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This paper is concerned with the regularity of Leray weak solutions to the 3D Navier-Stokes
equations in Lorentz space. It is proved that the weak solution is regular if the horizontal velocity
denoted by ũ = (u1, u2, 0) satisfies ũ(x, t) ∈ Lq(0, T ;Lp,∞(R3)) for 2/q + 3/p = 1, 3 < p < ∞. The
result is obvious and improved that of Dong and Chen (2008) on the Lebesgue space.

1. Introduction and Main Results

In this note, we consider the regularity criterion of weak solutions of the Navier-Stokes
equations in the whole space R3

∂tu + (u · ∇)u +∇π = Δu,

∇ · u = 0,

u(x, 0) = u0.

(1.1)

Here u = (u1, u2, u3) and π denote the unknown velocity field and the unknown scalar
pressure field. u0 is a given initial velocity. For simplicity, we assume that the external force is
zero, but it is easy to extend our results to the nonzero external force case. Here and in what
follows, we use the notations for vector functions u, v,

(u · ∇)v =
3
∑

i=1

ui∂ivk (k = 1, 2, 3), ∇ · u =
3
∑

i=1

∂iui. (1.2)
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For a given initial data u0 ∈ L2(R3), Leary in the pioneer work, [1] constructed a global
weak solution

u ∈ L∞
(

0,∞;L2
(

R3
))

∩ L2
(

0, T ;H1
(

R3
))

. (1.3)

From that time on, although much effort has been made on the uniqueness and regularity of
weak solutions, the question of global regularity or finite time singularity for weak solutions
in R3 is still open. One important observation is that the regularity can be derived when
certain growth conditions are satisfied. This is known as a regularity criterion problem. The
investigation of the regularity criterion on the weak solution stems from the celebrated work
of Serrin [2]. Namely, Serrin’s regularity criterion can be described as follows. Aweak solution
u of Navier-Stokes equations is regular if the growth condition on velocity field u

u ∈ Lp

(

0, T ;Lq

(

R3
))

≡ LpLq, for
2
p
+
3
q
≤ 1, 3 < q ≤ ∞, (1.4)

holds true.
It should be mentioned that the Serrin’s condition (1.4) is important from the point

of view of the relation between scaling invariance and regularity criteria of weak solutions;
indeed, if a pair (u, p) solves (1.1), then so does (uλ, pλ) defined by

uλ(x, t) = λu
(

λx, λ2t
)

, pλ(x, t) = λ2p
(

λx, λ2t
)

. (1.5)

Scaling invariance means that

‖u‖Lp(0,T ;Lq(R3)) = ‖uλ‖Lp(0,T ;Lq(R3)) (1.6)

holds for all λ > 0 and this happens if and only if p and q satisfy (1.4).
Actually, the condition described by (1.4) which involves all components of the

velocity vector field u = (u1, u2, u3) is known as degree −1 growth condition (see Chen and
Xin [3] for details), since

∥

∥

∥u
(

λ·, λ2·
)∥

∥

∥

LpLq

= ‖u‖Lp(0,λ2T ;Lq(R3))λ
−2/p−3/q = ‖u‖Lp(0,λ2T ;Lq(R3))λ

−1. (1.7)

The degree −1 growth condition is critical due to the scaling invariance property. That is,
(u(x, t), p(x, t)) solves (1.1) if and only if (uλ(x, t), pλ(x, t)) is a solution of (1.1).

Moreover, this pioneer result [2] has been extended by many authors in terms of
velocity u(x, t), the gradient of velocity ∇u(x, t) or vorticity w(x, t) = (w1, w2, w3) = ∇ × u in
Lebesgue spaces or Besov spaces, respectively (refer to [4–7] and reference therein).

Actually, the weak solution remains regular when a part of the velocity components
or vorticity is involved in a growth condition. On one hand, regularity of the weak solution
was recently obtained by Dong and Chen [8] when two velocity components denoted by

ũ = (u1, u2, 0) (1.8)
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satisfy the critical growth condition

ũ ∈ LpLq, for
2
p
+
3
q
= 1, 3 < q ≤ ∞. (1.9)

It should be mentioned that the weak solution remains regular if the single velocity
component satisfies the higher (subcritical) growth conditions (see Zhou [9], Penel and
Pokorný [10], Kukavica and Ziane [11], and Cao and Titi [12]). One may also refer to some
interesting regularity criteria [13–15] for weak solutions of micropolar fluid flows. It seems
difficult to show regularity of weak solutions by imposing Serrin’s growth condition on only
one component of velocity field for both Navier-Stokes equations and micropolar fluid flows.

However, whether or not the result (1.9) can be improved to the critical weak Lp

spaces is an interesting and challenging problem, that is to say, when the weak critical growth
condition is imposed to only two velocity components. The main difficulty lies in the lack of
a priori estimates on two-velocity components ũ due to the special structure of the nonlinear
convection term in monument equations.

The aim of the present paper is to improve the two-component regularity criterion
(1.9) from Lebesgue space to the critical Lorentz space (see the definitions in Section 2)which
satisfies the scaling invariance property.

Before stating the main results, we firstly recall the definition of the Leray weak
solutions.

Definition 1.1 (Temam, [16]). Let u0 ∈ L2(R3) and ∇ ·u0 = 0. A vector field u(x, t) is termed as
a Leray weak solution of (1.1) on (0, T) if u satisfies the following properties:

(i) u ∈ L∞(0, T ;L2(R3)) ∩ L2(0, T ;H1(R3));

(ii) ∂tu + (u · ∇)u +∇π = Δu in the distribution space D′((0, T) × R3);

(iii) ∇ · u = 0 in the distribution space D′((0, T) × R3);

(iv) u satisfies the energy inequality

‖u(t)‖2L2
+ 2

∫ t

0

∫

R3
|∇u(x, s)|2 dxds ≤ ‖u0‖2L2

, for 0 ≤ t ≤ T. (1.10)

The main results now read as follows.

Theorem 1.2. Suppose T > 0, u0 ∈ H1(R3) and ∇ · u0 = 0 in the sense of distributions. Assume
that u is a Leray weak solution of the Navier-Stokes equations (1.1) in (0, T). If the horizontal velocity
denoted by ũ = (u1, u2, 0) satisfies the following growth condition:

∫T

0
‖ũ(t)‖qLp,∞

dt < ∞, for
2
q
+
3
p
= 1, 3 < p < ∞, (1.11)

then u is a regular solution on (0, T].

Remark 1.3. It is easy to verify that the spaces (1.11) satisfy the degree −1 growth conditions
due to the scaling invariance property. Moreover, since the embedding relation Lp ↪→ Lp,∞,
Theorem 1.2 is an important improvement of (1.9).
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Remark 1.4. Unlike the previous investigations via two components of vorticity (see [17, 18])
in weak space, of which the approaches are mainly based on the vorticity equations and seem
not available in our case here due to the special structure of convection term, the present
examination is directly based on the momentum equations. In order to make use of the
structure of the nonlinear convection term (u·∇)u, we study every component of ((u·∇)u,Δu)
and estimate them one by one with the aid of the identities ∇ · u = 0.

2. Preliminaries and A Priori Estimates

To start with, let us introduce the definitions of some functional spaces. Lp(R3), Wk,p(R3)
with k ∈ R, 1 ≤ p ≤ ∞ are usual Lebesgue space and Sobolev space.

To define the Lorenz space Lp,q(R3) with 1 ≤ p, q ≤ ∞, we consider a measurable
function f and define for t ≥ 0 the Lebesgue measure

m
(

f, t
)

:= m
{

x ∈ R3 :
∣

∣f(x)
∣

∣ > t
}

, (2.1)

of the set {x ∈ R3 : |f(x)| > t}.
Then f ∈ Lp,q(R3) if and only if

∥

∥f
∥

∥

Lp,q
=
(∫∞

0
tq(m(f, t))q/p

dt

t

)1/q

< ∞ for 1 ≤ q < ∞,

∥

∥f
∥

∥

Lp,∞
= sup

t≥0

(

t
(

m
(

f, t
))1/p

)

< ∞ for q = ∞.

(2.2)

Actually, Lorentz space Lp,q(R3)may be alternatively defined by real interpolation (see Bergh
and Löfström [19] and Triebel [20])

Lp,q

(

R3
)

=
(

Lp1

(

R3
)

, Lp2

(

R3
))

θ,q
, (2.3)

with

1
p
=

1 − θ

p1
+

θ

p2
, 1 ≤ p1 < p < p2 ≤ ∞. (2.4)

Especially, ‖f‖Lq,∞
is equivalent to the norm

sup
0<|E|<∞

|E|1/q−1
∫

E

∣

∣f(x)
∣

∣dx, (2.5)

and thus it readily seen that

Lp

(

R3
)

= Lp,p

(

R3
)

⊂ Lp,q

(

R3
)

⊂ Lp,∞
(

R3
)

, 1 < p < q < ∞. (2.6)
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In order to prove Theorem 1.2, it is sufficient to examine a priori estimates for smooth
solutions of (1.1) described in the following.

Theorem 2.1. Let T > 0, u0 ∈ H1(R3) with ∇ · u0 = 0. Assume that u(x, t) is a smooth solution of
(1.1) on R3 × (0, T) and satisfies the growth conditions (1.11). Then

sup
0<t<T

‖∇u(t)‖2L2
+
∫T

0
‖Δu(t)‖2L2

dt ≤ c‖∇u0‖2L2
exp

{

∫T

0
‖ũ(t)‖qLp,∞

dt

}

(2.7)

holds true.

Proof of Theorem 2.1. Taking inner product of the momentum equations of (1.1) with Δu and
integrating by parts, one shows that

1
2
d

dt
‖∇u(t)‖2L2

+ ‖Δu(t)‖2L2
≤ −

3
∑

i,j,k=1

∫

R3
ui∂iuj∂kkujdx. (2.8)

In order to estimate the right-hand side of (2.8), with the aid of the divergence-free condition
∑3

i=1 ∂iui = 0 and integration by parts, observe that

−
3
∑

i,j,k=1

∫

R3
ui∂iuj∂kkujdx =

3
∑

i,j,k=1

∫

R3
∂k

(

ui∂iuj

)

∂kujdx

=
3
∑

i,j,k=1

∫

R3
∂kui∂iuj∂kujdx +

1
2

3
∑

i,j,k=1

∫

R3
ui∂i

(

∂kuj∂kuj

)

dx

=
3
∑

i,j,k=1

∫

R3
∂kui∂iuj∂kuj dx

=
2
∑

i=1

3
∑

j,k=1

∫

R3
∂kui∂iuj∂kujdx +

2
∑

j=1

3
∑

k=1

∫

R3
∂ku3∂3uj∂kujdx

+
3
∑

k=1

∫

R3
∂ku3∂3u3∂ku3dx =

3
∑

m=1

Im.

(2.9)

The estimation of the terms Im is now estimated one by one.
In order to estimate I1 and I2, employing integration by parts deduces that

I1 =
2
∑

i=1

3
∑

j,k=1

∫

R3
ui∂k

(

∂iuj∂kuj

)

dx ≤ c

∫

R3
|ũ||∇u|

∣

∣

∣∇2u
∣

∣

∣dx,

I2 =
2
∑

j=1

3
∑

k=1

∫

R3
uj∂3

(

∂ku3∂kuj

)

dx ≤ c

∫

R3
|ũ||∇u|

∣

∣

∣∇2u
∣

∣

∣dx.

(2.10)
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For I3, the divergence-free condition ∂3u3 = −∂1u1 − ∂2u2 and integration by parts imply

I3 =
3
∑

k=1

∫

R3
∂ku3(∂1u1 + ∂2u2)∂ku3dx

≤ −
3
∑

k=1

∫

R3
(u1∂1(∂ku3∂ku3) + u2∂2(∂ku3∂ku3))dx

≤ c

∫

R3
|ũ||∇u|

∣

∣

∣∇2u
∣

∣

∣dx.

(2.11)

Thus, plugging the above inequalities into (2.8) to produce

d

dt
‖∇u(t)‖2L2

+ 2‖Δu(t)‖2L2
≤ c

∫

R3
|ũ||∇u|

∣

∣

∣∇2u
∣

∣

∣dx := RHS. (2.12)

Wenow carry out the estimation of (2.12) based on the assumption described by (1.11).
Applying Hölder’s inequality and Young’s-inequality, we have for the right-hand side

(RHS) of (2.12)

RHS ≤ c‖|ũ||∇u|‖L2

∥

∥

∥∇2u
∥

∥

∥

L2
≤ c(ε)‖|ũ||∇u|‖2L2

+ ε
∥

∥

∥∇2u
∥

∥

∥

2

L2

≤ c‖ũ‖2Lp,∞‖∇u‖2L2p/(p−2),2 +
1
2
‖Δu‖2L2

,

(2.13)

where we have used the following Hölder inequality’s in Lorentz space in the last line (refer
to O’Neil [21, Theorems 3.4 and 3.5])

∥

∥fg
∥

∥

Lp1 ,q1
≤ c

∥

∥f
∥

∥

Lp2 ,q2

∥

∥g
∥

∥

Lp3 ,q3
, (2.14)

for

1
p1

=
1
p2

+
1
p3

,
1
q1

≤ 1
q2

+
1
q3

, (2.15)

with

1 ≤ p2, p3 ≤ ∞, 1 ≤ q2, q3 ≤ ∞. (2.16)

We now claim that the term ‖∇u‖L2p/(p−2),2 in (2.13) can be estimated by applying the
following Gagliardo-Nirenberg inequality in Lorentz space

∥

∥∇f
∥

∥

L2p/(p−2),2
≤ c

∥

∥∇f
∥

∥

(p−3)/p
L2

∥

∥Δf
∥

∥

3/p
L2

. (2.17)
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Indeed, choosing p1 and p2 such that

3 < p1 < p < p2 < ∞,
2
p
=

1
p1

+
1
p2

, (2.18)

and then applying Gagliardo-Nirenberg inequality, it follows that

∥

∥∇f
∥

∥

2pi/(pi−2) ≤ c
∥

∥∇f
∥

∥

(pi−3)/pi
L2

∥

∥Δf
∥

∥

3/pi
L2

, i = 1, 2. (2.19)

Thus, applying the interpolation inequality (2.3), we have

L2p/(p−2),2
(

R3
)

=
(

L2p1/(p1−2)
(

R3
)

, L2p2/(p2−2)
(

R3
))

1/2,2
, (2.20)

that is to say,

∥

∥∇f
∥

∥

L2p/(p−2),2
≤ c

∥

∥∇f
∥

∥

1/2
L2p1/(p1−2)

∥

∥∇f
∥

∥

1/2
L2p2/(p2−2)

≤ c
(

∥

∥∇f
∥

∥

p1−3/p1
L2

∥

∥Δf
∥

∥

3/p2
L2

)1/2(∥
∥∇f

∥

∥

(p2−3)/p2
L2

∥

∥Δf
∥

∥

3/p2
L2

)1/2

≤ c
∥

∥∇f
∥

∥

(p−3)/p
L2

∥

∥Δf
∥

∥

3/p
L2

,

(2.21)

and (2.17) is derived. Therefore, by employing (2.17) and Young’s inequality, the inequality
(2.13) becomes

RHS ≤ c‖ũ‖2Lp,∞‖∇u‖2(p−3)/pL2
‖Δu‖6/pL2

+
1
2
‖Δu‖2L2

≤ c‖ũ‖2p/(p−3)Lp,∞
‖∇u‖2L2

+ ‖Δu‖2L2
.

(2.22)

Inserting (2.22) into (2.12) to produce

d

dt
‖∇u(t)‖2L2

+ ‖Δu(t)‖2L2
≤ c‖ũ‖2p/(p−3)Lp,∞

‖∇u‖2L2
. (2.23)

Taking Gronwall’s inequality into account yields the desired estimate,

sup
0<t<T

‖∇u(t)‖2L2
+
∫T

0
‖Δu(t)‖2L2

dt ≤ c‖∇u0‖2L2
exp

{

∫T

0
‖ũ(t)‖qLp,∞

dt

}

, (2.24)

note that

2p
p − 3

= q. (2.25)

This completes the proof of Theorem 2.1.
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3. Proof of Theorem 1.2

According to a priori estimates of smooth solutions described in Theorem 2.1, the proofs of
Theorem 1.2 are standard.

Since u0 ∈ H1(R3)with ∇ · u0 = 0, by the local existence theorem of strong solutions to
the Navier-Stokes equations (see, e.g., Fujita and Kato [22]), there exist a T ∗ > 0 and a smooth
solution u of (1.1) satisfying

u ∈ C
(

[0, T ∗);H1
)

∩ C1
(

(0, T ∗);H1
)

∩ C
(

[0, T ∗);H3
)

, u(x, 0) = u0. (3.1)

Note that the Leray weak solution satisfies the energy inequality (1.10). It follows from
Serrin’s weak-strong uniqueness criterion [2] that

u ≡ u on [0, T ∗). (3.2)

Thus, it is sufficient to show that

T ∗ = T. (3.3)

Suppose that T ∗ < T . Without loss of generality, we may assume that T ∗ is the maximal
existence time for u. Since u ≡ u on [0, T ∗) and by the assumptions (1.11), it follows from a
priori estimate (2.7) that the existence time of u can be extended after t = T ∗ which contradicts
with the maximality of t = T ∗.

Thus, we complete the proof of Theorem 1.2.

Acknowledgments

This work is partially supported by NNSF of China (11071185) and NSF of Tianjin
(09JCYBJC01800).

References

[1] J. Leray, “Sur le mouvement d’un liquide visqueux emplissant l’espace,” Acta Mathematica, vol. 63,
no. 1, pp. 193–248, 1934.

[2] J. Serrin, “On the interior regularity of weak solutions of the Navier-Stokes equations,” Archive for
Rational Mechanics and Analysis, vol. 9, pp. 187–195, 1962.

[3] Z. M. Chen and Z. Xin, “Homogeneity criterion for the Navier-Stokes equations in the whole spaces,”
Journal of Mathematical Fluid Mechanics, vol. 3, no. 2, pp. 152–182, 2001.

[4] Q. Chen and Z. Zhang, “Space-time estimates in the Besov spaces and the Navier-Stokes equations,”
Methods and Applications of Analysis, vol. 13, no. 1, pp. 107–122, 2006.

[5] Z.-M. Chen and W. G. Price, “Blow-up rate estimates for weak solutions of the Navier-Stokes
equations,” Proceedings of the Royal Society A, vol. 457, no. 2015, pp. 2625–2642, 2001.

[6] Z.-M. Chen and W. G. Price, “Morrey space techniques applied to the interior regularity problem of
the Navier-Stokes equations,” Nonlinearity, vol. 14, no. 6, pp. 1453–1472, 2001.

[7] B. Dong, G. Sadek, and Z. Chen, “On the regularity criteria of the 3D Navier-Stokes equations in
critical spaces,” Acta Mathematica Scientia Series B, vol. 31, no. 2, pp. 591–600, 2011.

[8] B.-Q. Dong and Z.-M. Chen, “Regularity criterion for weak solutions to the 3D Navier-Stokes
equations via two velocity components,” Journal of Mathematical Analysis and Applications, vol. 338,
no. 1, pp. 1–10, 2008.



Abstract and Applied Analysis 9

[9] Y. Zhou, “A new regularity criterion for weak solutions to the Navier-Stokes equations,” Journal de
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