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This paper presents some existence and uniqueness theorems of the fixed point for ordered
contractive mapping in Banach lattices. Moreover, we prove the existence of a unique solution
for first-order ordinary differential equations with initial value conditions by using the theoretical
results with no need for using the condition of a lower solution or an upper solution.

1. Introduction and Preliminaries

Existence of fixed points in partial ordered complete metric spaces has been considered
further recently in [1–6]. Many new fixed point theorems are proved in a metric space
endowed with partial order by using monotone iterative technique, and their results are
applied to problems of existence and uniqueness of solutions for some differential equation
problems. In [6] the existence of a minimal and a maximal solution for a nonlinear problem
is presented by constructing an iterative sequence with the condition of a lower solution or
an upper solution.

In this paper, the theoretical results of fixed points are extended by using the theorem
of cone and monotone iterative technique in Banach lattices. But the iterative sequences can
be constructed with no need for using the condition of a lower solution or an upper solution.
To demonstrate the applicability of our results, we apply them to study a problem of ordinary
differential equations in the final section of the paper, and the existence and uniqueness of
solution are obtained.

Let E be a Banach space and P a cone of E. We define a partial ordering ≤with respect
to P by x ≤ y if and only if y − x ∈ P . A cone P ⊂ E is called normal if there is a constant
N > 0, such that θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖, for all x, y ∈ E. The least positive constantN
satisfying the above inequality is called the normal constant of P .
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Let E be a Riesz space equipped with a Riesz norm. We call E a Banach lattice in the
partial ordering ≤, if E is norm complete. For arbitrary x, y ∈ E, sup{x, y} and inf{x, y} exist.
One can see [7] for the definition and the properties about the lattice.

Let D ⊂ E; the operator A : D → E is said to be an increasing operator if x, y ∈ D,
x ≤ y, implies Ax ≤ Ay; the operator A : D → E is said to be a decreasing operator if
x, y ∈ D, x ≤ y, implies Ay ≤ Ax.

Lemma 1.1 (see [8]). Let P be a normal cone in a real Banach space E. Suppose that {xn} is a
monotone sequence which has a subsequence {xni} converging to x∗, then {xn} also converges to x∗.
Moreover, if {xn} is an increasing sequence, then xn ≤ x∗ (n = 1, 2, 3, . . .); if {xn} is a decreasing
sequence, then x∗ ≤ xn (n = 1, 2, 3, . . .).

Lemma 1.2 (see [9]). Let Ω be a bounded open set in a real Banach space E such that θ ∈ Ω; let P
be a cone of E. Let A : P ∩Ω → P is completely continuous. Suppose that

x � Ax, ∀x ∈ P ∩Ω. (1.1)

Then i(A,P ∩Ω, P) = 1.

Lemma 1.3 (see [9]). Let E be a real Banach space, and let P ⊂ E be a cone. Assume Ω1 and Ω2 are
two bounded open subsets of E with θ ∈ Ω1 ⊂ Ω2 and Ω1 ⊂ Ω2, and let A : P ∩ (Ω2 \Ω1) → P is
completely continuous. Suppose that either

H1 x � Ax, for all x ∈ P ∩Ω1 and Ax � x, for all x ∈ P ∩Ω2, or

H2 Ax � x, for all x ∈ P ∩Ω1 and x � Ax, for all x ∈ P ∩Ω2.

Then A has a fixed point in P ∩ (Ω2 \Ω1).

2. Main Results

Theorem 2.1. Let E be a real Banach lattice, and let P ⊂ E be a normal cone. Suppose thatA : E → E
is a decreasing operator such that there exists a linear operator L : E → E with spectral radius
r(L) < 1 and

Av −Au ≤ L(u − v), for u, v ∈ E with v ≤ u. (2.1)

Then the operator A has a unique fixed point.

Proof. For any u0 ∈ E, since A : E → E, we have Au0 ∈ E. Now we suppose the following
two cases.
Case (I). Suppose that u0 is comparable to Au0. Firstly, without loss of generality, suppose
that u0 ≤ Au0. If Au0 = u0, then the proof is finished. Suppose Au0 /=u0. Since A is decreasing
together with u0 ≤ Au0, we obtain by induction that {An+1(u0)} and {An(u0)} are comparable,
for every n = 0, 1, 2, . . .. Using the contractive condition (2.1), we can obtain by induction that

∥
∥
∥An+1(u0) −An(u0)

∥
∥
∥ ≤ N‖Ln(Au0 − u0)‖, n ∈ N. (2.2)
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In fact, for n = 1, using the fact that P is normal, we have

∥
∥
∥A(u0) −A2u0

∥
∥
∥ ≤ N‖L(Au0 − u0)‖. (2.3)

Suppose that (2.2) is true when n = k then when n = k + 1, we obtain

∥
∥
∥An+2(u0) −An+1(u0)

∥
∥
∥ =

∥
∥
∥A

(

An+1(u0)
)

−A(An(u0))
∥
∥
∥

≤ N
∥
∥
∥L

(

An+1(u0) −An(u0)
)∥
∥
∥ ≤ N

∥
∥
∥Ln+1(Au0 − u0)

∥
∥
∥.

(2.4)

For any m,n ∈ N,m > n, since P is normal cone, we have

‖Am(u0) −An(u0)‖ =
∥
∥
∥

(

Am(u0) −Am−1(u0)
)

+ · · · +
(

An+1(u0) −An(u0)
)∥
∥
∥

≤ N
∥
∥
∥

(

Lm−1 + Lm−2 + · · · + Ln
)

(Au0 − u0)
∥
∥
∥

≤ Nr
((

Lm−1 + Lm−2 + · · · + Ln
))

‖Au0 − u0‖

≤ N
(

r
(

Lm−1
)

+ r
(

Lm−2
)

+ · · · + r(Ln)
)

‖Au0 − u0‖.

(2.5)

Here N is the normal constant.
Given a α such that r(L) < α < 1, since limn→+∞‖Ln‖1/n = r(L) < α < 1, there exists a

n0 ∈ N such that

‖Ln‖ < αn, n ≥ n0. (2.6)

For any m,n ∈ N,m > n ≥ n0, since P is normal cone, we have

‖Am(u0) −An(u0)‖ ≤ N
(

r
(

Lm−1
)

+ r
(

Lm−2
)

+ · · · + r(Ln)
)

‖Au0 − u0‖

≤ N
(

αm−1 + αm−2 + · · · + αn
)

‖Au0 − u0‖

≤ N

(
αn − αm

1 − α

)

‖Au0 − u0‖ ≤ N

(
αn

1 − α

)

‖Au0 − u0‖.

(2.7)

This implies that {An(u0)} is a Cauchy sequence in E. The complete character of E implies
the existence of x∗ ∈ P such that

lim
n→+∞

An(u0) = x∗. (2.8)

Next, we prove that x∗ is a fixed point of A in E. Since A is decreasing and u0 ≤ Au0, we can
get A2u0 ≤ Au0.
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So

Au0 −A2(u0) ≤ L(Au0 − u0), (2.9)

then

A2u0 − u0 = (Au0 − u0) −
(

Au0 −A2(u0)
)

≥ (I − L)(Au0 − u0) ≥ θ.

(2.10)

It is easy to know that A2 is increasing and

A2(u0) ≤ A4(u0), A3(u0) ≤ A(u0). (2.11)

By induction, we obtain that

u0 ≤ A2(u0) ≤ · · · ≤ A2n(u0) ≤ · · · ≤ A2n+1(u0) ≤ · · · ≤ A3(u0) ≤ Au0. (2.12)

Hence, the sequence {An(u0)} has an increasing Cauchy subsequence {A2n(u0)} and a
decreasing Cauchy subsequence {A2n+1(u0)} such that

lim
n→+∞

A2n(u0) = u∗, lim
n→+∞

A2n+1(u0) = v∗. (2.13)

Thus Lemma 1.1 implies that A2n(u0) ≤ u∗, v∗ ≤ A2n+1(u0).
Since {An(u0)} is a Cauchy sequence, we can get that u∗ = v∗ = x∗.
Moreover

‖Ax∗ − x∗‖ ≤
∥
∥
∥Ax∗ −A

(

A2n(u0)
)∥
∥
∥ +

∥
∥
∥A2(n+1)(u0) − x∗

∥
∥
∥

≤ N
∥
∥
∥L

(

x∗ −A2n(u0)
)∥
∥
∥ +

∥
∥
∥A2(n+1)(u0) − x∗

∥
∥
∥

≤ Nα
∥
∥
∥x∗ −A2n(u0)

∥
∥
∥ +

∥
∥
∥A2(n+1)(u0) − x∗

∥
∥
∥.

(2.14)

Thus ‖Ax∗ − x∗‖ = 0. That is Ax∗ = x∗. Hence x∗ is a fixed point of A in E.
Case (II). On the contrary, suppose that u0 is not comparable to Au0.

Now, since E is a Banach lattice, there exists v0 such that inf{Au0, u0} = v0. That is
v0 ≤ Au0 and v0 ≤ u0. Since A is a decreasing operator, we have

A2u0 ≤ Av0, Au0 ≤ Av0. (2.15)

This shows that v0 ≤ Av0. Similarly as the proof of case (I), we can get that A has a fixed
point x∗ in E.

Finally, we prove that A has a unique fixed point x∗ in E. In fact, let u∗ and v∗ be two
fixed points of A in E.
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(1) If u∗ is comparable to v∗, An(u∗) = u∗ is comparable to An(v∗) = v∗ for every n =
0, 1, 2, . . ., and

‖u∗ − v∗‖ = ‖Anu∗ −Anv∗‖ ≤ Nαn‖u∗ − v∗‖, (2.16)

which implies u∗ = v∗.

(2) If u∗ is not comparable to v∗, there exists either an upper or a lower bound of u∗ and
v∗ because E is a Banach lattice, that is, there exists z∗ ∈ E such that z∗ ≤ u∗, z∗ ≤ v∗

or u∗ ≤ z∗, u∗ ≤ z∗. Monotonicity implies that An(z∗) is comparable to An(u∗) and
An(v∗), for all n = 0, 1, 2, . . ., and

‖u∗ − v∗‖ = ‖An(u∗) −An(v∗)‖
≤ ‖An(z∗) −An(u∗)‖ + ‖An(z∗) −An(v∗)‖
≤ Nαn‖u∗ − z∗‖ +Nαn‖z∗ − v∗‖.

(2.17)

This shows that ‖u∗ − v∗‖ → 0 when n → +∞. HenceA has a unique fixed point x∗ in E.

Theorem 2.2. LetE be a real Banach lattice, and let P ⊂ E be a normal cone. Suppose thatA : P → P
is a completely continuous and increasing operator such that there exists a linear operator L : E → E
with spectral radius r(L) < 1 and

Au −Av ≤ L(u − v), for u, v ∈ P with v ≤ u. (2.18)

Then the operator A has a unique fixed point u∗ in P .

Proof. For any r > 0, let Ω = {x ∈ P : ‖x‖ ≤ r}. Now we suppose the following two cases.
Case (I). Firstly, suppose that there exists u0 ∈ ∂Ω such that u0 ≤ Au0. If Au0 = u0, then the
proof is finished. Suppose Au0 /=u0. Since u0 ≤ Au0 and A is nondecreasing, we obtain by
induction that

u0 ≤ Au0 ≤ A2(u0) ≤ A3(u0) ≤ · · · ≤ An(u0) ≤ An+1(u0) ≤ · · · . (2.19)

Similarly as the proof of Theorem 2.1, we can get that {An(u0)} is a Cauchy sequence in E.
Since E is complete, by Lemma 1.1, there exists u∗ ∈ E,An(u0) ≤ u∗ such that

lim
n→+∞

An(u0) = u∗. (2.20)

Next, we prove that u∗ is a fixed point of A, that is, Au∗ = u∗. In fact

‖Au∗ − u∗‖ ≤ ‖Au∗ −A(An(u0))‖ +
∥
∥
∥An+1(u0) − u∗

∥
∥
∥

≤ N‖L(u∗ −An(u0))‖ +
∥
∥
∥An+1(u0) − u∗

∥
∥
∥

≤ Nα‖u∗ −An(u0)‖ +
∥
∥
∥An+1(u0) − u∗

∥
∥
∥.

(2.21)
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Now, by the convergence of {An(u0)} to u∗, we can get ‖Au∗ − u∗‖ = 0. This proves that u∗ is
a fixed point of A.
Case (II). On the contrary, suppose that x � Ax for all x ∈ ∂Ω. Thus Lemma 1.2 implies the
existence of a fixed point in this case also.

Finally, similarly as the proof of Theorem 2.1, we can get that A has a unique fixed
point x∗ in P .

Theorem 2.3. LetE be a real Banach lattice, and let P ⊂ E be a normal cone. Suppose thatA : P → P
is a completely continuous and increasing operator which satisfies the following assumptions:

(i) there exists a linear operator L : E → E with spectral radius r(L) < 1 and

Au −Av ≤ L(u − v), for u, v ∈ P with v ≤ u; (2.22)

(ii) S = {x ∈ P : Ax ≤ x} is bounded.

Then the operator A has a unique nonzero fixed point u∗ in P .

Proof. Firstly, for any r > 0, let Ω = {x ∈ P : ‖x‖ ≤ r}. Now we suppose the following two
cases.
Case (I). Suppose that there exists u0 ∈ ∂Ω such that u0 ≤ Au0. Similarly as proof of
Theorem 2.1, we get that A has a nonzero fixed point u∗ in P .
Case (II). On the contrary, suppose that x � Ax for all x ∈ ∂Ω. Now, since S is bounded
there exists R > r such that Ax � x for all x ∈ P with ‖x‖ = R. Thus Lemma 1.3 implies the
existence of a nonzero fixed point in this case.

Finally, similarly as the proof of Theorem 2.1, we can get thatA has a unique non-zero
fixed point u∗ in P .

3. Applications

In this section, we use Theorem 2.1 to show the existence of unique solution for the first-order
initial value problem

u′(t) = f(t, u(t)), t ∈ I = [0, T],

u(0) = u0,
(3.1)

where T > 0 and f : I × R → R is a continuous function.

Theorem 3.1. Let f : I × R → R be continuous, and suppose that there exists 0 < μ < λ, such that

−μ(y − x
) ≤ f

(

t, y
)

+ λy − [

f(t, x) + λx
] ≤ 0, ∀y ≥ x. (3.2)

Then (3.1) has a unique solution u∗.
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Proof. It is easy to know that E = C(I) is a Banach space with maximum norm ‖ · ‖, and it is
also a Banach lattice with maximum norm ‖ · ‖. Let P = {u ∈ E|u(t) ≥ 0, for all t ∈ I}, and P
is a normal cone in Banach lattice E. Equation (3.1) can be written as

u′(t) + λu(t) = f(t, u(t)) + λu(t), t ∈ I = [0, T],

u(0) = u0.
(3.3)

This problem is equivalent to the integral equation

u(t) = e−λt
{

u0 +
∫ t

0
eλs

[

f(s, u(s)) + λu(s)
]

ds

}

. (3.4)

Define operator A as the following:

(Au)(t) = e−λt
{

u0 +
∫ t

0
eλs

[

f(s, u(s)) + λu(s)
]

ds

}

, t ∈ I. (3.5)

Moreover, the mapping A is decreasing in u. In fact, by hypotheses, for u ≥ v,

f(t, u(t)) + λu(t) ≤ f(t, v(t)) + λv(t) (3.6)

implies that

(Au)(t) = e−λt
{

u0 +
∫ t

0
eλs

[

f(s, u(s)) + λu(s)
]

ds

}

≤ e−λt
{

u0 +
∫ t

0
eλs

[

f(s, v(s)) + λv(s)
]

ds

}

= (Av)(t), t ∈ I,

(3.7)

so A is decreasing. Besides, for u ≥ v,

A(v) −A(u) =
∫ t

0
eλ(s−t)

[

f
(

s, v(s) + λv(s) − f(s, u(s)) − λu(s)
]

ds

≤
∫ t

0
eλ(s−t)μ[u(s) − v(s)]ds = L(u − v),

(3.8)

where Lu =
∫ t

0 e
λ(s−t)μu(s)ds. Since A is decreasing, then L is positive linear operator.
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Now, let us prove that the spectral radius r(L) < 1. For t ∈ I, since 0 < eλ(s−t) ≤ 1, we
have

‖Lu‖ = max
t∈I

∫ t

0
eλ(s−t)μu(s)ds ≤ μ

∫ t

0
eλ(s−t)ds‖u‖ ≤ μt‖u‖,

∥
∥
∥L2u

∥
∥
∥ = max

t∈I

∫ t

0
eλ(s−t)μL(u(s))ds ≤ μ2

∫ t

0
eλ(s−t)s ds‖Lu‖ ≤ μ2

2!
t2‖u‖.

(3.9)

By mathematical induction, for any n ∈ N, we have

‖Lnu‖ ≤ μn

n!
tn‖u‖, t ∈ I. (3.10)

So

‖Ln‖ ≤ μn

n!
Tn. (3.11)

Since 0 < μ < λ, we have

r(L) = lim
n→+∞

‖Ln‖1/n = 0 < 1. (3.12)

So the condition of Theorem 2.1 holds, and Theorem 3.1 is proved.
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