∈ [0, T]with s ≤ t the following estimate holds:

∥
∥S

(

t, ϕ
) − S(t, ψ)∥∥γ,∞ ≤ e−α(t−s)∥∥S(s, ϕ) − S(s, ψ)∥∥γ,∞ (1.4)

for all ψ in the neighborhood Bη(ϕ) of ϕ.

Remark 1.2. In the case that f : [0, T] × C → R
d is a linear function in the second argument,

it is easy to see that the generated semigroup S : [0, T] × C → C is also linear in the second
argument. In particular, for linear systems the following statements are equivalent:

(i) there exists a finite-time attractive solution S(·, ϕ) for a ϕ ∈ C,
(ii) for all ϕ ∈ C, the solution S(·, ϕ) is finite-time attractive, and

(iii) there exists α > 0 such that for all 0 ≤ s ≤ t ≤ T we have

∥
∥S

(

t, ϕ
)∥
∥
γ,∞ ≤ e−α(t−s)∥∥S(s, ϕ)∥∥γ,∞ ∀ϕ ∈ C. (1.5)

In this paper, we prove the finite-time attractivity for linear off-diagonal delay systems
in Section 2. Section 3 is devoted to show the finite-time attractivity of the equilibrium for a
Lotka-Voltera system.

2. Finite-Time Attractivity for Linear Off-Diagonal Delay Systems

In this section, we consider the following finite-time nonautonomous linear differential
equation with off-diagonal delays (see, e.g., [13] and the reference therein):

ẋi(t) = aii(t)xi(t) +
d∑

j=1,j /= i

aij(t)xj
(

t − τij
)

for i = 1, . . . , d, t ∈ [0, T], (2.1)
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where T is a given positive constant, aij : R → R, i, j = 1, . . . , d, are continuous functions and
τij > 0 for i, j = 1, . . . , d with i /= j. Define

r := max
{

τij : i, j = 1, . . . , d, i /= j
}

. (2.2)

Note that (2.1) is a special case of (1.2). More precisely, the right hand side of (2.1) equals
f(t, xt), where f = (f1, . . . , fd) : [0, T] × C → R

d is defined as follows:

fi
(

t, ϕ
)

:= aii(t)ϕ(0) +
d∑

j=1,j /= i

aij(t)ϕj
(−τij

)

. (2.3)

Let S : [0, T] × C → C denote the evolution operator of (2.1). From (2.3), we see that the
function f is linear in the second argument. Therefore, the evolution operator S is also linear
in the second argument. Our aim in this section is to provide a sufficient condition for the
finite-time attractivity for the zero solution of (2.1) and thus for all solutions of (2.1), see
Remark 1.2.

Before presenting the main result, we recall the notion of row diagonal dominance. We
refer the reader to [14, Definition 7.10] for a discussion of this notion. System (2.1) is called
row diagonally dominant if there exists a positive constant δ such that

|aii(t)| ≥
d∑

j=1,j /= i

∣
∣aij(t)

∣
∣ + δ for t ∈ [0, T]. (2.4)

Theorem 2.1 (finite-time attractivity for delay equations). Consider system (2.1) on a finite-time
interval [0, T]. Suppose that system (2.1) is row diagonally dominant with a positive constant δ and
aii(t) < 0 for all i = 1, . . . , d and t ∈ [0, T]. Define

M := max

⎧

⎨

⎩

d∑

j=1,j /= i

∣
∣aij(t)

∣
∣ : i = 1, . . . , d, t ∈ [0, T]

⎫

⎬

⎭
, (2.5)

and let γ∗ be a positive number satisfying that

γ∗

2
+
(

eγ
∗r − 1

)

M = δ. (2.6)

Then for every γ ∈ [0, γ∗], the zero solution of (2.1) is finite-time attractive with respect to the
norm ‖ · ‖γ,∞ with exponent −γ/2, that is,

∥
∥S

(

t, ϕ
)∥
∥
γ,∞ ≤ e−(γ/2)(t−s)∥∥S(s, ϕ)∥∥γ,∞ for 0 ≤ s ≤ t ≤ T. (2.7)

Proof. We divide the proof into two steps.
Step 1. We show that for ϕ ∈ C the inequality

∥
∥x

(

t, ϕ
)∥
∥
∞ ≤ e−(γ/2)(t−s)∥∥S(s, ϕ)∥∥γ,∞ ∀0 ≤ s ≤ t ≤ T (2.8)
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holds. Suppose the opposite, that is, assume that there exists s ∈ [0, T] such that the set

N :=
{

t ∈ [s, T) :
∥
∥x

(

t, ϕ
)∥
∥
∞ > e−(γ/2)(t−s)

∥
∥S

(

s, ϕ
)∥
∥
γ,∞

}

(2.9)

is not empty. Define tinf = inf{t : t ∈ N}. By continuity of the map t 
→ ‖x(t, ϕ)‖∞, we get that

∥
∥x

(

tinf, ϕ
)∥
∥
∞ = e−(γ/2)(tinf−s)

∥
∥S

(

s, ϕ
)∥
∥
γ,∞, (2.10)

∥
∥x

(

t, ϕ
)∥
∥
∞ ≤ e−(γ/2)(t−s)∥∥S(s, ϕ)∥∥γ,∞ ∀t ∈ [s, tinf]. (2.11)

Now, we will show that

∥
∥x

(

tinf, ϕ
)∥
∥
∞ ≥ e−γr∥∥x(t, ϕ)∥∥∞ ∀t ∈ [tinf − r, tinf]. (2.12)

Indeed, we consider the following two cases: (i) t ∈ [s, tinf]∩ [tinf − r, tinf] and (ii) t ∈ (−∞, s]∩
[tinf − r, tinf].

Case (i). If t ∈ [s, tinf] ∩ [tinf − r, tinf], then, according to (2.10) and (2.11), we obtain that

∥
∥x

(

tinf, ϕ
)∥
∥
∞ = e−(γ/2)(tinf−s)

∥
∥S

(

s, ϕ
)∥
∥
γ,∞

≥ e−(γ/2)(tinf−s)e(γ/2)(t−s)∥∥x(t, ϕ)∥∥∞

≥ e−γr∥∥x(t, ϕ)∥∥∞,

(2.13)

which proves (2.12) in this case.
Case (ii). If t ∈ (−∞, s] ∩ [tinf − r, tinf], then, according to (2.10) and the definition of the

norm ‖ · ‖γ,∞, we obtain that

∥
∥x

(

tinf, ϕ
)∥
∥
∞ = e−(γ/2)(tinf−s) max

ω∈[−r,0]
eγω

∥
∥S

(

s, ϕ
)

(ω)
∥
∥
∞

= max
ω∈[−r,0]

e−(γ/2)(tinf−s−2ω)
∥
∥x

(

s +ω,ϕ
)∥
∥
∞

≥ e−(γ/2)(tinf+s−2t)∥∥x(t, ϕ)∥∥∞

≥ e−γr∥∥x(t, ϕ)∥∥∞.

(2.14)

Hence, (2.12) is proved. To conclude the proof of this step, we estimate the norm ‖x(t, ϕ)‖∞
for all t in a neighborhood of tinf in order to show a contradiction to the assumption that the
set N is not empty. To this end, we define the following set:

I :=
{

i ∈ {1, . . . , d} :
∣
∣xi

(

tinf, ϕ
)∣
∣ =

∥
∥x

(

tinf, ϕ
)∥
∥
∞
}

. (2.15)
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The continuity of the functions t 
→ xi(t, ϕ) for i = 1, . . . , d implies that there exists a
neighborhood (tinf − ε, tinf + ε) for some ε > 0 such that

∥
∥x

(

t, ϕ
)∥
∥
∞ = max

i∈I

∣
∣xi

(

t, ϕ
)∣
∣ ∀t ∈ (tinf − ε, tinf + ε). (2.16)

By virtue of (2.1), the derivative of the function t 
→ x2
i (t, ϕ) is estimated as follows:

1
2
d

dt
x2
i

(

t, ϕ
)
∣
∣
∣
∣
t=tinf

= xi
(

tinf, ϕ
)

⎡

⎣aii(tinf)xi
(

tinf, ϕ
)

+
d∑

j=1,j /= i

aij(tinf)xj
(

tinf − τij , ϕ
)

⎤

⎦

≤ aii(tinf)xi
(

tinf, ϕ
)2

+
∣
∣xi

(

tinf, ϕ
)∣
∣

d∑

j=1,j /= i

∣
∣aij(tinf)

∣
∣
∥
∥x

(

tinf − τij , ϕ
)∥
∥
∞,

(2.17)

which together with (2.12) and the definition of I implies that for all i ∈ I

1
2
d

dt
xi
(

t, ϕ
)2
∣
∣
∣
∣
t=tinf

≤ xi
(

tinf, ϕ
)2

⎡

⎣aii(tinf) + eγr
d∑

j=1,j /= i

∣
∣aij(tinf)

∣
∣

⎤

⎦. (2.18)

Thus, from the row diagonal dominance (2.4) and bound (2.5), we derive that

1
2
d

dt
xi
(

t, ϕ
)2
∣
∣
∣
∣
t=tinf

≤ [−δ + (eγr − 1)M]x2
i

(

tinf, ϕ
)

. (2.19)

Using (2.6), we obtain that

1
2
d

dt
x2
i

(

t, ϕ
)
∣
∣
∣
∣
t=tinf

< −γ
2
x2
i

(

tinf, ϕ
)

, (2.20)

which yields that there exists a neighborhood (tinf, tinf + ε2) for an ε2 > 0 such that for i ∈ I

∣
∣xi

(

t, ϕ
)∣
∣ ≤ e−(γ/2)(t−tinf)∣∣xi

(

tinf, ϕ
)∣
∣ ∀t ∈ (tinf, tinf + ε2). (2.21)

Thus, for all t ∈ (tinf, tinf + ε)with ε := min{ε1, ε2}, we have

∥
∥x

(

t, ϕ
)∥
∥
∞ ≤ e−(γ/2)(t−tinf)∥∥x(tinf, ϕ

)∥
∥
∞, (2.22)
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which together with (2.10) implies that

∥
∥x

(

t, ϕ
)∥
∥
∞ ≤ e−(γ/2)(t−s)∥∥S(s, ϕ)∥∥γ,∞. (2.23)

Consequently, N∩ (tinf, tinf + ε) = ∅, and this is a contradiction to the definition of N and tinf.
Thus, (2.8) is proved.

Step 2. Using (2.8) from Step 1, we show (2.7) by considering two cases: (i) t ∈ [s +
r, T] ∩ [s, T] and (ii) t ∈ [s, s + r] ∩ [s, T].

Case (i). If t ∈ [s + r, T] ∩ [s, T], then by virtue of (2.8) we have

∥
∥S

(

t, ϕ
)∥
∥
γ,∞ = sup

ω∈[−r,0]
eγω

∥
∥x

(

t +ω,ϕ
)∥
∥
∞

≤ sup
ω∈[−r,0]

eγωe−(γ/2)(t+ω−s)
∥
∥S

(

s, ϕ
)∥
∥
γ,∞

≤ e−(γ/2)(t−s)∥∥S(s, ϕ)∥∥γ,∞,

(2.24)

which proves (2.7) in this case.
Case (ii). If t ∈ [s, s + r] ∩ [s, T], then we have

∥
∥S

(

t, ϕ
)∥
∥
γ,∞ = max

{

sup
ω∈[−(t−s),0]

eγω
∥
∥x

(

t +ω,ϕ
)∥
∥
∞,

sup
ω∈[−r,−(t−s)]

eγω
∥
∥x

(

t +ω,ϕ
)∥
∥
∞

}

.

(2.25)

Hence, using (2.8), we obtain that

∥
∥S

(

t, ϕ
)∥
∥
γ,∞ ≤ max

{

sup
ω∈[−(t−s),0]

e(γ/2)ωe−(γ/2)(t−s)
∥
∥S

(

s, ϕ
)∥
∥
γ,∞,

e−γ(t−s)
∥
∥S

(

s, ϕ
)∥
∥
γ,∞

}

.

(2.26)

Thus, (2.7) is proved, and the proof is complete.

3. Finite-Time Attractivity of Lotka-Voltera Systems

Consider a Lotka-Voltera system of the following form:

ẋi(t) = xi(t)

⎛

⎝ri +
d∑

j=1

aijxj
(

t − rij
)

⎞

⎠, i = 1, . . . , d, (3.1)
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where rij ≥ 0 and rii = 0 for all i = 1, . . . , d. Suppose that A = (aij)i,j=1,...,d is row diagonal
dominant with aii < 0 for all i = 1, . . . , d; that is, there exists δ > 0 such that

|aii| ≥
d∑

j=1,j /= i

∣
∣aij

∣
∣ + δ. (3.2)

We assume in the following that there exists a positive vector x∗ ∈ R
d
+ such that

r +Ax∗ = 0 where r = (r1, . . . , rd)T . (3.3)

To shorten the notation, the function t 
→ x∗ for all t ∈ [−r, 0] is also denoted by x∗. The
function x∗ is a fixed point of the evolution operator S(t, ·) generated by (3.1), that is, S(t, x∗) =
x∗ for all t. For system (3.1), the result in [13, Theorem 1] showed that the equilibrium x∗ is
exponentially attractive on the positive real line R+; that is, there exist positive constantsK,α
and η such that

∥
∥S

(

t, ϕ
) − x∗∥∥

0,∞ ≤ Ke−αt∥∥ϕ − x∗∥∥ ∀ϕ ∈ Bη(x∗). (3.4)

However, the constant K is usually greater than 1. Using the result developed in the
preceding section, we show in the next theorem that the constant K in (3.4) can be chosen
to be equal to 1 on the state space C with norm ‖ · ‖γ,∞ for some γ ≥ 0. As a consequence, the
equilibrium solution of system (3.1) is finite-time attractive with respect to these norms.

Theorem 3.1 (finite-time attractive equilibrium of Lotka-Voltera equations). Consider (3.1) on
an arbitrary finite-time interval [0, T] satisfying (3.2) and (3.3). Then, there exists a positive weight
factor γ∗ such that for all γ ∈ [0, γ∗] the positive equilibrium x∗ is finite-time attractive on [0, T] with
respect to the norm ‖ · ‖γ,∞.

Proof . The proof is divided into three steps.
Step 1. Construction of the weight factor γ∗. Due to compactness of [0, T] and

continuity of solutions of (3.1), there exists η∗ > 0 such that

∥
∥S

(

t, ϕ
) − x∗∥∥

0,∞ ≤ mini=1,...,dx∗
i

2
for t ∈ [0, T], ϕ ∈ Bη∗(x∗). (3.5)

Then, we have

∣
∣xi

(

t, ϕ
) − x∗

i

∣
∣ ≤ ∥

∥S
(

t, ϕ
) − x∗∥∥

0,∞ ≤ mini=1,...,dx∗
i

2
, (3.6)

which implies that for all t ∈ [0, T] and ϕ ∈ Bη∗(x∗) we have

mini=1,...,dx∗
i

2
≤ ∣
∣xi

(

t, ϕ
)∣
∣ ≤ mini=1,...,dx∗

i

2
+ max
i=1,...,d

x∗
i . (3.7)
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Define

δ∗ :=
mini=1,...,dx∗

i

2
δ, M :=

(mini=1,...,dx∗
i

2
+ max
i=1,...,d

x∗
i

)

max
i=1,...,d

d∑

j=1,j /= i

∣
∣aij

∣
∣. (3.8)

Now let γ∗ > 0 be the solution of the following equation:

γ∗

2
+
(

eγ
∗r − 1

)

M = δ∗. (3.9)

Step 2. In this step, we show that y(t) := x(t, ϕ)−x∗ is the solution of the delay equation

ẏi(t) = aii(t)yi(t) +
d∑

j=1,j /= i

aij(t)yj
(

t − rij
)

for i = 1, . . . , d (3.10)

with the initial condition y(s) = ϕ(s) − x∗ for s ∈ [−r, 0], where

aij(t) := aijxi
(

t, ϕ
)

for i, j = 1, . . . , d. (3.11)

Indeed, we have

ẏi(t) = xi
(

t, ϕ
)

⎡

⎣ri +
d∑

j=1

aijxj
(

t − rij , ϕ
)

⎤

⎦

= xi
(

t, ϕ
)

⎡

⎣ri +
d∑

j=1

aijx
∗
j +

d∑

j=1

aijyj
(

t − rij
)

⎤

⎦,

(3.12)

which together with the fact that r + Ax∗ = 0 implies that y(t) is a solution of (3.10).
Furthermore, we have

S∗(t, ϕ − x∗) = S
(

t, ϕ
) − x∗ ∀t ∈ [0, T], (3.13)

where S∗ denotes the evolution operator generated by (3.10).
Step 3. In this step, we show that for all γ ∈ [0, γ∗] and ϕ ∈ Bη∗(x∗) we have

∥
∥S

(

t, ϕ
) − x∗∥∥

γ,∞ ≤ e−γ(t−s)/2∥∥S(s, ϕ) − x∗∥∥
γ,∞ ∀0 ≤ s ≤ t ≤ T. (3.14)
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Choose and fix ϕ ∈ Bη∗(x∗), and we show that (3.10) fulfills all assumptions of Theorem 2.1.
Indeed, using (3.7) and the definition ofM, we obtain the following upper bound:

max
t∈[0,T],i=1,...,d

d∑

j=1,j /= i

∣
∣aij(t)

∣
∣ ≤

(mini=1,...,dx∗
i

2
+ max
i=1,...,d

x∗
i

)

max
i=1,...,d

d∑

j=1,j /= i

∣
∣aij

∣
∣

≤M.

(3.15)

Combining (3.2) and (3.7), we also get that

|aii(t)| −
d∑

j=1,j /= i

∣
∣aij(t)

∣
∣ =

∣
∣xi

(

t, ϕ
)∣
∣

⎛

⎝|aii| −
d∑

j=1,j /= i

∣
∣aij

∣
∣

⎞

⎠

≥ mini=1,...,dx∗
i

2
δ = δ∗.

(3.16)

Therefore, system (3.10) fulfills all assumptions of Theorem 2.1. Then, the zero solution of
system (3.10) is finite-time attractive with respect to the norm ‖ · ‖γ,∞ for all γ ∈ [0, γ∗], that
is,

∥
∥S∗(t, ψ

)∥
∥
γ,∞ ≤ e−γ(t−s)/2∥∥S∗(s, ψ

)∥
∥
γ,∞ ∀0 ≤ s ≤ t ≤ T, ψ ∈ C. (3.17)

In particular, substituting ψ = ϕ − x∗ we get that

∥
∥S∗(t, ϕ − x∗)∥∥

γ,∞ ≤ e−(γ(t−s))/2∥∥S∗(s, ϕ − x∗)∥∥
γ,∞ ∀0 ≤ s ≤ t ≤ T, (3.18)

which together with (3.13) implies (3.14) and the proof is complete.

In the rest of the paper, we discuss a planar Lotka-Voltera system, for which we can
explicitly compute its equilibrium. Consequently, applying Theorem 3.1 yields a sufficient
condition for finite-time attractivity of this equilibrium.

Example 3.2. Consider a planar Lotka-Voltera of the following form:

ẋ1(t) = x1(t)(r1 + a11x1(t) + a12x2(t − τ12)),
ẋ2(t) = x2(t)(r2 + a21x1(t − τ21) + a22x2(t)),

(3.19)

where r1, r2, τ12, τ21 > 0 and the coefficients aij for i, j = 1, 2 satisfy the following inequalities
for some ε > 0:

a11, a22 < 0, |a11| ≥ |a12| + ε, |a22| ≥ |a21| + ε. (3.20)
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Additionally, we assume that the equilibrium point x∗ = (x∗
1, x

∗
2) is positive, where

x∗
1 =

r2a12 − r1a22
a11a22 − a12a21 , x∗

2 =
r1a21 − r2a11
a11a22 − a12a21 . (3.21)

According to Theorem 3.1, for any finite-time interval [0, T], there exists a positive weight
factor γ∗ such that for all γ ∈ [0, γ∗] the positive equilibrium x∗ is finite-time attractive on
[0, T]with respect to the norm ‖ · ‖γ,∞.
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