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We study some properties of (α, β)-normal operators and we present various inequalities between
the operator norm and the numerical radius of (α, β)-normal operators on Banach algebra B(H) of
all bounded linear operators T : H → H, whereH is Hilbert space.

1. Introduction

Throughout the paper, let B(H) denote the algebra of all bounded linear operators acting on
a complex Hilbert space (H, 〈·, ·〉), Bh(H) denote the algebra of all self-adjoint operators in
B(H), and I is the identity operator. In case of dimH = n, we identify B(H) with the full
matrix algebra Mn(C) of all n × n matrices with entries in the complex field. An operator
A ∈ Bh(H) is called positive if 〈Ax, x〉 ≥ 0 is valid for any x ∈ H, and then we write A ≥ 0.
Moreover, by A > 0 we mean 〈Ax, x〉 > 0 for any x ∈ H. For A,B ∈ Bh(H), we say A ≤ B if
B−A ≥ 0. An operatorA is majorized by B, if there exists a constant λ such that ‖Ax‖ ≤ λ‖Bx‖
for all x ∈ H or equivalently A∗A ≤ λ2B∗B [1].

For real numbers α and β with 0 ≤ α ≤ 1 ≤ β, an operator T acting on a Hilbert space
H is called (α, β)-normal [2, 3] if

α2T ∗T ≤ TT ∗ ≤ β2T ∗T. (1.1)

An immediate consequence of above definition is

α2〈T ∗Tx, x〉 ≤ 〈TT ∗x, x〉 ≤ β2〈T ∗Tx, x〉, (1.2)
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from which we obtain

α‖Tx‖ ≤ ‖T ∗x‖ ≤ β‖Tx‖, (1.3)

for all x ∈ H.
Notice that, according to (1.1), if T is (α, β)-normal operator, then T and T ∗ majorize

each other.
In [3], Moslehian posed two problems about (α, β)-normal operators as follows.
For fixed α > 0 and β /= 1,

(i) give an example of an (α, β)-normal operator which is neither normal nor
hyponormal;

(ii) is there any nice relation between norm, numerical radius, and spectral radius of an
(α, β)-normal operator?

Dragomir and Moslehian answered these problems in [2], as more as, they
propounded a nice example of (α, β)-normal operator that is neither normal nor hyponormal,
as follows.

The matrix
(
1 0
1 1

)
in B(C2) is an (α, β)-normal with α =

√
(3 − √

5)/2 and β =
√
(3 +

√
5)/2.

The numerical radius w(T) of an operator T on H is defined by

w(T) = sup{|〈Tx, x〉| : ‖x‖ = 1}. (1.4)

Obviously, by (1.4), for any x ∈ Hwe have

|〈Tx, x〉| ≤ w(T)‖x‖2. (1.5)

It is well known that w(·) is a norm on the Banach algebra B(H) of all bounded linear
operators. Moreover, we have

w(T) ≤ ‖T‖ ≤ 2w(T) (T ∈ B(H)). (1.6)

For other results and historical comments on the numerical radius see [4].
The antieigenvalue of an operator T ∈ B(H) defined by

μ1(T) := inf
Tx /= 0

Re〈Tx, x〉
‖Tx‖‖x‖ . (1.7)

The vector x ∈ Hwhich takes μ1(T) is called an antieigenvector of T . We refer more study on
this matter to [4].

In this paper, we prove some properties of (α, β)-normal operators and state various
inequalities between the operator norm and the numerical radius of (α, β)-normal operators
in Hilbert spaces.
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2. Some Properties of (α, β)-Normal Operators

In this section, we establish some properties of (α, β)-normal operators. It is easy to see that if
T is an (α, β)-normal (α > 0) then T ∗ is (1/β, 1/α)-normal. We find numbers z ∈ C such that
z + T is (α, β)-normal where T is (α, β)-normal.

We know by the Cauchy-Schwartz inequality that −1 ≤ μ1(T) ≤ 1. Also we can write

μ1(T) = inf
‖x‖=1
Tx /= 0

Re〈Tx, x〉
‖Tx‖ . (2.1)

We define

μ2(T) := sup
‖x‖=1
Tx /= 0

Re〈Tx, x〉
‖Tx‖ . (2.2)

We know that if T is normal operator then z + T is also normal.

Theorem 2.1. Let T be an (α, β)-normal operator on a Hilbert space such that 0 ≤ α < 1 < β and
z ∈ C. Then z + T is (α, β)-normal, if provided one of the following conditions holds:

(i) μ1(zT) ≥ 0,

(ii) μ1(zT) < 0, |z|2 ≥ −2|z|‖T‖μ1(zT).

Proof. In both of above cases, we show that

|z|2 + 2Re〈zTx, x〉 ≥ 0, ∀x ∈ Hwith ‖x‖ = 1, Tx /= 0. (2.3)

By the assumption (i), μ1(zT) ≥ 0, we have Re〈zTx, x〉/|z|‖Tx‖ ≥ 0 for every x ∈ H with
‖x‖ = 1 and Tx /= 0, consequently we get Re〈zTx, x〉 ≥ 0, and therefore (2.3) is valid. On the
other hand, if (ii) holds and we set B := μ1(zT) then we get B ≤ Re〈zTx, x〉/|z|‖Tx‖ for every
x ∈ H with ‖x‖ = 1 and Tx /= 0, consequently:

inf{B‖Tx‖ : ‖x‖ = 1, Tx /= 0} ≤ inf
{
‖Tx‖Re〈zTx, x〉|z|‖Tx‖ : ‖x‖ = 1, Tx /= 0

}
. (2.4)

Since B < 0, we obtain

−B inf{−‖Tx‖ : ‖x‖ = 1, Tx /= 0} ≤ inf
{
‖Tx‖Re〈zTx, x〉|z|‖Tx‖ : ‖x‖ = 1, Tx /= 0

}
, (2.5)

and so

B sup{‖Tx‖ : ‖x‖ = 1, Tx /= 0} ≤ inf
{
‖Tx‖Re〈zTx, x〉|z|‖Tx‖ : ‖x‖ = 1, Tx /= 0

}
. (2.6)
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Now, by using the last inequality, we have

|z|2 + 2|z|‖T‖μ1(zT) = |z|2 + 2|z|

⎛

⎜
⎜
⎝sup

‖x‖=1
Tx /= 0

‖Tx‖

⎞

⎟
⎟
⎠

⎛

⎜
⎝ inf

‖x‖=1
Tx /= 0

{
Re〈zTx, x〉
|z|‖Tx‖

}
⎞

⎟
⎠

≤ |z|2 + 2|z| inf
‖x‖=1

{
‖Tx‖Re〈zTx, x〉|z|‖Tx‖

}

= |z|2 + 2 inf
‖x‖=1

{Re〈zTx, x〉}.

(2.7)

This shows that (2.3) holds for (ii), too. Thus, for any x ∈ Hwith ‖x‖ = 1 we have

α2〈(z + T)∗(z + T)x, x
〉
= α2

[〈
|z|2x, x

〉
+ 〈zTx, x〉 + 〈zT ∗x, x〉

]
+ α2〈T ∗Tx, x〉

≤
〈
|z|2x, x

〉
+ 〈zTx, x〉 + 〈zT ∗x, x〉 + 〈TT ∗x, x〉

=
〈
(z + T)(z + T)∗x, x

〉

≤ β2
[〈

|z|2x, x
〉
+ 〈zTx, x〉 + 〈zT ∗x, x〉

]
+ β2〈T ∗Tx, x〉

= β2
〈
(z + T)∗(z + T)x, x

〉

(2.8)

and this completes the proof.

Corollary 2.2. Let T be an (α, β)-normal operator. We have the following.

(i) If μ1(T) ≥ 0 then z + T is (α, β)-normal operator for any z > 0.

(ii) If μ2(T) ≤ 0 then z + T is (α, β)-normal operator for any z < 0.

Proof. (i) By the definition of the first antieigenvalue of T , for all z > 0 we have

μ1(zT) = μ1(zT) = μ1(T) ≥ 0. (2.9)

By using Theorem 2.1(i)we imply that z + T is an (α, β)-normal.
(ii) If z < 0, then

μ1(zT) = −μ2(T) ≥ 0. (2.10)

By using Theorem 2.1(i)we imply that z + T is an (α, β)-normal.

Corollary 2.3. Let T be an injective and (α, β)-normal operator with α > 0. Then

(i) R(T) is dense,
(ii) T ∗ is injective,

(iii) if T is surjective then T−1 is also (α, β)-normal.
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Proof. Since the inequality (1.3) is valid, we obtain N(T ∗) = N(T), and therefore R(T)⊥ =
N(T ∗) = N(T) = 0, thus R(T) is a dense subspace of H and T ∗ is injective. This proves (i)
and (ii).

To prove (iii), we note that since T is surjective, we imply that T is invertible. On
the other hand we have (T ∗)−1 = (T−1)∗. Also we know that if A and B are two positive and
invertible operators with 0 < A ≤ B then B−1 ≤ A−1. Since T is (α, β)-normal, by taking inverse
from all sides of (1.1), we get

1
β2

T−1(T ∗)−1 ≤ (T ∗)−1T−1 ≤ 1
α2

T−1(T ∗)−1. (2.11)

This means that (T−1)∗ is (1/β, 1/α)-normal, thus T−1 is (α, β)-normal.

Example 2.4. Consider the following matrix T in B(C2):

T =
(
1 0
1 1

)
. (2.12)

T is an (α, β)-normal operator, with parameters α =
√
(3 − √

5)/2 and β =
√
(3 +

√
5)/2. Then

T−1 =
(

1 0
−1 1

)
is (α, β)-normal.

For T ∈ B(H)we call

r(T) = sup{|λ| : λ ∈ σ(T)} (2.13)

the spectral radius of T , where σ(T) is the spectrum of T and it is known that r(T) =
limn→∞‖Tn‖1/n [5, page 102].

Theorem 2.5. Let T be an (α, β)-normal operator such that T2n is (α, β)-normal operator for every
n ∈ N, too. Then, we have

1
β
‖T‖ ≤ r(T) ≤ ‖T‖. (2.14)

Proof. For any T ∈ B(H)we have

‖T ∗T‖ = ‖T‖2. (2.15)

In particular, if T is a self-adjoint operator then ‖T2‖ = ‖T‖2. Thus, by the definition of (α, β)-
normal operator, we have

∥∥∥T ∗2T2
∥∥∥ ≥ 1

β2

∥∥∥(T ∗T)2
∥∥∥ =

1
β2

‖T‖4. (2.16)
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By induction on n, we imply that

∥
∥
∥T ∗2nT2n

∥
∥
∥ ≥ 1

β2n+1−2
‖T‖2n+1 , (2.17)

from which we obtain

r(T)2 = r(T ∗)r(T) = lim
n→∞

(∥∥
∥T ∗2n

∥
∥
∥
∥
∥
∥T2n

∥
∥
∥
)1/2n

≥ lim
n→∞

∥
∥∥T ∗2nT2n

∥
∥∥
1/2n

≥ lim
n→∞

(
1

β2n+1−2
‖T‖2n+1

)1/2n

=
1
β2

‖T‖2 lim
n→∞

1
β−2/2n

=
1
β2

‖T‖2.

(2.18)

Therefore, we get (1/β)‖T‖ ≤ r(T) ≤ ‖T‖. This completes the proof.

Below, we give an example of (α, β)-normal operator such that it satisfies in
Theorem 2.5.

Example 2.6. Assume that H is a separable Hilbert space and {en : n ∈ Z} is an orthonormal
basis for H. We define the operator T ∈ B(H) as follows:

Ten =

⎧
⎪⎪⎨

⎪⎪⎩

en−1, n ≡ 0 (mod 3),
1
2
en−1, n ≡ 1 (mod 3),

2en−1, n ≡ 2 (mod 3),

(2.19)

so

T ∗en =

⎧
⎪⎪⎨

⎪⎪⎩

1
2
en+1, n ≡ 0 (mod 3),

2en+1, n ≡ 1 (mod 3),
en+1, n ≡ 2 (mod 3),

(2.20)

and by simple computation we get

TT ∗en =

⎧
⎪⎪⎨

⎪⎪⎩

1
4
en, n ≡ 0 (mod 3),

4en, n ≡ 1 (mod 3),
en, n ≡ 2 (mod 3),

T ∗Ten =

⎧
⎪⎪⎨

⎪⎪⎩

en, n ≡ 0 (mod 3),
1
4
en, n ≡ 1 (mod 3),

4en, n ≡ 2 (mod 3).

(2.21)

Consequently, T is (1/4, 4)-normal operator and also Tn is (1/4, 4)-normal operator, for any
integer n ≥ 0. Thus we have ‖T‖ = 2 and r(T) = 1, hence (2.14) is valid.
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3. Inequalities Involving Norms and Numerical Radius

In this section we state some inequalities involving norms and numerical radius.

Theorem 3.1. Let T ∈ B(H) be an (α, β)-normal operator.

(i) For positive real numbers p and q with p ≥ 2 and (1/p) + (1/q) = 1 we have

‖T + T ∗‖p + ‖T − T ∗‖p ≥ 2(1 + αq)p−1‖T‖p. (3.1)

(ii) If 0 ≤ p ≤ 1 or p ≥ 2, then we have

(
‖T + T ∗‖2 + ‖T − T ∗‖2

)p ≥ ‖T‖2pϕ(α, p), (3.2)

where ϕ(α, p) = 2p[(1 + αp)2 + (2p − 22)αp].

(iii) IfN(T) = 0 and for any x ∈ H with ‖x‖ = 1 we have

∥∥∥∥
Tx

‖T ∗x‖ − T ∗x
‖Tx‖

∥∥∥∥ ≤ ρ, (3.3)

then, we obtain

α‖T‖2 ≤ ω
(
T2

)
+
ρ2

2
β‖T‖2. (3.4)

Proof. (i)We use the following known inequality:

‖a + b‖p + ‖a − b‖p ≥ 2
(‖a‖q + ‖b‖q)p−1, (3.5)

which is valid for any a, b ∈ Hwhere H is a Hilbert space.
Now, if we take a = Tx and b = T ∗x in (3.5), then for any x ∈ H we get

‖Tx + T ∗x‖p + ‖Tx − T ∗x‖p ≥ 2
(‖Tx‖q + ‖T ∗x‖q)p−1

≥ 2
(‖Tx‖q + αq‖Tx‖q)p−1

= 2(1 + αq)p−1‖Tx‖q(p−1)

= 2(1 + αq)p−1‖Tx‖p.

(3.6)

Taking the supremum in (3.6) over x ∈ Hwith ‖x‖ = 1, we get the desired result (3.1).
(ii)We use the following inequality [6, Theorem 8, page 551]:

(
‖a + b‖2 + ‖a − b‖2

)p ≥ 2p
((‖a‖p + ‖b‖p)2 +

(
2p − 22

)
‖a‖p‖b‖p

)
, (3.7)

where a and b are two vectors in a Hilbert space and 0 ≤ p ≤ 1 or p ≥ 2.
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Now, if we put a = Tx and b = T ∗x in (3.7), then we obtain

(
‖Tx + T ∗x‖2 + ‖Tx − T ∗x‖2

)p

≥ 2p
((‖Tx‖p + ‖T ∗x‖p)2 +

(
2p − 22

)
‖Tx‖p‖T ∗x‖p

)
,

≥ 2p
(
‖Tx‖2p(1 + αp)2 +

(
2p − 22

)
αp‖Tx‖2p

)

= 2p‖Tx‖2p
[
(1 + αp)2 +

(
2p − 22

)
αp
]

= ‖Tx‖2pϕ(α, p).

(3.8)

Now, taking the supremum over ‖x‖ = 1 in (3.8), we get the desired result (3.2).
(iii)We use the following reverse of Schwarz’s inequality:

(0 ≤)‖a‖‖b‖ − |〈a, b〉| ≤ ‖a‖‖b‖ − Re〈a, b〉 ≤ 1
2
ρ2‖a‖‖b‖, (3.9)

which is valid for a, b ∈ H \ {0} and ρ > 0, with ‖(a/‖b‖) − (b/‖a‖)‖ ≤ ρ (see [7]). We take
a = Tx and b = T ∗x in (3.9) to get

‖Tx‖‖T ∗x‖ ≤ |〈Tx, T ∗x〉| + 1
2
ρ2‖Tx‖‖T ∗x‖. (3.10)

Thus, we obtain

α‖Tx‖2 ≤ |〈Tx, T ∗x〉| + 1
2
ρ2β‖Tx‖2. (3.11)

Now, taking the supremum over ‖x‖ = 1 in recent inequality, we get the desired result (3.4).

Theorem 3.2. Assume that T is an (α, β)-normal operator. Then, we have

(
1 + α2

)
‖T‖2 ≤ 1

2
‖T − T ∗‖2 +ω

(
T2

)
. (3.12)

Proof. By [2, Theorem 3.1], we have

2(1 + αp)‖T‖p ≤ 1
2
[‖T + T ∗‖p + ‖T − T ∗‖p], (3.13)

and also

∥∥∥∥
T ∗T + TT ∗

2

∥∥∥∥

p/2

≤ 1
4
[‖T + T ∗‖p + ‖T − T ∗‖p]. (3.14)
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On the other hand, it is known [8] that for A,B ∈ B(H)we have

∥
∥
∥
∥
A + B

2

∥
∥
∥
∥

2

≤ 1
2

[∥∥
∥
∥
A∗A + B∗B

2

∥
∥
∥
∥ +ω(B∗A)

]
. (3.15)

By using this inequality we get

∥
∥
∥
∥
T + T ∗

2

∥
∥
∥
∥

2

≤ 1
2

[∥∥
∥
∥
T ∗T + TT ∗

2

∥
∥
∥
∥ +ω

(
T2

)]
. (3.16)

If we put p = 2 in (3.14), we obtain

∥∥∥∥
T + T ∗

2

∥∥∥∥

2

≤ 1
2

[
1
4

(
‖T + T ∗‖2 + ‖T − T ∗‖2

)
+ω

(
T2

)]

=
1
2

[∥∥∥∥
T + T ∗

2

∥∥∥∥

2

+
∥∥∥∥
T − T ∗

2

∥∥∥∥

2

+ω
(
T2

)]

.

(3.17)

Thus we get

1
2

∥∥∥∥
T + T ∗

2

∥∥∥∥

2

≤ 1
2

∥∥∥∥
T − T ∗

2

∥∥∥∥

2

+
ω
(
T2)

2
. (3.18)

Now, we take p = 2 in (3.13) to obtain

(
1 + α2

)
‖T‖2 ≤

∥∥∥∥
T − T ∗

2

∥∥∥∥

2

+
∥∥∥∥
T − T ∗

2

∥∥∥∥

2

+ω
(
T2

)
=

1
2
‖T − T ∗‖2 +ω

(
T2

)
. (3.19)

This completes the proof.

Theorem 3.3. Assume that T is an (α, β)-normal operator. Then for any real s with 0 ≤ s ≤ 1, we
have

(
(1 − s)

1
β2

+ s

)(
(1 − s) + s

1
β2

)
‖T‖4 ≤

[
1 − s + sβ2

]
‖T‖2‖T − T ∗‖2 +w

(
T2

)2
. (3.20)

Proof. By [9, Theorem 2.6] (see also [10, Theorem 2.4]), we have

[
(1 − s)‖a‖2 + s‖b‖2

][
(1 − s)‖b‖2 + s‖a‖2

]
− |〈a, b〉|2

≤
[
(1 − s)‖a‖2 + s‖b‖2

][
(1 − s)‖b − ta‖2 + s‖tb − a‖2

]
,

(3.21)
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where 0 ≤ s ≤ 1, t ∈ R and a, b ∈ H. By taking t = 1, a = Tx, and b = T ∗x in (3.21), we get

[
(1 − s)‖Tx‖2 + s‖T ∗x‖2

][
‖(1 − s)T ∗x‖2 + s‖Tx‖2

]
− |〈Tx, T ∗x〉|2

≤
[
(1 − s)‖Tx‖2 + s‖T ∗x‖2

][
(1 − s)‖T ∗x − Tx‖2 + s‖T ∗x − Tx‖2

]
,

(3.22)

thus, we have

[
(1 − s)
β2

‖T ∗x‖2 + s‖T ∗x‖2
][

(1 − s)‖T ∗x‖2 + s

β2
‖T ∗x‖2

]
−
∣
∣
∣
〈
T2x, x

〉∣∣
∣
2

≤
[
(1 − s)‖Tx‖2 + s‖T ∗x‖2

][
(1 − s)‖T ∗x‖2 + s‖Tx‖2

]
−
∣
∣
∣
〈
T2x, x

〉∣∣
∣
2

≤
[
(1 − s)‖Tx‖2 + s‖T ∗x‖2

][
(1 − s)‖T ∗x − Tx‖2 + s‖T ∗x − Tx‖2

]

≤
[
(1 − s)‖Tx‖2 + sβ2‖Tx‖2

]
‖T ∗x − Tx‖2.

(3.23)

Finally, we take supremum over ‖x‖ = 1 from both sides of

(
(1 − s)
β2

+ s

)(
(1 − s) +

s

β2

)
‖T ∗x‖4

≤
[
(1 − s)‖Tx‖2 + sβ2‖Tx‖2

]
‖T ∗x − Tx‖2 +

∣∣∣
〈
T2x, x

〉∣∣∣
2
,

(3.24)

and we use triangle inequality for supremums to complete the proof.

Corollary 3.4. Let T be an (α, β)-normal operator. Then, we have

1
β
‖T‖2 ≤ ‖T‖‖T − T ∗‖ +ω

(
T2

)
. (3.25)

Proof. By using the inequality (3.21)we get

(
(1 − s) + sα2

)(
(1 − s)α2 + s

)
‖T‖4 ≤

[
1 − s + sα2

]
‖T‖2‖T − T ∗‖2 +w

(
T2

)2
. (3.26)

We take s = 0 in inequalities (3.20) and (3.26) to imply

max
{

1
β2

, α2
}
‖Tx‖4 ≤ ‖Tx‖2‖T − T ∗‖2 +ω

(
T2

)2
. (3.27)

Thus, max{1/β, α}‖Tx‖2 ≤ ‖Tx‖‖Tx − T ∗x‖ + ω(T2). Now, taking supremum overall x with
‖x‖ = 1, the desired inequality is obtained.
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