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We prove the equivalence of the convergence of the Mann and multistep iterations with errors for
uniformly continuous generalized weak ®-pseduocontractive mappings in Banach spaces. We also

obtain the convergence results of Mann and multistep iterations with errors. Our results extend
and improve the corresponding results.

1. Introduction

Let E be a real Banach space, E* be its dual space, and ] : E — 2F" be the normalized duality
mapping defined by

1) = {f e B (x f) = I D1 = AP 1)

where (-, -) denotes the generalized duality pairing. The single-valued normalized duality
mapping is denoted by j.

Definition 1.1. A mapping T : E — E is said to be

(1) strongly accretive if for all x,y € E, there exist a constant k € (0,1) and j(x —y) €
J(x — y) such that

% (12)

(Tx-Ty,j(x-y)) > k||lx-y
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(2) ¢-strongly accretive if there exist j(x—-y) € J(x—vy) and a strictly increasing function
¢ :[0,+0) — [0,+00) with ¢(0) = 0 such that

(Tx=Ty,j(x-y)) 2d(|lx-y|Dllx-yl, Yx,y€E; (1.3)

(3) generalized ®-accretive if, for any x,y € E, there exist j(x —y) € J(x —y) and a
strictly increasing function @ : [0, +o0) — [0, +00) with @(0) = 0 such that

(Tx =Ty, j(x-y)) 2@([|lx - y|]) (1.4)

Remark 1.2. Let N(T) = {x € E : Tx = 0} #0. If x,y € E in the formulas of Definition 1.1
is replaced by x € E, g € N(T), then T is called strongly quasi-accretive, ¢-strongly quasi-
accretive, generalized d-quasi-accretive mapping, respectively.

Closely related to the class of accretive-type mappings are those of pseudocontractive
type mappings.

Definition 1.3. A mapping T with domain D(T) and range R(T) is said to be

(1) strongly pseudocontractive if there exist a constant k € (0,1) and j(x-y) € J(x—y)
such that for each x,y € D(T),

(Tx =Ty, j(x-y)) <kllx-y|* (1.5)

(2) ¢-strongly pseudocontractive if there exist j(x — y) € J(x — y) and a strictly
increasing function ¢ : [0, +o0) — [0, +00) with ¢(0) = 0 such that

(Tx =Ty, j(x-y)) < lx=y||* - (|lx-y)llx-yll. Vx,y € DT); (1.6)

(3) generalized @-pseudocontractive if, for any x, y € D(T), there exist j(x —y) € J(x -
y) and a strictly increasing function @ : [0, +o0) — [0, +00) with @(0) = 0 such that

(Tx =Ty, j(x=y)) < 2=yl - @(|lx - ). (1.7)

Definition 1.4. Let F(T) = {x € E : Tx = x}#0. The mapping T is called ®-strongly
pseudocontractive, generalized ®-pseudocontractive, if, for all x € D(T), g € F(T), the
formula (2), (3) in the above Definition 1.3 hold.

Definition 1.5. A mapping T is said to be

(1) generalized weak ®-accretive if, for all x,y € E, there exist j(x -~ y) € J(x —y) and
a strictly increasing function @ : [0, +o0) — [0, +o0) with @(0) = 0 such that

(Tx Ty, j(x-y)) 2 O([lx -yl

> ; (1.8)
1+ [|lx - y||* + @(|lx - y]))
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(2) generalized weak ®-quasi-accretive if, for all x € E, g € N(T), there exist j(x — q) €
J(x—gq) and a strictly increasing function @ : [0, +o0) — [0, +00) with ®(0) = 0 such
that

O(Jlx - qll)
L+ [lx = ql* + (Jlx - q]])

(Tx-q,j(x-q)) > (1.9)

(3) generalized weak @-pseudocontractive if, for any x,y € D(T), there exist j(x—vy) €
J(x = y) and a strictly increasing function @ : [0,+00) — [0,+00) with ®(0) = 0
such that

S (E )
L+ [lx = ylI* + @(flx - )

(Tx -Ty, j(x-y)) < |lx - y|* - (1.10)

(4) generalized weak @-hemicontractive if, forany x € K, g € F(T), there exist j(x—q) €
J(x—gq) and a strictly increasing function @ : [0, +c0) — [0, +00) with ®(0) = 0 such
that

O(Jlx -~ qll)
: :
L+ [lx = q]” + ©(flx - qll)

(Tx-q,j(x-q)) < ||x-q|* - (1.11)

It is very well known that a mapping T is strongly pseudocontractive (hemi-
contractive), ¢-strongly pseudocontractive (¢-strongly hemicontractive), generalized @-
pseudocontractive (generalized ®-hemicontractive), generalized weak @-pseudocontractive
(generalized weak ®-hemicontractive) if and only if (I — T) are strongly accretive (quasi-
accretive), ¢-strongly accretive (¢-strongly quasi-accretive), (I -T) is generalized ®-accretive
(generalized ®-quasi-accretive), generalized weak @-accretive (weak ®-quasi-accretive),
respectively.

It is shown in [1] that the class of strongly pseudocontractive mappings is a proper
subclass of ¢-strongly pseudocontractive mappings. Furthermore, an example in [2] shows
that the class of ¢-strongly hemicontractive mappings with the nonempty fixed point set
is a proper subclass of generalized ®-hemicontractive mappings. Obviously, generalized @-
hemicontractive mapping must be generalized weak ®-hemicontractive, but, on the contrary,
it is not true. We have the following example.

Example 1.6. Let E = (—oo,+o0) be real number space with usual norm and K = [0, +0).
T : K — E defined by

x4+ +x/x—/x

T
o 1+ x/x + x2

, VxeKk. (1.12)
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Then T has a fixed point 0 € F(T). @ : [0,+00) — [0,+o0) defined by ®(t) = t*/2 is a strictly
increasing function with @(0) = 0. For all x € K and 0 € F(T), we have

(Tx - TO,j(x~0)) = < 1+ x4/ + x2

_x2+x4+x3\/§—x\/?c_x2_ x3/?
1+ x/x + x2 - 1+x3/2 4 x2 (1.13)
)
~ |x—0p ) - 0P - o)

1+ D(x) + 22
> |x = 0 - D(x).

Then T is a generalized weak ®-hemicontractive map, but it is not a generalized @-

hemicontractive map; that is, the class of generalized weak ®-hemicontractive maps properly

contains the class of generalized ®-hemicontractive maps. Hence the class of generalized
weak @-hemicontractive mappings is the most general among those defined above.

Definition 1.7. The mapping T : E — E is called Lipschitz, if there exists a constant L > 0 such
that

ITx =Tyl < L]jx -y

, Vx,y€E. (1.14)

It is clear that if T is Lipschitz, then it must be uniformly continuous. Otherwise, it is not
true. For example, the function f(x) = v/x,x € [0, +o0) is uniformly continuous but it is not
Lipschitz.

Now let us consider the multi-step iteration with errors. Let K be a nonempty convex
subset of E, and let {T;}, be a finite family of self-maps of K. For x; € K, the sequence {x,}
is generated as follows:

X1 = (1—ay, —6,)x, + [anny,ll + 6,V

vi= (1= B =) xa + BTy 4 i)y, i=1,,p -2, (1.15)

—1 -1 -1 -1 -1 p-1
= (= = Y B T W, 22,

where {v,}, {w},} are any bounded sequencesin K and {a,}, {6,}, {f,}, {1}, (i=1,2,...,p-
1) are sequences in [0, 1] satisfying certain conditions.

If p = 2, (1.15) becomes the Ishikawa iteration sequence with errors {x,},_, defined
iteratively by

Xpe1 = (1 —ay —6,)x, + anTnyi + 6,7V,
(1.16)
y}1 = (1= Bu—1n)Xn + PuTpxn + uwn, Yn>0.
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If B, = 1, = 0, for all n > 0, then from (1.16), we get the Mann iteration sequence with
errors {uy,},., defined by

Upe1 = (1 —ay = 6p)uy + ayTytiy + Ouptn, Y1 2>0, (1.17)

where {p,} C K is bounded.

Recently, many authors have researched the iteration approximation of fixed points by
Lipschitz pseudocontractive (accretive) type nonlinear mappings and have obtained some
excellent results [3-12]. In this paper we prove the equivalence between the Mann and multi-
step iterations with errors for uniformly continuous generalized weak ®-pseduocontractive
mappings in Banach spaces. Our results extend and improve the corresponding results [3—
12].

Lemma 1.8 (see [13]). Let E be a real normed space. Then, for all x,y € E, the following inequality
holds:

e+ ylI” < 2l + 2y, j(x + ), Vilx+y) €J(x+y). (1.18)
Lemma 1.9 (see [14]). Let {p,} be nonnegative sequence which satisfies the following inequality:
Pn+1 < (1 - )‘n)Pn +0, n2=N, (119)

where Ay, € (0,1),limy oAy = 0and 357 Ay = 00, 04 = 0(Ay,). Then p, — 0asn — co.

Lemma 1.10. Let {6,}, {ca}, {en} and {t,} be four nonnegative real sequences satisfying the
following conditions: (i) lim,_,ot, = 0; (i) Dogtn = oo; (i) ¢» = o(tn),en = o(t,). Let
D : [0,+00) — [0, +o0) be a strictly increasing and continuous function with ®(0) = 0 such that

(D(Gn 1)
02 . <(1+¢,)0%—-t, ai +e, n>0. .
n+l = ( ) n 1+ (D(Qm.l) 4 93”1 = (1 20)
If {0, } is bounded, then 6, — 0asn — oo.
Proof. Since lim,_ot, = 0,{6,} is bounded, we set R = max{sup, otn,sup,,On}, v =

liminf, — o (@ (Op11) /(1 + 9,2”1) [1+®(R) + R?]), then y = 0. Otherwise, we assume that y > 0,
then there exists a constant 6 > 0 with 6 = min{1, y} and a natural number N; such that

D(Opi1) > (6 + 662

n+1

> [1 +®(R) + Rz] > 562

n+l

[1 +O(R) + R2], (1.21)

for n > Nj.
Then, from (1.20), we get

1+cp 02 +

n+l = 1 +6tn n T €en- (].22)
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Since ¢,, = o(t,), there exists a nature number N, > N1, such that ¢, < (6/2)t,, n > N,. Hence
(1+cy)/(1+6t,) <1-(6/2)t, and (1.22) becomes

02, < <1 - gtn>93, +ey. (1.23)

By Lemma 1.9, we obtain that8,, — Oasn — oo. Since @ is strictly increasing and continuous
with ®(0) = 0. Hence y = 0, which is contradicting with the assumption y > 0. Then y = 0,
there exists a subsequence {6,,} of {0,} such that 6,, — 0asj — oo.Let0 < e < 1be any
given. Since ¢, = o(t,), e, = o(t,), then there exists a natural number N3 > N», such that

o . o - D(¢g) ; o < D(e)
T T T AMEA+ R A OR) T T T 2(1+ R+ O(R))

(1.24)

for all j > Nj. Next, we will show that Onjrm < € forallm =1,2,3,.... First, we want to prove
that an+1 < €. Suppose that it is not the case, then an+1 > ¢. Since @ is strictly increasing,

D (0,1 2 D(e). (1.25)

From (1.24) and (1.25), we obtain that

D(e)

2 2
O < (1560, iR o®

nj+l = €n,

o) (1.26)
2 € 2 2
CRNTES e

That is 9,1].+1 < g, which is a contradiction. Hence an+1 < £. Now we assume that Gnﬁm < e
holds. Using the similar way, it follows that 9,1].+m+1 < ¢. Therefore, this shows that 8,, — 0 as
n — oo. ]

2. Main Results

Theorem 2.1. Let K be a nonempty closed convex subset of a Banach space E. Suppose that T, =
Ta(mod My, and T; : K — K,i € I = {1,2,..., M} are M uniformly continuous generalized weak
®-hemicontractive mappings with F = (Y F(T;) #0. Let {u,} be a sequence in K defined iteratively
from some ug € K by (1.17), where {u,} is an arbitrary bounded sequence in K and {a,}, {5,} are
two sequences in [0,1] satisfying the following conditions: (i) a, + 6, < 1, (i) X orp @y = oo, (iii)
lim, ., a, = 0, (iv) 6, = o(ay). Then the iteration sequence {u,} converges strongly to the unique
fixed point of T.
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Proof. Since F = N\M F(T;)#0, set g € F. Since the mapping T, are generalized weak
®-hemicontractive mappings, there exist strictly increasing functions @; : [0, +o0) — [0, +00)
with @;(0) =0 and j(x - y) € J(x — y) such that

@i (llx -yl
L+ [lx = ylI* + @u(flx - yl)

(Tix =Ty, j(x - y)) < [lx -yl - VxyeK lel.  (21)

Firstly, we claim that there exists 1y € K with 1 # Tug such that ty = ||ug — Tuo|| - [[uo -
gl - [1+ |luo — glI> + ©1(Jluo — gl|)] € R(®1). In fact, if uy = Tup, then we have done. Otherwise,
there exists the smallest positive integer ny € N such that u,, # Tu,,. We denote u,, = uy, then
we will obtain that ty € R(®;). Indeed, if R(®;) = [0, +00), then ¢y € R(D). If R(D;) = [0, A]
with 0 < A < +oo, then for g € K, there exists a sequence {w,} C K such that w, — g as
n — oo with w, # g, and we also obtain that the sequence {w, — Tw,} is bounded. So there
exists g € N such that [[w, — Twy| - [|w, — gl - [1 + |[w, — g|I* + ©1(|w, — gl|)] € R(D;) for
n > ny, then we redefine uy = w,,, let wy = CD{l(to) > 0.

Next we shall prove ||u, — q|| < wy for n > 0. Clearly, ||up — g|| < wo holds. Suppose that
lun — gl| < wo, for some n, then we want to prove |[u,.1 — g|| < wy. If it is not the case, then
llttn1 — gll > wo. Since T is a uniformly continuous mapping, setting ey = ®@;(wp) /12wy [1 +
@;((3/2)wp) + ((3/2)wp)?], there exists & > 0 such that || T,x — Tyl < €o, whenever ||x - y|| <
6; and T,, are bounded operators, set M = sup{||T.x|| : [|x — g|| < wo} + sup,||wy]. Since
lim, , a, =0, 6, = o(a,), without loss of generality, let

o @ < min 1 W 6 @i(wo)
Y ay, 47 4AM 4(M + wo)” 44, [1 +®y((3/2)wp) + ((3/2)w0)2] '
(2.2)
Di(wo) n>0.
12[1 +®((3/2)wp) + ((3/2)w0)2] Muw,
From (1.17), we have
lln1 = qll = | (1 = an = 62) (un = q) + @ (Tuttn — q) + 62 (wn — q) ||
< ||un = q| + an|| Taten — g|| + 6|wn - 4|
2.
< w0+ | Tutt — g + 6|0 — 4] (23)
<wp + M(an +6,) < wo +2May, < ;WO/
||un+1 - un” = ||anTnun + Optwy, — (“n + 6n)un||
< || Tuttn = q|| + 6n||wn — ql| + (@0 + 6) ||un — 4| (2.4)

<(anp+6,)(M + wy) <6.

Since T, are uniformly continuous mappings, so ||T,uns1 — Tnltn|| < €.
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Applying Lemma 1.8, the recursion (1.17), and the above inequalities, we obtain

4r = q* = [|(1 = @ = 62) (tn = q) + @t (Tutt = q) + 6 (c0n = ) ||°
< (1= ay = 6,)°Jutn = ql|” + 20 (Tt = 4, j (i1 — 9))
+26p||wn = q|| - [[tna1 - 4]
< (1= an)?[|un = q||” + 20 (Tuttnes = T4, j (a1~ q))
+ 20t | Tuttn = Tuttnarll - [|ttner = || +26u||con = ql| - ||un1 - 4|

Di(f|ne -~ all)

<(1- an)2||”n - ‘7”2 * 2an[|lun+1 - q”2 -

+ zan”Tnun - Tnun+1|| . ”un+1 - QH + 26n||wn - q” . ”un+1 - q”

Inequality (2.5) implies

R a2
lttner = ql* < [l = g - 20 + 2
" ' "1 @[~ gll) + [l gl 172
2 26
| Tyt = Tyttt [t = gl + T = ] - [J41 4]
1—2“;1 1 zan
< w? - 2a, @y (wo) _
1+ ®@((3/2)wo) + ((3/2)wo)
49 @;(wp) 2

ay - wy
4[1 +®((3/2)wo) + ((3/2)w0)2]wg

\da, Dy (wp) Bwo

12[1 + ®y((3/2)wp) + ((3/2)w0)2]w0 2

D (wo) 3Muwy o

+ 4(171 0r
12[1 + ®y((3/2)wp) + ((3/2)w0)2] Mw, 2

L+ @y ([luner = qll) + [ens ~ 4

e = qll”

|

(2.5)

(2.6)

which is a contradiction with the assumption ||uy+1 — g|| > wo. Then [[uys1 — gl < wo; that is,

the sequence {u,} is bounded. Let N = sup, ||u,, — g||. From (2.4), we have

ltns1 — wn|| < (ay +6,) (M + wy) — 0, n— oo,

that is, limy,, _, o ||1441 — U»|| = 0. Since T is on uniformly continuous, so

lim ||Tyupe1 — Touy|| = 0.
n—oo

(2.7)

(2.8)



Abstract and Applied Analysis 9

Again using (2.5), we have

D; (|1 —
it — a1 < len - all* - 22, (LR ]A 29)
1+ @ (|lune = q|[) + [June — 4|
where
A, = a2N? + 2a,N||T,uy, — Tyt || + 26, MN. (2.10)

By (2.8), the conditions (iii) and (iv), we get A, = o(a;,). So applying Lemma 1.10 on (2.9),
we obtain lim,, o, ||, — g|| = 0. O

Theorem 2.2. Let E be a Banach space and K be a nonempty closed convex subset of E, T, are as
in Theorem 2.1. For xo,uy € K, the sequence iterations {x,}, {u,} are defined by (1.15) and (1.17),
respectively. {ay}, {64}, {Bo}, {nh}, i=1,2,...,p—1aresequences in [0, 1] satisfying the following
conditions:

H0<a,+6,<1,0<p +1i <1,1<i<p - 1;
n Tli‘l P

(i) Do @n = 0;

)
)
(iii) limy, . ca, =0;
(iv) lim, oo, = limy o1, =0,i=1,...,p-1;
)

(v) 6n = o(an).
Then the following two assertions are equivalent:

(I) the iteration sequence {x,} strongly converges to the common point of F(T;), i € I;

(II) the sequence iteration {u,} strongly converges to the common point of F(T;), i € 1.

Proof. Since F = N, F(T;) #0, set q € F. If the iteration sequence {x,} strongly converges to
g, then setting p = 2, B, = 6, = 0, we obtain the convergence of the iteration sequence {u,}.
Conversely, we only prove that (II)=(I). The proof is divided into two parts.

Step 1. We show that {x, — u,} is bounded.

By the proof method of Theorem 2.1, there exists xg € K with xo#Tixp such that
ro = Ilxo = Tyxoll - l1xo — qll - [1+ [lx0 = qII2 + @y (llxo — qll)] € R(®). Setting ap = D7 (ro),
we have [[xg — gq|| < ao. Set By = {|lx —¢g|l £ ap : x € K}, B, = {|[lx — gl < 2ap : x €
K}. Since T; are bounded mappings and {w}} (i = 1,...,p — 1), {v,} are some bounded
sequences in K, we can set M = max{sup, g [[Tnx - qll;sup,, o yllw!, = gli; sup, e 5 llve —
qll}. Since T; are uniformly continuous mappings, given ey = ®;(ag)/4ao[1 + (5a9 /4)2 +
@;(5a09/4)], 36 > 0, such that ||Tx — Ty|| < €y whenever ||x — y|| < 6,for all x, y € B,.
Now, we define 7p = min{1/2, ag/8M, ag/8(M + ag), 6/8(M + ayp), (Dl(ao)/SaS[l + (5a0/4)2+
@;(5a9/4)], ®;(ag)/5aoM][1 + (5ag /4)? + @ (5a /4)]}. Since the control conditions (iii)-(iv),
without loss of generality, we let 0 < a,, 6,/ a,, ﬂ;, 1, <1, n>0.

Now we claim that if x,, € By, then y; €B,1<i<p-1
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From (1.15), we obtain that

i =a| < (=B =) e - all + B T - gll + 7 |l |
< lu=qll + (B0 + )M
< [lxn - q|| +270M < 2as,
vt =al < (U= =)l —all + 87| T = a| + 2| -
< lxw=all + (3 + ") M
< ||xn — g| +270M < 2ay,
(2.11)
we also obtain that
v -] < 2a0. (2.12)

Now we suppose that ||x, — g|| < ag holds. We will prove that ||x,+1 — gl < ao. If it is
not the case, we assume that ||x,.1 — g|| > ao. From (1.15), we obtain that

tnes = qll = {|(1 = @ = ) (xta — 4) + 2 (Tuyh = q) + a0 - )|

< Ml =4l + @

T, g + Sullva - al

(2.13)
< ||xn — g + (a0 + 6,)M
1 5
< ||xn — gl| +270M < ||x0n — g|| + 790 S 740
Consequently, by (2.11) and (2.12), we obtain
w1 = v = [|[ (B = o) + (18 = 64)| (v = 4) + @ (Tuys - )
B (Taya =) +6a(va—q) —mi(wi=q)||
< (B v an v b+ 6,) vl + | T g (214
+ | T = a| + 6ullv = all + 13| e0h - g
< 4T0([l0 + M) < o.
Since T, are uniformly continuous mappings, we get
TuXpi1 — Tny}l < €. (2.15)
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Using (2.1), Lemma 1.8, and the recursion formula (1.15), we have

2
s = all” = || = = ) (v = q) + @ (Tuys ~ 7) + 80 (v = 9)
< (1= )’ [|xn = gl + 200 (Tus — 4,7 (X = 4) ) + 26,0 = 4| - [| 01 - 4l
<(1- “n)znxn - q”2 + 2“n<Tnxn+1 - q,]'(xn+1 - q)>

+ 2“n<Tn]/;l1 - Tnxn+1/j(xn+l - q) > + 26n||vn - q” ’ ||xn+1 - lI”

@ (|21 —
sa—%fWWWW+m{WMfﬂV— (s = al) 4
T+ 0w —al) + It~

+ 20, Tn]/;lq — Tauxps|| - ||xn+1 - q” +26,M - ”xn+1 - q”
(2.16)
Which implies
Dy (||ner — ql[) a,
AT T 2a, ) 2 e
e =l o= s —al) + oo gl 12
2a 26
+ 1= Znan Tn]/}l —Tuxpe]| - ”xn+1 - q” + 1= ZnanM . ||xn+1 - q”
< ag _ 26[n (I)l(a())
1-2a, 1+ (5a0/4)* + ©;(5a9/4)
N 2a, @®;(ag) 2
=200 403 [1+ (5a0/4)* + Di(5a0/4)| ’
n 2an (I)l(aO) . 5&
1=2ay 54, [1 + (5ay/4)% + @, (5ap /4)]
4 20 Dia0) DM a
1-2a, 5a0M[1 + (5a0/4)% + y(5aq /4)] 4
(2.17)

which is a contradiction with the assumption ||x,.1 — gl| > po, then ||x,41 — g|| < po; that is,
the sequence {x, — g} is bounded. Since u, — g, as n — oo, so the sequence {x, — u,} is

bounded.
Step 2. We prove lim,, _, oo ||x, — g|| = 0.

Since {x, — u,} is bounded, again applying (2.11) and (2.12), we get the boundedness
of {y}; - Uy}, i = 1,2,...,p — 1. Since T, = Ty(mod M) are bounded mappings, set L =
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maX{SuanOHxn — Uyll, SupnzollTnxn — |, SupnzollTny; - un”rsupnz()”ﬂn - un||fSUPn20||Vn -
||, sup,sollwy, —uall}, (i=1,2,...,p —1). From (1.15) and (1.17), we obtain

”xn+l - un+1”2

= || (1= an = 6n) (X0 — Un) + an <Tny31 - Tn“n) + 0Oy (Vn - lln) ’

< (1= @) 0 = el + 20 ( Ty, = Tt j (st = thn1) )
+ 26, ||V = | - 13041 — ||
< (1= an)?[|2n = nl* + 20 (T i1 = Tuthns1, j (Xns1 = Uns1) )
420, (Toyp = Totar + Tt = Tyt (X1 = thrn) )

+ 26n"vn - ﬂn” X1 = tpial|

D ([[xn+1 = Unall)

n
1+ Dy (|| xper — wparl]) + |01 — un+1||2

< (1+@) 1z - gl - 20

+2ay, Tnyrll —TyxXpa || - ||xn+1 - un+1|| + 2an”TnunJrl - Tnun” : ”xn+1 - un+1||

+26,M - || Xp41 = Upi ||

(2.18)
Xns1 = Y| < <ﬂ;11 +a + 1]+ 6n>||xn — | + || Thy — tn
+ BN T2 = || + v — unl| + 1 || — s (2.19)
< 2([3}1 + oy, + 1+ 6n>L.

By the conditions (iii)—(v), we have

nlgrgo| Xpi1 — y,ll =0. (2.20)
Since lim,, _, o ||, — q]| = 0, s0

ltne1 = tnll < |[1tn = q|| + || ttna — q|- (2.21)

That is:

Tim ls1 =l = 0. (2.22)
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By the uniform continuity of T, we obtain

Iim (| Txpe1 — Tny,ll

n— oo

=0, lim || T, 11 — Tautn]| = 0. (2.23)
n— oo

From (2.23) and the conditions (iii) and (v), (2.18) becomes

Dp (|| 2cpr1 = tnsr]l)

n +o(ay,).
1+ Dy([|xns1 = tnir[}) + 11 = ]|

Pnst =t < (1+ a2 ) 6 = - 2
(2.24)

By Lemma 1.10, we get lim, _,o||xy — un|| = 0. Since lim,_,o|[u, — g|| = 0, and the
inequality 0 < lxy - 5]|| < loen = g + 1y — q”r so limy, _, || xp — Q|| =0. O

From Theorems 2.1 and 2.2, we can obtain the following corollary.

Corollary 2.3. Let E be a Banach space and K be a nonempty closed convex subset of E,
T, are as in Theorem 2.1. For xo € K, the sequence iterations {x,} is defined by (1.15).
lan}, 164}, {BL}, (0L}, (i=1,2,...,p-1) are sequences in [0, 1] satisfying the following conditions:

(D)0<ay+6,<1,0<p,+m,<1,1<i<p-1;

(ii) Do &n = o0;

(iii) limy, _ a, = 0;

(IV) hmn—moﬁil = hmn*ooﬂil =0,i=1,.. N 1;
(V) 6n = o(ay).

Then the iteration sequence {x,} strongly converges to the common point of F(T;), i € I.
Corollary 2.4. Let T, = Sy(mod my, I1 : E — E, 1 €1={1,2,..., M} are M uniformly continuous
generalized weak ®-quasi-accretive mappings. Suppose N (F) = N, N (F;) #0, that is, there exists
x* € N(F). Let {a,}, {6,}, {BL}, {11}, (i = 1,2,...,p — 1) be sequences in [0,1] satisfying the
following conditions:

()0<ay+6,<1,0<p,+m,<1,1<i<p-1;
(i) X2 oty = o0;
(iii) limy, —, a0y = 0;
(IV) hmn—moﬁil = limn—moﬂil = 0, i= 1,. P 1,’
(V) 6, = o(ay,).

Let the sequence {x,} in E be generated iteratively from some xo € E by
X1 = (1 —ay —6,)x, + zanny}l + OnVy,
vi=(1-p,- ni)xn + B Suyn ! + My, i=1,...p =2, (2.25)

1 -1 -1 -1 -1 p-1
= (g g xS+ o, p22,

where Syx := x — Tyx for all x € E and {v,}, {w},} are any bounded sequences in K.
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Then {x,} defined by (2.25) converges strongly to x*.

Proof. We simply observe that S; := I-Tj, | € I are M uniformly continuous generalized weak
®-hemicontractive mappings. The result follows from Corollary 2.3. O
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